
Ruslan Nikolaev and Godmar Back

Virginia Polytechnic Institute

Blacksburg

Perfctr-Xen: A framework for
Performance Counter Virtualization

1

Overview

2

 IaaS widely use virtual machine monitors
 Type 1 hypervisors: Xen, KVM, ESX …

 Commonly used performance analysis tools (e.g.,
PAPI) cannot be used because existing VMM and
guests do not provide necessary per-thread
virtualization support for hardware event counters

 Our contribution: Perfctr-Xen:
 Framework for performance counter virtualization
 Software-compatible with widely used perfctr library
 Techniques for collaboration of guest and hypervisor

 Experimental validation

Existing Performance Counter
Virtualization Solutions

3

 XenoProf

 Extension of Oprofile system-wide profiler

 Does not provide per-domain abstraction of hardware
counter facilities (supports only 1 domain at a time)

 VPMU driver

 Treats PMU registers like ordinary registers
(saved/restored by VMM)

 Requires use of hardware assisted virtualization mode;
support for limited number of architecture generations
since VMM must contain architecture-specific code

 Not compatible with all architectures

Kernel

Perfctr-Xen

4

 Perfctr (Native)

Profilers

High-level
performance

counters

Low-level
performance
counters

PerfExplorer,
HPCToolkit, etc.

PAPI

Perfctr Lib

Perfctr Driver

Kernel

Perfctr-Xen

4

 Perfctr (Native)  Perfctr-Xen

Profilers

High-level
performance

counters

Low-level
performance
counters

PerfExplorer,
HPCToolkit, etc.

PAPI

Perfctr Lib

Perfctr Driver

Guest Kernel

Xen Hypervisor

Kernel

Perfctr-Xen

4

 Perfctr (Native)  Perfctr-Xen

Profilers

High-level
performance

counters

Low-level
performance
counters

PerfExplorer,
HPCToolkit, etc.

PAPI

Perfctr Lib

Perfctr Driver

Guest Kernel

Xen Hypervisor

Perfctr Guest
Driver

Kernel

Perfctr-Xen

4

 Perfctr (Native)  Perfctr-Xen

Profilers

High-level
performance

counters

Low-level
performance
counters

PerfExplorer,
HPCToolkit, etc.

PAPI

Perfctr Lib

Perfctr Driver

Guest Kernel

Xen Hypervisor

Perfctr Guest
Driver

Kernel

Perfctr-Xen

4

 Perfctr (Native)  Perfctr-Xen

Profilers

High-level
performance

counters

Low-level
performance
counters

PerfExplorer,
HPCToolkit, etc.

PAPI

Perfctr Lib

Perfctr Driver

Guest Kernel

Xen Hypervisor

Perfctr Guest
Driver

Perfctr-Xen
Driver

Kernel

Perfctr-Xen

4

 Perfctr (Native)  Perfctr-Xen

Profilers

High-level
performance

counters

Low-level
performance
counters

PerfExplorer,
HPCToolkit, etc.

PAPI

Perfctr Lib

Perfctr Driver

Guest Kernel

Xen Hypervisor

Perfctr Guest
Driver

Perfctr-Xen
Driver

Kernel

Perfctr-Xen

4

 Perfctr (Native)  Perfctr-Xen

Profilers

High-level
performance

counters

Low-level
performance
counters

PerfExplorer,
HPCToolkit, etc.

PAPI

Perfctr Lib

Perfctr Driver

Guest Kernel

Xen Hypervisor

Perfctr Guest
Driver

Perfctr-Xen
Driver

Perfctr Lib

Kernel

Perfctr-Xen

4

 Perfctr (Native)  Perfctr-Xen

Profilers

High-level
performance

counters

Low-level
performance
counters

PerfExplorer,
HPCToolkit, etc.

PAPI

Perfctr Lib

Perfctr Driver

Guest Kernel

Xen Hypervisor

Perfctr Guest
Driver

Perfctr-Xen
Driver

Perfctr Lib

Kernel

Perfctr-Xen

4

 Perfctr (Native)  Perfctr-Xen

PerfExplorer,
HPCToolkit, etc.

PAPI

Profilers

High-level
performance

counters

Low-level
performance
counters

PerfExplorer,
HPCToolkit, etc.

PAPI

Perfctr Lib

Perfctr Driver

Guest Kernel

Xen Hypervisor

Perfctr Guest
Driver

Perfctr-Xen
Driver

Perfctr Lib

Software
Compatible

Per-thread PMU Virtualization

Logical per-thread value includes only events incurred
during the thread execution

5

Per-thread PMU Virtualization

Logical per-thread value includes only events incurred
during the thread execution

Thread 0

Thread 1

Thread 0

Thread 1

Domain 0

Domain 1

5

Per-thread PMU Virtualization

Logical per-thread value includes only events incurred
during the thread execution

Thread 0

Thread 1

Thread 0

Thread 1

Domain 0

Domain 1

Intradomain
Switch

5

Per-thread PMU Virtualization

Logical per-thread value includes only events incurred
during the thread execution

Thread 0

Thread 1

Thread 0

Thread 1

Domain 0

Domain 1

Intradomain
Switch

5

Per-thread PMU Virtualization

Logical per-thread value includes only events incurred
during the thread execution

Thread 0

Thread 1

Thread 0

Thread 1

Domain 0

Domain 1

Intradomain
Switch

Interdomain
Switch

5

Per-thread PMU Virtualization

Logical per-thread value includes only events incurred
during the thread execution

Thread 0

Thread 1

Thread 0

Thread 1

Domain 0

Domain 1

Intradomain
Switch

Interdomain
Switch

5

Per-thread PMU Virtualization

Logical per-thread value includes only events incurred
during the thread execution

Thread 0

Thread 1

Thread 0

Thread 1

Domain 0

Domain 1

Intradomain
Switch

Interdomain
Switch

5

Perfctr Library

66

Sumthread,
Startthread

Sumthread,
Startthread

Sumthread,
Startthread

CPU1

Threads
Kernel level

Hardware CPU2

User level
Perfctr library API or /dev/perfctr

Modes of operation

 A-mode: an event count in some region of a program

 I-mode: an interrupt after a certain number of events has
occurred

Perfctr: A-mode counters

7

Thread 0

Thread 1

Perfctr: A-mode counters

7

Thread 0

Thread 1

Sumthread

Sumthread records accumulated event count

Perfctr: A-mode counters

7

Thread 0

Thread 1

Sumthread

Sumthread records accumulated event count

Kernel records physical value to Startthread = Phys(t1)

t1

Perfctr: A-mode counters

7

Thread 0

Thread 1

Sumthread

Sumthread records accumulated event count

Kernel records physical value to Startthread = Phys(t1)

t1

Perfctr: A-mode counters

7

Thread 0

Thread 1

Sumthread Phys(t2)-Startthread

Sumthread records accumulated event count

Kernel records physical value to Startthread = Phys(t1)

t1 t2

Thread samples physical value Phys(t2), computes
Logical value Logthread = Sumthread + (Phys(t2) – Startthread)

Perfctr: A-mode counters

7

Thread 0

Thread 1

t3

Sumthread

Sumthread records accumulated event count

Kernel records physical value to Startthread = Phys(t1)

t1 t2

Thread samples physical value Phys(t2), computes
Logical value Logthread = Sumthread + (Phys(t2) – Startthread)

Phys(t3)-Startthread

Perfctr: A-mode counters

7

Thread 0

Thread 1

t3

Sumthread records accumulated event count

Kernel records physical value to Startthread = Phys(t1)

Kernel increments Sumthread = Sumthread + (Phys(t3) – Startthread)

t1 t2

Thread samples physical value Phys(t2), computes
Logical value Logthread = Sumthread + (Phys(t2) – Startthread)

Phys(t3)-Startthread

Sumthread

Perfctr: I-mode counters

8

 PMU registers trigger interrupt on zero-overflow

 Physical register initialized to negated sample period

 Requires that physical value be saved & restored on
each context switch

 Compute logical accumulated value similar to a-mode

-5000 -1, 0 -5000 -1, 0 -5000 -1, 0 Events

Time

Perfctr-Xen: A-mode counters
 Requires cooperation of guest kernel and hypervisor:

 Guest: maintains per-thread state: Sumthread, Startthread

 Hypervisor: a per-VCPU (Virtual CPU) state: Sumvcpu, Startvcpu

 Guest kernel makes per-VCPU state available user threads

9

Sumthread,
Startthread

Sumthread,
Startthread

Sumvcpu,
Startvcpu

Sumvcpu,
Startvcpu

Sumthread,
Startthread

CPU

VCPUs

Threads
Guest

Hypervisor

Hardware

Sumvcpu,
Startvcpu

Perfctr-Xen: A-mode counters

Thread 0

Thread 1

Thread 0

Thread 1

Domain 0

Domain 1

10

Perfctr-Xen: A-mode counters

Thread 0

Thread 1

Thread 0

Thread 1

Domain 0

Domain 1

Sumthread

10

Perfctr-Xen: A-mode counters

Thread 0

Thread 1

Thread 0

Thread 1

Domain 0

Domain 1

Sumthread

10

Perfctr-Xen: A-mode counters

Thread 0

Thread 1

Thread 0

Thread 1

Domain 0

Domain 1

Sumthread Sumvcpu

10

Perfctr-Xen: A-mode counters

Thread 0

Thread 1

Thread 0

Thread 1

Domain 0

Domain 1

t1

Sumthread Sumvcpu

10

Startvcpu = Phys(t1)

Perfctr-Xen: A-mode counters

Thread 0

Thread 1

Thread 0

Thread 1

Domain 0

Domain 1

t1 t2

Sumthread Sumvcpu Phys(t2)-Startvcpu

10

Startvcpu = Phys(t1)

Perfctr-Xen: A-mode counters

11

Perfctr-Xen: A-mode counters

Thread 0

Thread 1

Thread 0

Thread 1

Domain 0

Domain 1
11

Perfctr-Xen: A-mode counters

Thread 0

Thread 1

Thread 0

Thread 1

Domain 0

Domain 1

Sumthread

11

Perfctr-Xen: A-mode counters

Thread 0

Thread 1

Thread 0

Thread 1

Domain 0

Domain 1

Hypervisor: Sumvcpu = 0, Startvcpu = Phys(t1)

Sumthread

11

t1

Perfctr-Xen: A-mode counters

Thread 0

Thread 1

Thread 0

Thread 1

Domain 0

Domain 1

Hypervisor: Sumvcpu = 0, Startvcpu = Phys(t1)

Sumthread

11

t1

Hypercall:
- Activate configuration
- Sumvcpu←0
- Startvcpu ←Phys(t1)

Perfctr-Xen: A-mode counters

Thread 0

Thread 1

Thread 0

Thread 1

Domain 0

Domain 1

Hypervisor: Sumvcpu = 0, Startvcpu = Phys(t1)

Sumthread

Start*thread

11

t1 t2

Guest: Start*thread = Sumvcpu + (Phys(t2) – Startvcpu)

Hypercall:
- Activate configuration
- Sumvcpu←0
- Startvcpu ←Phys(t1)

Perfctr-Xen: A-mode counters

Thread 0

Thread 1

Thread 0

Thread 1

Domain 0

Domain 1

Hypervisor: Sumvcpu = 0, Startvcpu = Phys(t1)

Hypervisor: Sumvcpu = Sumvcpu + (Phys(t3) – Startvcpu)

Sumthread Sumvcpu

Start*thread

11

t1 t2

t3

Guest: Start*thread = Sumvcpu + (Phys(t2) – Startvcpu)

Hypercall:
- Activate configuration
- Sumvcpu←0
- Startvcpu ←Phys(t1)

Perfctr-Xen: A-mode counters

Thread 0

Thread 1

Thread 0

Thread 1

Domain 0

Domain 1

Hypervisor: Sumvcpu = 0, Startvcpu = Phys(t1)

Hypervisor: Sumvcpu = Sumvcpu + (Phys(t3) – Startvcpu)
Hypervisor: Startvcpu = Phys(t4)

t4

Sumthread Sumvcpu

Start*thread

11

t1 t2

t3

Guest: Start*thread = Sumvcpu + (Phys(t2) – Startvcpu)

Hypercall:
- Activate configuration
- Sumvcpu←0
- Startvcpu ←Phys(t1)

Perfctr-Xen: A-mode counters

Thread 0

Thread 1

Thread 0

Thread 1

Domain 0

Domain 1

Hypervisor: Sumvcpu = 0, Startvcpu = Phys(t1)

Hypervisor: Sumvcpu = Sumvcpu + (Phys(t3) – Startvcpu)
Hypervisor: Startvcpu = Phys(t4)

t4 t5

Sumthread Sumvcpu

Start*thread

Phys(t5)-Startvcpu

11

t1 t2

t3

Logthread = Sumthread + Sumvcpu + (Phys(t5) – Startvcpu) - Start*thread

Guest: Start*thread = Sumvcpu + (Phys(t2) – Startvcpu)

Hypercall:
- Activate configuration
- Sumvcpu←0
- Startvcpu ←Phys(t1)

Perfctr-Xen: I-mode counters

12

 Suspension hypercall to increment Sumvcpu and sample
Startvcpu

 Resumption hypercall to restore per-VCPU values

Physical Counter
Registers

Sumvcpu,
Startvcpu

Sumthread,
Startthread

Intra-domain
context switch

Inter-domain
context switch

Save Save

Logthread = Sumvcpu + (Phys(t) – Startvcpu)

RestoreRestore

Perfctr-Xen: Interrupt delivery
 Hypervisor delivers overflow interrupts to guest via

VIRQ_PERFCTR virtual interrupts

 Upon receipt, guest kernel signals user thread

 Virtual interrupts are delivered asynchronously (as
soft interrupts)

 Guest must ensure that overflow interrupt is delivered
to correct thread by rechecking overflow status

 If thread causing overflow is suspended before virtual
interrupt arrives at guest, mark as pending and deliver
on next resume

13

Experimental Results

14

 Baseline: native execution

 Exercise multiple VCPU/PCPU scenarios

 Exercise multiple virtualization modes

 Paravirtualization

 Hardware-assisted virtualization (HVM)

 Hybrid mode (HVM + guest enhancement)

 Correctness of implementation and accuracy of results

 Microbenchmarks for a-mode, PAPI test for i-mode

 Macrobenchmarks: SPEC CPU 2006

 Verify Profiling (HPCToolkit)

Microbenchmarks

1. Each domain on 2
dedicated PCPUs; each
thread on a dedicated
VCPU.

2. Each domain on a
dedicated PCPU; all
threads in a domain on a
shared VCPU.

3. All domains on a shared
PCPU; all threads on a
shared VCPU.

4. Random migration
PCPUs and VCPUs

15

SPEC CPU2006: L2 Cache Misses

1. Native mode
2. Fully-virtualized Dom1

and Dom2, each on a
dedicated core

3. Fully-virtualized Dom1
and Dom2 on the same
core

4. Paravirtualized Dom0
and Dom1, each on a
dedicated core

5. Paravirtualized Dom0
and Dom1 on the same
core

16

SPEC CPU2006: L2 Cache References

1. Native mode
2. Fully-virtualized Dom1

and Dom2, each on a
dedicated core

3. Fully-virtualized Dom1
and Dom2 on the same
core

4. Paravirtualized Dom0
and Dom1, each on a
dedicated core

5. Paravirtualized Dom0
and Dom1 on the same
core

17

Related Work
 Performance counter support for VMM

 XenoProf [Menon 2005]

 Counter Virtualization for KVM [Du 2010, 2011]

 VTSS++ system [Bratanov 2009]

 Performance counters in non-virtualized systems

perf_counter, Perfmon [Eranian 2006], Intel VTune,
AMD Code Analyst

 Higher-level libraries:

 PAPI [Browne 1999]

18

Conclusion

19

 PerfCtr-Xen

• Efficient and accurate per-thread virtualization of
hardware event counters

• Supports all commonly used virtualization modes

• Plug-in Compatibility with PAPI, HPCToolkit, etc.

• Techniques extend to other Type I hypervisors and
low-level virtualization libraries

 Available at http://people.cs.vt.edu/~rnikola/

(LGPL license)

http://people.cs.vt.edu/~rnikola/

