Reconciling Responsiveness
with Performance in Pure

!'_Object—Oriented Languages

Urs Holzle
David Ungar

Outline

= Self-93 System Overview

= Novel Optimization approaches
= Type feedback

= Use of profile information

= Adaptive recompilation
= Responsiveness
=« Performance

Self-93 System

if executed often

when method — 1 - imize
source »-| Unoptimized | _ op{gmlm,(i
methods is first invoked code if needed for debugging code
|[HGlzle et al. 1992]
dynamic compilation [Deutsch and adaptive optimization

Figure 1. Compilation in the SELF-93 system

= Terminology
= Dynamic Compilation
- “Jit”
= Adaptive Compilation

Type Feedback

= Profile Program
= Receiver types
= Frequency

= Profile Guided Optimization

= Predict and inline dynamically dispatched
calls

= Splitting
= Uncommon branch elimination

Inlining Strategies

= Not all calls should be Inlined

= Inlining A may require B to be inlined to
reduce closure costs

= May increase register pressure too much.
n 777
= Self-93 currently inlines when

= Callee is small
= Caller not too big

Type Feedback: Benchmarks

Benchmark Size® Description

% | DeltaBlue 500 | two-way constraint solver [Wilson and Moher 1989] developed at the University of
é Washington
~:’§ PrimMaker 1100 | program generating “glue™ stubs for external primitives callable from SELF
2 | Richards 400 | simple operating system simulator originally written in BCPL by Martin Richards
2

CecilComp | 11,500 | Cecil-to-C compiler compiling the Fibonacci function (the compiler shares about 80%
L of its code with the interpreter, Cecillnt)
E Cecillnt 9,000 | interpreter for the Cecil language [Chambers 1993] running a short Cecil test program
":::j‘ Mango 7,000 | automatically generated lexer/parser for ANSI C, parsing a 700-line C file
"&: Typeinf 8,600 | type inferencer for SELF [Agesen et al. 1993]
? UTI 15,200 | prototype user interface using animation techniques [Chang and Ungar 1993]°
~lui 4,000 | experimental 3D vser interface”

Table 2: Benchmark programs

Type Feedback: Performance

faster

o

DeltaBlue —

PrimMaker _ Bl Scifol
Richards ——

| [] Self-93 nofeedback

i Self-03
CecilComp ——— | L] Self-9
Ceciifntﬂl—

mean | | | | | I |
00 05 10 15 20 25 3.0 35

Figure 3. Performance impact of type feedback
(all speeds relative to SELF-93-nofeedback)

Self-93 Performance
Relative to Other Systems

faster

Lisp

DEGBe 7] Smalltalk-80
S A
> B sclf93
Richards <) C++ (all virtuals)

LT LT G I LS P AT F A] C++

T T T T T T]
0% 50% 100% 150% 200% 250%
Figure 9. Execution speed (SELF-93 = 100%)

Self-93 Size

bigger

-
Self-91
Richards M
B self93
] C++
DeltaBlu

Lisp

0% 100% 200% 300% 400% 500% 600%
Figure 10. Code size relative to GNU C++

Type Feedback:
Applicability for Other Systems

= Static compilation model

= Actually advantageous
= Has complete information
= Compile time not an issue

= One disadvantage
= Cannot adapt to unforeseen circumstances

= Other Languages
= EXxpect similar results
= Not quite as extreme

10

Adaptive Compilation

s Goal

= Achieve reasonable performance without
Introducing pauses

= Emphasis: pause free execution

= Approach
= Optimize only hot spots

11

When to Recompile?

= ldeal policy

= Recompile a method only if it reduces total
execution time.

= Do so as early as possible
= Impossible to implement
= Cannot predict future

= Needs time to accumulate profile
= Ignores interaction effects

12

When to Recompile:
Self-93 Strateqgy

= Approximates ideal policy
= Assume past predicts future

= Method invocation counts
« Counter > threshold triggers recompile

= Eventually all methods trip counter

= Exponential Decay Mechanism
= Decay counters every n seconds
= Decay rate: half life time

= Result
=« Frequency more important than total calls

13

Exponential Decay

= IS exponential decay the correct model
= Misses infrequently executed methods
= Invocation limit should vary per method
= Half life time relative to machine speed?
= Real time/cpu time

= Bottom line
= Looks depressing

= Simple counter strategy works great.
« “What” more important than “when”

14

Other possibilities for “When”

= Edge counters

= Not practical in Self
= Everything is a call
= ToOo much space

= PC sampling
= Discover time-consuming methods

= Not practical in self
= Too many small methods

= May be good for other languages

15

“What” to recompile?

s Method overflows counter

= Recompile just that method?
= Bad plan
=« Example: set/get method

« ldea
= Walk up current stack

= Look for “good” candidate to recompile
=« Use dynamic info to make inlining decisions

16

stack

STOWS
downwards

A method
overflows 1ts
invocation counter
and triggers a
recompilation

Finding Method to Recompile

The system 1nspects the The system replaces the old
stack to determine which (unoptimized) stack frames with
method to recompile. the frame of the newly compiled
Then, it calls the compiler method. In the example, it

to generate new code. replaces three unoptimized

frames with one optimized frame.

Figure 12. Optimization process

The system continues until
all of the remaining stack 1s
optimized. Here. it performs
one more optimization which
replaces the bottom two
frames.

17

Finding Method

s Characteristics considered

= M.SlIze
= Size of method m

= M.count
= # invocations of m

= M.sends
« # calls made from m (approx)

= M.versions
« # times m has been recompiled

18

After Recompilation

= Replace Method
= If possible, even currently running version

= Note Benefit
= If no Inlining occurred
= Avoid recompiling method again
= Hopefully
= NO pauses,
= Good performance
= No training runs necessary

19

Measuring Pauses In
Interactive Systems

= What constitutes compile pause?

= Back to back compilation
7 Appears as one pause

= Define: “pause cluster”

= Any period of time which
« Starts or ends with a compilation
= Compilation consumes > 50% cluster’s time
=« No compilation-free interval > .5 seconds

20

Pause Clustering Example

individual - - s
pauses —
DU | .,
Clusmrs [O O Ptime
0 0.5 1 1.5) (seconds)

Figure 13. Individual pauses and the resulting pause clusters

= Makes big difference
= W/out: < 2% exceed 0.1 sec

21

Evaluation of
Interactive Behavior

o
=

number of occurrences
b W Ln
28 &5 3

=

- | —

=

0 0.5 1 1.5 2 23 3
pause length (seconds on SPARCstation-2)

S. Compile pauses during a 50-minute interaction

22

Evaluation of
Interactive Behavior (continued)

35+
; starting up the system
3.0+ i
fz i using the debugger
g 25 / 1o find the bug
2 R starting to use tutorial /
Ex 2- . oA program hits bug:
bt d debugger comes up /|
2% |5 /
2t _.
g2 24
-E Ll e
o |
S | |
z 1 [
- - - ::I I "' T |'!.' — .I...JIJ!.:I.l - I:l |.I|.“ |.I .:.I - T T =
1500 2000 2500 3000

elapsed time (seconds)

Figure 16. Distribution of compilation pauses over time

Startup Time

program size

execution

time

small big
short good not good
long good good

Table 6: Start-up behavior of dynamic compilation

24

Startup time (continued)

execution time
(seconds on SPARCstation-2)

60

h
s
|

N
o
|

(o8]
=
|

\®)
(=
|

[w—
e
|

=

| CecilComp

| — — — — CecilInt

— —_— —_————— — — ==

—_—— —— —— —— — ——— —— —_— = e e

10 20 30 40 50 60 70 80 90 10
run number

Figure 17. Start-up behavior of large applications

25

execufion time
{seconds on SPARCstation-2)

execution me
(seconds on SPARCstation-2}

45 - CecilComp

]
| 2 3 4 3 6 7 8 9 10
run number

70 4 Typeinf

1 2 3

4 5 3] 7 8 g 10
run number

execution time
{seconds on SPARCstation-2)

execulion II!]]L
(seconds on SPARCstation-2)

254 Cecillnt

optimizing compiler

20

non-optimizing compiler

other (primitives, GC, etc.)

optmized code

unoptimized code

[} 1 T T T T T T T T 1
| 2 3 4 A 6 7 8 9 10
run number
16 Ull
14

ﬂ I T T T T T T T T 1
1 2 3 4 5 (4] 7 B]]
runl number

Figure 20. Start-up phase of selected benchmarks

26

Recompilation Parameters
Decay vs No Decay

=
1

execution time
(seconds on SS-2)

o N s O oo
| N N AN |

e
]

execution time
(seconds on SS-2)

= 2 e o oo
1 ! ! !

CecilComp

0 40 60 80 100

run number

Typeinf

20 40 60 80 100
run number

execution time
(seconds on SS-2)

(e B S DT = A B o]

=

execution time
(seconds on SS-2)

e R S = L R e

S

Cecillnt

0 40 60 80 100

run number

UIl

20 40 60 80 100
run number

27

Conclusions

= Adaptive Recompilation
= Good runtime performance
= Good Iinteractive performance

= Pause Clustering
= Measures pauses as seen by user

= Type Feedback
= 1.7 times faster than without

28

Future Work

= Compile during free cycles

= Java Java Java...
= Same techniques
= New techniques

29

