
ASU 4.39
Show that the following grammar
 S → Aa | bAc | dc | bda

 A → a
is LALR(1) but not SLR(1).
Answer: In addition to the rules given above, one extra rule S' → S as the initial item. Following the
procedures for constructing the LR(1) parser, here is the initial state and the resulting state diagram by
taking closure:

I0: (0) S' → .S, $

 (1) S → .Aa, $
 (2) S → .bAc, $
 (3) S → .dc, $
 (4) S → .bda, $
 (5) A → .d, a

I1: S' → S., $S

I2: S → A.a, $A

b I3: S → b.Ac, $

 S → b.da, $
 A → .d, c

I4: S → d.c, $

 A → d., a

d

I5: S → Aa., $a

I6: S → bA.c, $A

I7: S → bd.a, $

 A → d., c
d

I8: S → dc., $c

I9: S → bAc., $c

I10:S → bda., $a

 Based on the state diagram, we derive the LR(1) parsing table as follows:

State
Action

a b c d $ S A

Goto

s3 s4
acc

s5
s7

s8r5

s10
r3
r2
r4

r5
s9

1 2

6

 Then, the LALR(1) parsing table can be obtained by merging items with common first components, In
this problem, no merging occurs. That is, the final LALR(1) parsing table is the same as the LR(1) one.
Thus, the given grammar is LALR(1).

0
1
2
3
4
5
6
7
8
9

10

HW #1, JSY 1998

I0: (0) S' → .S
 (1) S → .Aa
 (2) S → .bAc
 (3) S → .dc
 (4) S → .bda
 (5) A → .d

I1: S' → SS

I2: S → A.aA

b I3: S → b.Ac

 S → b.da
 A → .d

I4: S → d.c
 A → d.

d

I5: S → Aa.a

I6: S → bA.cA

I7: S → bd.a
 A → d.

d

I8: S → dc.c

I9: S → bAc.c

I10:S → bda.a

 Next, following the similar procedures for taking closure, but without including the lookahead in items,
we obtain the state diagram as follows:

 Let's assume that the parser is in state I7, and the next symbol is a, since a ∈ Follows(A)={a,c}, it causes
a shift-reduce conflict. Same problem also happens to state I4. Thus, the given grammar is not SLR(1).

HW #1, JSY 1998

ASU 4.40
Show that the following grammar
 S → Aa | bAc | Bc | bBa

 A → d
 B → d
is LR(1) but not LALR(1).
Answer: In addition to the rules given above, one extra rule S' → S as the initial item. Following the
procedures for constructing the LR(1) parser, here is the resulting state diagram:

I0: (0) S' → .S, $

 (1) S → .Aa, $
 (2) S → .bAc, $
 (3) S → .Bc, $
 (4) S → .bBa, $
 (5) A → .d, a
 (6) B → .d, c

I1: S' → S., $S

I2: S → A.a, $A

b I3: S → b.Ac, $

 S → b.Ba, $
 A → .d, c
 B → .d, a

I4: S → Β.c, $

B

I6: S → Aa., $a

I7: S → bA.c, $A

I8: S → bB.a, $B

I10:S → Bc., $
c

I11:S → bAc., $c

I12:S → bBa., $a

I5: A → d., a
 B → d., c

d

d
I9: A → d., c
 B → d., a

 Based on the state diagram, we derive the LR(1) parsing table as follows:

State
Action

a b c d $ S A

Goto

s3 s4
acc

s6
s9

s10
r5

s10

r3
r2
r4

s11

1 2

7

B

r6

r5r6

4

8

0
1
2
3
4
5
6
7
8
9

10
11
12HW #1, JSY 1998

 Since there are no mutiple actions in any entry, the given grammar is LR(1). However, when obtaining
the LALR(1) parsing table by merging states, we will merge states I5 and I9, and the resulting state will be
as follows:
 I5+9: A → d., a/c

 B → d., a/c

It is basically a reduce-reduce conflict. So, the given grammar is not LALR(1).

HW #1, JSY 1998

ASU 4.44
Construct an SLR parsing table for the following grammar:
 R → R | R

 R → RR

 R → R*

 R → (R)

 R → a
 R → b

Resolve the parsing action conflicts in such a way that regular expression will be parsed normally.
Answer: In addition to the rules given above, one extra rule R' → R as the initial item. Following the
procedures for constructing the LR(1) parser, here is the resulting state transition:

The initial state for the SLR parser is:
 I0: (0) R' → .R
 (1) R → .R | R

 (2) R → .RR

 (3) R → .R*

 (4) R → .(R)

 (5) R → .a
 (6) R → .b
goto(I0,R)= I1: R' → R.
 R → R. | R
 R → R.R
 R → R.*
 R → .R | R

 R → .RR

 R → .R*

 R → .(R)

 R → .a
 R → .b

goto(I1,R)= I6: R → RR.
 R → R. | R
 R → R.R
 R → R.*
 R → .R | R

 R → .RR

 R → .R*

 R → .(R)

 R → .a
 R → .b
goto(I1,*)= I7: R → R*.
goto(I1,()= I2
goto(I1,a)= I3
goto(I1,b)= I4

goto(I0,()= I2: R → (.R)

 R → .R | R

 R → .RR

 R → .R*

 R → .(R)

 R → .a
 R → .b
goto(I0,a)= I3: R → a.
goto(I0,b)= I4: R → b.

goto(I1,|)= I5: R → R |. R
 R → .R | R

 R → .RR

 R → .R*

 R → .(R)

 R → .a
 R → .b

HW #1, JSY 1998

goto(I2,R)= I8: R → (R.)
 R → R. | R
 R → R.R
 R → R.*
 R → .R | R

 R → .RR

 R → .R*

 R → .(R)

 R → .a
 R → .b
goto(I2,()= I2
goto(I2,a)= I3
goto(I2,b)= I4

goto(I6,|)= I5
goto(I6,R)= I6
goto(I6,*)= I7
goto(I6,()= I2
goto(I6,a)= I3
goto(I6,b)= I4

goto(I8,))= I10: R → (R).
goto(I8,|)= I5
goto(I8,R)= I6
goto(I8,*)= I7
goto(I8,()= I2
goto(I8,a)= I3
goto(I8,b)= I4

goto(I9,|)= I5
goto(I9,R)= I6
goto(I9,*)= I7
goto(I9,()= I2
goto(I9,a)= I3
goto(I9,b)= I4

goto(I5,R)= I9: R → R | R.
 R → R. | R
 R → R.R
 R → R.*
 R → .R | R

 R → .RR

 R → .R*

 R → .(R)

 R → .a
 R → .b
goto(I5,()= I2
goto(I5,a)= I3
goto(I5,b)= I4

HW #1, JSY 1998

 From the grammar, we have computed Follow(R)={ |, *, (,), a, b, $ }. In the sets of items mentioned
above, we can easily find shift-reduce conflicts, e.g. states I6 and I9, but we can use the operator
precedence and associativity mentioned in Section 3.3 to resolve it. Here is the operator precedence:

 () > * > catenate† > |

And all these operators are left-associative. Based on this extra information, we construct the parssing
table as follows:

State
Action

| * () a b $

Goto

acc

R

10
1
2
3
4
5
6
7
8
9

10

6
8

9
6

6
6

s2 s3 s4
s7s5 s2 s3 s4

s2 s3 s4
r5
r6

s2 s3 s4
s7 r2r2 r2 r2 r2 r2

r3
s7 s10s5 s2 s3 s4
s7 r1r1 s2 s3 s4 r1

r4

r5 r5 r5 r5 r5 r5
r6 r6 r6 r6 r6 r6

r3 r3 r3 r3 r3 r3

r4 r4 r4 r4 r4 r4

 † The catenate operator is implicit, and always exists between two consecutive R nonterminals.

HW #1, JSY 1998

