Cache-Conscious Structure
Definition

T. Chilimbi, University of Wisconsin-Madison

B. Davidson, J. Larus, Microsoft

PLDI ‘99



Outline

e Motivation
e Contributions

e Class Splitting
— Algorithm Description

— Empirical Results

e Field Reordering
— Algorithm Description

— Empirical Results

e Conclusions

October 18, 1999



Motivation

e Processor - memory performance gap
e Data reference locality
e Improve performance of layout tools

 Small number of fields frequently accessed

October 18, 1999



Contribution

e Automatic class splitting
— Two small objects fit into one cache block
— Implicit pre-fetch
— Dynamic co-location 1s improved

— Faster execution time

* Field reordering recommendations
— Time-related fields put in one cache block

— Better cache utilization, less cache pressure

October 18, 1999



Class Splitting

Java

Bytecode

BIT

/

o~

Vortex

Instrumented
bytecode

October 18, 1999

JVM [

Static

Class Information

Class

Access Statistics

A

Native
Code

Splitting
Algorithm




Algorithm

e Step 1 - filter classes
Frequently accessed, Size > 8 bytes, at least 2 fields
e Step 2 - mark cold fields aggressively
If field access count <A /(2*F';), mark cold
e Step 3 - do split
It cold portion > 8 bytes
It Temperature Differential, then split

Otherwise, remark cold fields

If cold portion > & bytes, split.
October 18, 1999



Temperature Differential

max(hot(class;)) - 2 Y.cold(class;)) >> 0 Why?
e Assume:
max(a;, a,... a,) < cost(o;) < Y (a;, a,... a,)

e Benefit from locality:
cost(o;) + cost(o,) <

(max(max(hot(class;), max(hot(class,))+e) +
2(Xcold(class; ) + Ycold(class,))

October 18, 1999



Temperature Differential

e To benefit from splitting:

max(a,;, a,... a,) + max(b,, b,... b, ) >

(max(max(hot(class,;), max(hot(class,))+e) +
2(Xcold(class; ) + Ycold(class,))

e The best they can do?

For every i max(hot(class;)) - 2 Y.cold(class;))
>> ()

October 18, 1999



Program Transformation

 Add a cold class
— Contains public cold fields

— Only has constructor
 Add reference in the hot class

e Transform program

— Include reference to new class for every cold
field access

— Create cold class instance

October 18, 1999



October 18, 1999

Program Transformation

10



Empirical Results

UltraSPARC, 167MHz, 2Gb, 1Mb L2

5 Java programs - 3K - 28K LOC
Optimizations:

— Vortex with aggressive optimizations (base)

— CL object co-location (only)
— Class Spliting + CL
Metrics

— .2 miss rate reduction

— Execution time

October 18, 1999

11



12



Field Reordering

e bbcache recommends better structure field
orders in C programs.

e Structures bigger than cache block
e Might be unsate:

struct bar {int x; float *f; 1nt

Vil *p;
int *a;
a = (i1nt *)p;

October 18, 1999

13



Bbcache

e Build structure access database (static)
— Hash table of structures
— For each structure, list of all instances

— For each instance, list all accessed fields

— For each field, list all access sites.

* Process trace (dynamic)
— Count field accesses

— Count contemporaneous use < 100 ms

October 18, 1999

14



Bbcache (cont.)

e Structure field orders
— Build per instance affinity graphs
— Combine 1nto per class affinity graphs
— Greedy field layout algorithm:
e Step 1 - Select highest weight edge first

» Step 2 - Append the field with highest
configuration-locality increase

* Repeat Step 2

October 18, 1999

15



Bbcache (cont.)

e Evaluation - qualitative metrics

— Cache block pressure:

Y(b,, b, ...b, )/n

— Cache block utilization:

Z(f]]’f]Z, ""fnbn )/Z(bl’ b2, ’bn )

October 18, 1999

16



Empirical Results

Pentium II Xeon, 4Gb, 1Mb L2
MS SQL server running TPC-C
5 active SQL server structures reordered

Performance improved by 2-3%

October 18, 1999

17



Conclusion

e Class Splitting works because
— Field access profiles have bimodal division
— Splitting insensitive to input data

e Benefits on hot objects co-location

e Disadvantages
— Another level of indirection

— Increase objects in memory

— Code bloat - opposite of Jax transformations

October 18, 1999

18



