
Evaluating the Dynamic
Behavior of Python Applications

Austin Cory Bart

CS 6304 – Program Analysis

December 1, 2015

KWII 2225

Overview

• Background
• What is Python?

• What are Dynamic Features?

• Holkner & Harland (2009)
• Methodology

• Results

• Conclusions

• Ackerblom (2014)

Python

• Dynamically-typed, Strongly-typed, static scoping

• Object-oriented, functional, namespaces,

• Built-ins, batteries included, many libraries

• Whitespace significant, readability

Used for…

• Scripting (vs. Perl, Bash)

• Data science (vs. R, MatLab)

• Education (vs. Java, Racket)

• Web servers (vs. PHP, Ruby)

Tiobe Index

Python – A peculiar culture

Python vs. JavaScript

• Similarities:
• Dynamic Typing
• Control flow: if, foreach, while, functions, etc.
• Garbage collected, etc.

• Differences
• Type Coercion
• Python has more statements
• setattr/getattr vs. variable[‘access’]
• Immutability
• Levels of nothingness
• Default scoping (var, globals)
• Whitespace vs. Curlies, Newlines vs. Semicolons

But are they really different?

• Yes.

• JavaScript is terrible.

• Python is wonderful.

• More importantly, JS programmers do more dynamicism than
Pythonistas

Four dynamic features

Dynamic Typing Reflection

Dynamic Objects Dynamic Code

my_dog = Dog()

setattr(my_dog, “name”, “Klaus”)

name = getattr(my_dog, “name”)

my_variable = Dog()

my_variable = “Klaus”

my_variable = House()

my_dog = Dog()

Dog.bark = lambda : “woof”

my_dog.__class__ = Cat

del Dog.bark

exec(‘truth= “exec is evil”’)

computed = eval(‘truth’)

__import__(‘os’)

White Magic Grey Magic

Grey Magic Black Magic

Dynamic languages

• “Giving people a dynamically-typed language does not mean that
they write dynamically-typed programs.”

Aycock, J. (2000), ‘Aggressive Type Inference’, Proceedings of the 8th International Python Conference pp. 11–20.

Program
exec eval execfile _import_ LOC % of LOC

Idle 1 0 1 1 4449 0.07
Gadfly 0 2 0 1 10200 0.03

Grail 4 2 0 0 6419 0.09
HTMLgen 0 4 1 2 4794 0.2

J-- 0 0 0 0 1498 0
Lib 11 23 2 12 23754 0.2

Pystone 0 0 0 0 186 0

Static occurrence of dynamic constructs

exec eval execfile _import_ Instructions
% of

Instructions

1 0 0 12 346617 0.004

0 47 0 0 7957055 0.0005

214 6 0 0 4676698 0.005

0 831 10 0 422496 0.2

0 0 0 0 8096543 0

0 0 0 0 6702077 0

Dynamic occurrence of dynamic constructs

“He found that up to 7% of variable stores caused a change of type, and that these stores were localised in
up to 5% of the total number of variables”

Methodology

• Analyze large corpus of Python programs

• Tracing to measure use of dynamic features

• Analyze how they are used against hypotheses

A. Holkner and J. Harland, "Evaluating the dynamic behavior of Python Applications" Proceedings

of the 32nd Australian Conference on Compuer Science Volumn 91, 2009.

RPython/PyPy

• “Restricted Python”

• Dynamic until __main__

• A host of changes
• No mutating class/method attributes

• Variables have types (non-primitives unioned with None)

• Lists -> arrays

• …

2 Hypotheses

1. That programs written in Python generally do not make use of
dynamic features, or that if they do, they can be trivially rewritten in a
more static style

2. That while programs written in Python use dynamic features,
they do so mostly during program startup, and afterwards
behave like a statically-compiled program

2 Hypotheses

1. That programs written in Python generally do not make use of
dynamic features, or that if they do, they can be trivially rewritten in a
more static style

2. That while programs written in Python use dynamic features,
they do so mostly during program startup, and afterwards
behave like a statically-compiled program

Result: Partially true

Program Selection

4,500 packages on PyPi (70,339 today)

1,000 stable (11,320 today)

50 for linux end-users (106 today)

24 standalone

6x Games 12x Interactive 6x Interactive

Do you believe these
will be representative?

Python Bytecode
>>> def hello_world(phrase): print("Printing", phrase, 5)

...

>>> import dis

>>> dis.dis(hello_world)

1 0 LOAD_CONST 1 ('Printing')

3 LOAD_FAST 0 (phrase)

6 LOAD_CONST 2 (5)

9 BUILD_TUPLE 3

12 PRINT_ITEM

13 PRINT_NEWLINE

14 LOAD_CONST 0 (None)

17 RETURN_VALUE

Four dynamic features

Dynamic Typing Reflection

Dynamic Objects Dynamic Code

setattr(my_dog, “name”, “Klaus”)

name = getattr(my_dog, “name”)

delattr(my_dog, “name”)

globals()[‘my_dog’] = 3

dog.neighbor = Dog()

dog.neighbor = Animal()

dog.neighbor = [a, b]

dog.neighbor = None

my_dog = Dog()

Dog.bark = lambda : “woof”

my_dog.__class__ = Cat

del Dog.bark

exec(‘truth= “exec is evil”’)

computed = eval(‘truth’)

__import__(‘os’)

White Magic Grey Magic

Grey Magic Black Magic

attr_add

attr_del

call_setattr

call_delattr

call_getattr

exec_statement

call_eval

call_execfile

call_reload

call_locals

call_globals

attr_mutate_generalize

attr_mutate_type

attr_mutate_none

Dynamic instrumentation

• Bytecode tracing function

• Uses
• Current frame

• VM stack

• Opcode

• In main?

• -> Is dynamic?

Speed impact!
Hilarious interactions with game clocks!

Manually added

70% higher
before startup

Figure 3: Detailed dynamic
behavior for gnofract4d

Generating C codeGenerating C code

Figure 4: Detailed
dynamic behaviour for
torus.py

Lazy-loaded
module system

Lazy-loaded
module system

Lazy-loaded
module system

Lazy-loaded
module system

Potential correlation between
setattr and getattr?

Their analysis

“In both of these cases it’s clear that the programs use dynamic features in
ways that cannot be easily translated into non-dynamic code. This indicates
that RPython is not a suitable language for these particular programs.”

Blatantly not
true for torus.py

Usage of Dynamic Features After Startup

Feature Programs Percent
call_execfile 0 0%
call_reload 0 0%
call_delattr 0 0%
attr_del 3 13%
attr_mutate_generalize 4 17%
call_locals 4 17%
exec_stmt 4 17%
call_eval 5 21%
call_globals 6 25%
call_setattr 13 54%
attr_mutate_type 15 63%
call_getattr 21 88%
attr_add 22 92%
attr_mutate_none 23 96%

Number of programs using each measured dynamic feature at least once after program startup.

• Used in standard library
• Delayed startup
• But also legit used

• Used as =None
• As part of a reckless copy

• Int -> float

• Str -> Unicode

• Programmer Error

Feh!

• Metaprogramming
• Coupled

Depth of Dynamic Frames

• Can we find isolatable chunks of code that we treat statically?

Frame 1

Frame 1.1

Frame 1.1.1

Frame 1.1.2

Frame 1.1.2.1

Frame 2

Frame 2.1

Frame 3

Frame 3.1

Frame 3.2

Frame 3.3

Frame 4 Frame 5 Frame 6

Frame 6.1

Frame 6.2

Frame 6.2.1

Dynamic by association

Dynamic

Static

__main__ Frame

Depth of non-dynamic frames over time (gnofract4d)

High values indicate the current call stack has non-dynamic frames for a large number of parent frames. A zero value
indicates the frame is dynamic. The vertical reference line shows the division between startup time and run time.

Depth of non-dynamic frames over time (gnofract4d)

High values indicate the current call stack has non-dynamic frames for a large number of parent frames. A zero value
indicates the frame is dynamic. The vertical reference line shows the division between startup time and run time.

Authors’ Conclusions

• “Firstly, the hypothesis that programs written in Python generally do
not use dynamic features is clearly invalidated.”

• “… among the programs tested, 70% have less dynamic activity after
startup [and are suitable for Rpython].”

• “Nearly all programs used reflective features after startup, and over
20% of the programs executed dynamic code.”

• “We attributed some dynamic object modification to delayed
initialization…”

Ehhh…

Sure!

Believable

Legit

Lingering Questions

• What about Dynamic Typing?

• Are these representative programs?
• End-user vs. libraries

• Why care about the entire codebase?

“How do Python Programmers Use Python?”

• Beatrice Åkerblom

• 2014 presentation at PyCon

• Python 2.6

Type Hinting: Future of Python?

