
SNAPSHOT-FREE, TRANSPARENT, AND ROBUST MEMORY
RECLAMATION FOR LOCK-FREE DATA STRUCTURES

Ruslan Nikolaev and Binoy Ravindran
rnikola@vt.edu binoy@vt.edu

Systems Software Research Group
Virginia Tech, USA

CONCURRENT DATA STRUCTURES

 Many-core systems today require efficient access to data

 Concurrent data structures

 Multiple threads need to safely manipulate data structures (similar to sequential data
structures)

 “nothing bad will happen” Thread
A

Thread
B

Thread
C

2

CONCURRENT DATA STRUCTURES

 Many-core systems today require efficient access to data

 Concurrent data structures

 Multiple threads need to safely manipulate data structures (similar to sequential data
structures)

 “nothing bad will happen”

 Concurrency also adds a liveness property, which stipulates how threads will be able to make
progress

 “something good will happen eventually”
Thread

A
Thread

B
Thread

C

Thread
A

Thread
B

Thread
C

3

NON-BLOCKING ALGORITHMS

 Lock-freedom: a common type of non-blocking progress

 At least one thread always makes progress in a finite number of steps

 CAS (compare-and-swap) is used universally in non-blocking algorithms

 Double-width CAS which modifies two adjacent words is available on x86-64 and ARM64

 LL/SC (load-link/store-conditional) which is more versatile is available on PowerPC and ARM64

 F&A (fetch-and-add) is also often available as a specialized instruction to improve performance

4

MEMORY RECLAMATION PROBLEM

Delete P

Thread A Thread B Thread C

One thread wants to de-allocate a memory object
which is still reachable by concurrent threads

5

MEMORY RECLAMATION PROBLEM

Dereference P

Delete P

Dereference P

Thread A Thread B Thread C

SEGFAULT!
SEGFAULT!

One thread wants to de-allocate a memory object
which is still reachable by concurrent threads

6

Something
went wrong! Yep!

MEMORY RECLAMATION PROBLEM

Delete P

Thread A Thread B Thread C

Postpone de-allocation until it is safe to do so 7

Delete P

Dereference P

Dereference P

No problem OK

MEMORY RECLAMATION PROBLEM

 Concurrent programming is hard

 Non-blocking (lock-free) data structures require special treatment of deleted memory objects

 Garbage collectors are often impractical in C/C++ and lack suitable progress/performance properties

 Desirable properties for memory reclamation

 Non-blocking progress: avoid using locks

 Robustness: bounding memory usage even when threads are stalled or preempted

 Transparency: avoiding implicit assumptions about threads; threads can be created/deleted dynamically

 Snapshot-freedom: not taking snapshots of the global state to alleviate contention

HYALINE: API

 Memory reclamation must be explicitly embedded into the code

handle_t Handle = enter();

// deref is only for robust versions

List = deref(&LinkedList);

Node = deref(&List->Next);

retire(Node); // Mark for deletion

// Do something else...

leave(Handle);

HYALINE: API

handle_t Handle = enter();

// deref is only for robust versions

List = deref(&LinkedList);

Node = deref(&List->Next);

retire(Node); // Mark for deletion

// Do something else...

leave(Handle);

 Memory reclamation must be explicitly embedded into the code

HYALINE: API

handle_t Handle = enter();

// deref is only for robust versions

List = deref(&LinkedList);

Node = deref(&List->Next);

retire(Node); // Mark for deletion

// Do something else...

leave(Handle);

 Memory reclamation must be explicitly embedded into the code

HYALINE: API

handle_t Handle = enter();

// deref is only for robust versions

List = deref(&LinkedList);

Node = deref(&List->Next);

retire(Node); // Mark for deletion

// Do something else...

leave(Handle);

 Memory reclamation must be explicitly embedded into the code

HYALINE: API

handle_t Handle = enter();

// deref is only for robust versions

List = deref(&LinkedList);

Node = deref(&List->Next);

retire(Node); // Mark for deletion

// Do something else...

leave(Handle);

 Memory reclamation must be explicitly embedded into the code

HYALINE: SINGLE LIST

 The main idea

 Use special reference counting, which is triggered only when retiring objects

 Retired objects are appended to a global list

 The handle points to the part of the list when the thread entered its operation

Handle
(Thread i)

Handle
(Thread j)

NRef0 NRef NRef

Head [HRef, HPtr]

...

HYALINE: SINGLE LIST

 The main idea

 Update Head's reference counter (HRef) when entering and leaving thread operations

 When leaving, a thread traverses a sublist from the beginning to the object pointed to by a handle

 Propagate counters when retiring objects

 Treat the very first list element specially: HRef rather than NRef reflects its reference counter

 When appending to the list, adjust the predecessor’s NRef (previously 0) with the HRef value

HRef +

...NRefNRef NRef NRef

00

0

Head [HRef, HPtr]

NRef NRef NRef...

New Head

≤ 0 ≥ 1

HYALINE: MULTIPLE LISTS

 The main idea

 Maintain multiple global lists of retired objects to alleviate contention

 Each list is used by a subset of threads

 Retire an entire batch of objects

 One reference counter for the entire batch
N0.m...N0.1N0.0[HRef0=2]

N1.m...N1.0N1.1

N2.m...N2.0N2.1

[HRef1=0]

[HRef2=1]

[HRef3=0]

[HRef4=2]

Rm

...

R0R1

Batch 0 Batch 1 Batch m

... ...

Slots

[HRef5=0]

[HRef6=0]

[HRef7=0]

...

COMPARISON

Scheme Performance Snapshot-
Free

Robust Transparent Extra Memory API complexity

Reference Counting Very Slow Yes Yes Partially (swap) Double each
pointer

Harder,
Intrusive

Epoch Based Reclamation Fast Yes No No (deletion) 1 word Very Easy

Hazard Pointers Slow No Yes No (deletion) 1 word Harder

Hazard Eras Medium No Yes No (deletion) 3 words Harder

Interval Based Reclamation Fast No Yes No (deletion) 3 words Medium

Hyaline Fast Yes No Yes 3 words Very Easy

Hyaline-1 Fast Yes No Almost 3 words Very Easy

Hyaline-S Fast Yes Yes Yes 3 words Medium

Hyaline-1S Fast Yes Yes Almost 3 words Medium

COMPARISON

Scheme Performance Snapshot-
Free

Robust Transparent Extra Memory API complexity

Reference Counting Very Slow Yes Yes Partially (swap) Double each
pointer

Harder,
Intrusive

Epoch Based Reclamation Fast Yes No No (deletion) 1 word Very Easy

Hazard Pointers Slow No Yes No (deletion) 1 word Harder

Hazard Eras Medium No Yes No (deletion) 3 words Harder

Interval Based Reclamation Fast No Yes No (deletion) 3 words Medium

Hyaline Fast Yes No Yes 3 words Very Easy

Hyaline-1 Fast Yes No Almost 3 words Very Easy

Hyaline-S Fast Yes Yes Yes 3 words Medium

Hyaline-1S Fast Yes Yes Almost 3 words Medium

COMPARISON

Scheme Performance Snapshot-
Free

Robust Transparent Extra Memory API complexity

Reference Counting Very Slow Yes Yes Partially (swap) Double each
pointer

Harder,
Intrusive

Epoch Based Reclamation Fast Yes No No (deletion) 1 word Very Easy

Hazard Pointers Slow No Yes No (deletion) 1 word Harder

Hazard Eras Medium No Yes No (deletion) 3 words Harder

Interval Based Reclamation Fast No Yes No (deletion) 3 words Medium

Hyaline Fast Yes No Yes 3 words Very Easy

Hyaline-1 Fast Yes No Almost 3 words Very Easy

Hyaline-S Fast Yes Yes Yes 3 words Medium

Hyaline-1S Fast Yes Yes Almost 3 words Medium

COMPARISON

Scheme Performance Snapshot-
Free

Robust Transparent Extra Memory API complexity

Reference Counting Very Slow Yes Yes Partially (swap) Double each
pointer

Harder,
Intrusive

Epoch Based Reclamation Fast Yes No No (deletion) 1 word Very Easy

Hazard Pointers Slow No Yes No (deletion) 1 word Harder

Hazard Eras Medium No Yes No (deletion) 3 words Harder

Interval Based Reclamation Fast No Yes No (deletion) 3 words Medium

Hyaline Fast Yes No Yes 3 words Very Easy

Hyaline-1 Fast Yes No Almost 3 words Very Easy

Hyaline-S Fast Yes Yes Yes 3 words Medium

Hyaline-1S Fast Yes Yes Almost 3 words Medium

COMPARISON

Scheme Performance Snapshot-
Free

Robust Transparent Extra Memory API complexity

Reference Counting Very Slow Yes Yes Partially (swap) Double each
pointer

Harder,
Intrusive

Epoch Based Reclamation Fast Yes No No (deletion) 1 word Very Easy

Hazard Pointers Slow No Yes No (deletion) 1 word Harder

Hazard Eras Medium No Yes No (deletion) 3 words Harder

Interval Based Reclamation Fast No Yes No (deletion) 3 words Medium

Hyaline Fast Yes No Yes 3 words Very Easy

Hyaline-1 Fast Yes No Almost 3 words Very Easy

Hyaline-S Fast Yes Yes Yes 3 words Medium

Hyaline-1S Fast Yes Yes Almost 3 words Medium

VARIANTS OF HYALINE

 Hyaline: a non-robust version, uses double-width CAS

 Hyaline-1: a specialized version of Hyaline, each slot is used by just one thread (regular CAS)

 Hyaline-S: a robust version of Hyaline, inspired by “birth eras” from Hazard Eras and Interval
Based Reclamation

 Hyaline-1S: a specialized version of Hyaline-1S (regular CAS)

22

EVALUATION

 4x18 Intel Xeon E7-8880 v3 (2.30GHz) 128GB RAM, Clang 11.0.1 with -O3

 Adopted the benchmark from IBR/PPoPP ’18 (by Wen et al.) and compared against:

 Epoch-Based Reclamation (Epoch)

 Interval-Based Reclamation, 2GEIBR (IBR) [PPoPP ’18]

 Hazard Eras (HE) [SPAA ’17]

 Hazard Pointers (HP) [TPDS ’04]

 No reclamation, i.e., leaking memory (No MM)

 Results are for write-intensive (50% insert, 50% delete) and read-dominated (90% get, 10%
put) tests

 See the paper for more results 23

EVALUATION: WRITE-INTENSIVE TESTS

0.10

0.15

0.20

0.25

1 9 18 27 36 45 54 63 72 81 90 99 108117126135144

Threads

T
h
ro

u
g
h
p
u
t
(M

 o
p
s
/s

e
c
)

No MM
Epoch

Hyaline
Hyaline-1

Hyaline-S
Hyaline-1S

IBR

Bonsai Tree

0

500

1000

1500

2000

2500

1 9 18 27 36 45 54 63 72 81 90 99 108117126135144

Threads

R
e

ti
re

d
 O

b
je

c
ts

 p
e

r
O

p
e

ra
ti
o

n Epoch
IBR

Hyaline
Hyaline-1

Hyaline-S
Hyaline-1S

EVALUATION: WRITE-INTENSIVE TESTS

0.10

0.15

0.20

0.25

1 9 18 27 36 45 54 63 72 81 90 99 108117126135144

Threads

T
h
ro

u
g
h
p
u
t
(M

 o
p
s
/s

e
c
)

No MM
Epoch

Hyaline
Hyaline-1

Hyaline-S
Hyaline-1S

IBR

Bonsai Tree

0

500

1000

1500

2000

2500

1 9 18 27 36 45 54 63 72 81 90 99 108117126135144

Threads

R
e

ti
re

d
 O

b
je

c
ts

 p
e

r
O

p
e

ra
ti
o

n Epoch
IBR

Hyaline
Hyaline-1

Hyaline-S
Hyaline-1S

>>>>>

>>>>>

>>>>>

>>>>>
>>>>>

>>>>>

>>>>>

>>>>>

>>>>> >>>>> >>>>> >>>>> >>>>> >>>>> >>>>> >>>>> >>>>>

0.000

0.025

0.050

0.075

0.100

1 9 18 27 36 45 54 63 72 81 90 99 108117126135144

Threads
T

h
ro

u
g

h
p

u
t

(M
 o

p
s
/s

e
c
)

>No MM
Epoch

Hyaline
Hyaline-1

Hyaline-S
Hyaline-1S

IBR
HE

HP

Linked List

>>>>>

>>>>> >>>>> >>>>> >>>>> >>>>> >>>>> >>>>> >>>>> >>>>> >>>>> >>>>> >>>>> >>>>> >>>>> >>>>> >>>>>
0

500

1000

1500

1 9 18 27 36 45 54 63 72 81 90 99 108117126135144

Threads

R
e

ti
re

d
 O

b
je

c
ts

 p
e

r
O

p
e

ra
ti
o

n

>

Epoch
IBR

Hyaline
Hyaline-1

Hyaline-S
Hyaline-1S

HE
HP

EVALUATION: WRITE-INTENSIVE TESTS

0.10

0.15

0.20

0.25

1 9 18 27 36 45 54 63 72 81 90 99 108117126135144

Threads

T
h
ro

u
g
h
p
u
t
(M

 o
p
s
/s

e
c
)

No MM
Epoch

Hyaline
Hyaline-1

Hyaline-S
Hyaline-1S

IBR

Bonsai Tree

0

500

1000

1500

2000

2500

1 9 18 27 36 45 54 63 72 81 90 99 108117126135144

Threads

R
e

ti
re

d
 O

b
je

c
ts

 p
e

r
O

p
e

ra
ti
o

n Epoch
IBR

Hyaline
Hyaline-1

Hyaline-S
Hyaline-1S

>>>>>

>>>>>

>>>>>

>>>>>
>>>>>

>>>>>

>>>>>

>>>>>

>>>>> >>>>> >>>>> >>>>> >>>>> >>>>> >>>>> >>>>> >>>>>

0.000

0.025

0.050

0.075

0.100

1 9 18 27 36 45 54 63 72 81 90 99 108117126135144

Threads
T

h
ro

u
g

h
p

u
t

(M
 o

p
s
/s

e
c
)

>No MM
Epoch

Hyaline
Hyaline-1

Hyaline-S
Hyaline-1S

IBR
HE

HP

Linked List

>>>>>

>>>>> >>>>> >>>>> >>>>> >>>>> >>>>> >>>>> >>>>> >>>>> >>>>> >>>>> >>>>> >>>>> >>>>> >>>>> >>>>>
0

500

1000

1500

1 9 18 27 36 45 54 63 72 81 90 99 108117126135144

Threads

R
e

ti
re

d
 O

b
je

c
ts

 p
e

r
O

p
e

ra
ti
o

n

>

Epoch
IBR

Hyaline
Hyaline-1

Hyaline-S
Hyaline-1S

HE
HP

>>>>>

>>>>>

>>>>> >>>>>

>>>>>
>>>>>

>>>>>
>>>>>

>>>>>

>>>>>

>>>>>

>>>>>

>>>>>
>>>>> >>>>> >>>>> >>>>>

0

50

100

1 9 18 27 36 45 54 63 72 81 90 99 108117126135144

Threads

T
h
ro

u
g
h
p
u
t
(M

 o
p
s
/s

e
c
)

>No MM
Epoch

Hyaline
Hyaline-1

Hyaline-S
Hyaline-1S

IBR
HE

HP

Hash Map

>>>>> >>>>> >>>>> >>>>> >>>>> >>>>> >>>>> >>>>> >>>>> >>>>> >>>>> >>>>> >>>>> >>>>> >>>>> >>>>> >>>>>0

1000

2000

3000

1 9 18 27 36 45 54 63 72 81 90 99 108117126135144

Threads

R
e
ti
re

d
 O

b
je

c
ts

 p
e
r

O
p
e
ra

ti
o
n

>

Epoch
IBR

Hyaline
Hyaline-1

Hyaline-S
Hyaline-1S

HE
HP

EVALUATION: READ-DOMINATED TESTS

0

500

1000

1500

2000

1 9 18 27 36 45 54 63 72 81 90 99 108117126135144

Threads

R
e
ti
re

d
 O

b
je

c
ts

 p
e
r

O
p
e
ra

ti
o
n Epoch

IBR
Hyaline
Hyaline-1

Hyaline-S
Hyaline-1S

0

1

2

3

1 9 18 27 36 45 54 63 72 81 90 99 108117126135144

Threads

T
h
ro

u
g
h
p
u
t
(M

 o
p
s
/s

e
c
)

No MM
Epoch

Hyaline
Hyaline-1

Hyaline-S
Hyaline-1S

IBR

Bonsai Tree

EVALUATION: READ-DOMINATED TESTS

0

500

1000

1500

2000

1 9 18 27 36 45 54 63 72 81 90 99 108117126135144

Threads

R
e
ti
re

d
 O

b
je

c
ts

 p
e
r

O
p
e
ra

ti
o
n Epoch

IBR
Hyaline
Hyaline-1

Hyaline-S
Hyaline-1S

0

1

2

3

1 9 18 27 36 45 54 63 72 81 90 99 108117126135144

Threads

T
h
ro

u
g
h
p
u
t
(M

 o
p
s
/s

e
c
)

No MM
Epoch

Hyaline
Hyaline-1

Hyaline-S
Hyaline-1S

IBR

Bonsai Tree

>>>>>

>>>>> >>>>> >>>>> >>>>> >>>>> >>>>> >>>>> >>>>> >>>>> >>>>> >>>>> >>>>> >>>>> >>>>> >>>>> >>>>>

0

100

200

300

400

1 9 18 27 36 45 54 63 72 81 90 99 108117126135144

Threads

R
e
ti
re

d
 O

b
je

c
ts

 p
e
r

O
p
e
ra

ti
o
n

>

Epoch
IBR

Hyaline
Hyaline-1

Hyaline-S
Hyaline-1S

HE
HP

>>>>>

>>>>>

>>>>>

>>>>>

>>>>>

>>>>>

>>>>>

>>>>>

>>>>> >>>>> >>>>> >>>>> >>>>> >>>>> >>>>> >>>>> >>>>>

0.000

0.025

0.050

0.075

1 9 18 27 36 45 54 63 72 81 90 99 108117126135144

Threads
T

h
ro

u
g
h
p
u
t
(M

 o
p
s
/s

e
c
)

>No MM
Epoch

Hyaline
Hyaline-1

Hyaline-S
Hyaline-1S

IBR
HE

HP

Linked List

EVALUATION: READ-DOMINATED TESTS

0

500

1000

1500

2000

1 9 18 27 36 45 54 63 72 81 90 99 108117126135144

Threads

R
e
ti
re

d
 O

b
je

c
ts

 p
e
r

O
p
e
ra

ti
o
n Epoch

IBR
Hyaline
Hyaline-1

Hyaline-S
Hyaline-1S

0

1

2

3

1 9 18 27 36 45 54 63 72 81 90 99 108117126135144

Threads

T
h
ro

u
g
h
p
u
t
(M

 o
p
s
/s

e
c
)

No MM
Epoch

Hyaline
Hyaline-1

Hyaline-S
Hyaline-1S

IBR

Bonsai Tree

>>>>>

>>>>> >>>>> >>>>> >>>>> >>>>> >>>>> >>>>> >>>>> >>>>> >>>>> >>>>> >>>>> >>>>> >>>>> >>>>> >>>>>

0

100

200

300

400

1 9 18 27 36 45 54 63 72 81 90 99 108117126135144

Threads

R
e
ti
re

d
 O

b
je

c
ts

 p
e
r

O
p
e
ra

ti
o
n

>

Epoch
IBR

Hyaline
Hyaline-1

Hyaline-S
Hyaline-1S

HE
HP

>>>>>

>>>>>

>>>>>

>>>>>

>>>>>

>>>>>

>>>>>

>>>>>

>>>>> >>>>> >>>>> >>>>> >>>>> >>>>> >>>>> >>>>> >>>>>

0.000

0.025

0.050

0.075

1 9 18 27 36 45 54 63 72 81 90 99 108117126135144

Threads
T

h
ro

u
g
h
p
u
t
(M

 o
p
s
/s

e
c
)

>No MM
Epoch

Hyaline
Hyaline-1

Hyaline-S
Hyaline-1S

IBR
HE

HP

Linked List
>>>>>

>>>>>

>>>>>
>>>>>

>>>>>
>>>>>

>>>>>
>>>>>

>>>>>

>>>>>

>>>>>
>>>>> >>>>> >>>>> >>>>>

>>>>> >>>>>

0

50

100

150

200

1 9 18 27 36 45 54 63 72 81 90 99 108117126135144

Threads

T
h
ro

u
g
h
p
u
t
(M

 o
p
s
/s

e
c
)

>No MM
Epoch

Hyaline
Hyaline-1

Hyaline-S
Hyaline-1S

IBR
HE

HP

>>>>> >>>>> >>>>> >>>>> >>>>> >>>>> >>>>> >>>>> >>>>> >>>>> >>>>> >>>>> >>>>> >>>>> >>>>> >>>>> >>>>>0

1000

2000

3000

4000

1 9 18 27 36 45 54 63 72 81 90 99 108117126135144

Threads

R
e

ti
re

d
 O

b
je

c
ts

 p
e

r
O

p
e

ra
ti
o

n

>

Epoch
IBR

Hyaline
Hyaline-1

Hyaline-S
Hyaline-1S

HE
HP

Hash Map

AVAILABILITY

 Hyaline’s code and the benchmark are open-source and available at

 https://github.com/rusnikola/lfsmr

 Additional paper appendices (LL/SC and optimizations) are available at

 https://arxiv.org/pdf/1905.07903.pdf

The work is supported by
AFOSR under grants FA9550-
15-1-0098 and FA9550-16-1-
0371, and ONR under grants
N00014-18-1-2022 and
N00014-19-1-2493

https://github.com/rusnikola/lfsmr
https://arxiv.org/pdf/1905.07903.pdf

AVAILABILITY

 Hyaline’s code and the benchmark are open-source and available at

 https://github.com/rusnikola/lfsmr

 Additional paper appendices (LL/SC and optimizations) are available at

 https://arxiv.org/pdf/1905.07903.pdf

THANK YOU!

The work is supported by
AFOSR under grants FA9550-
15-1-0098 and FA9550-16-1-
0371, and ONR under grants
N00014-18-1-2022 and
N00014-19-1-2493

Artwork attribution: wikipedia.org (Intel, AMD64, ARM, PowerPC
logos), intel.com (Xeon logo), techradar.com (multi-core chip), the
ONR and AFOSR websites (respective logos)

https://github.com/rusnikola/lfsmr
https://arxiv.org/pdf/1905.07903.pdf

