
1
December 12, 1999

Escape Analysis for Java

J.-D. Choi, M. Gupta, M. Serrano, V. Sreedhar,

S. Midkiff, IBM T.J. Watson Research

OOPSLA ‘99

2
December 12, 1999

Outline

• Motivation

• Contributions

• Analysis Framework

• Algorithm

• Exceptions and Finalization in Java

• Experimental Results

• Conclusions

3
December 12, 1999

Motivation

• Stack allocation vs. heap allocation
– No garbage collection overhead

– No synchronization

– More optimization possibilities

• Lock elimination
– Reduce synchronization overhead

– Allocation in thread’s local memory

– Possibly avoid memory flush

4
December 12, 1999

Contribution

• Interprocedural framework

• Escape analysis for lock elimination

• Exception handling

• Connection graph abstraction

• Extensive experimental data

5
December 12, 1999

Escape Analysis Framework

• Definitions
– Thread escape - object instance O escapes

thread T if visible by other thread

– Method escape - object instance O escapes
method M if the lifetime of O exceeds the
lifetime of M

6
December 12, 1999

Framework, cont.

• Connection graph
– 4 types of nodes -

Reference, Object, Field,
and Global nodes

– 3 types of edges -
Points to, Deferred,
and Field

• ByPass function

7
December 12, 1999

Algorithm Outline
• An iterative dataflow algorithm

• Dataflow elements:
CG annotated with EscapeStates

• Dataflow equations:

Co
s = f s(Ci

s), Ci
s = ^r∈Pred(s)(Co

r)

• Until dataflow solution converges
Iterate over methods in reverse topological order

8
December 12, 1999

Intraprocedural Analysis

• Basic statements
– p = new t()

• Create new object node O

• Apply ByPass(p) (for FS analysis)

• Add a points-to edge from p to O

– p = q

• Apply ByPass(p) (for flow-sensitive)

• Add a deferred edge from p to q

9
December 12, 1999

Intraprocedural Analysis
– p.f = q

• Find U = PointsTo(p)
• Find V = {v s.t. u -> v, u ∈ U, and fid(v) = f}

• Add deferred edge from each v to q

– p = q.f

• Find U = PointsTo(q)
• Find V = {v s.t. u -> v, u ∈ U, and fid(v) = f}

• Apply ByPass(p) (for FS analysis)

• Add deferred edge from q to each v

10
December 12, 1999

Intraprocedural Analysis, Example

11
December 12, 1999

Interprocedural Analysis

• Connection graph at method entry
– Process fi = ai, for each formal fi;

ai is a phantom reference node

– EscapeState[fi] = NoEscape,

– EscapeState[ai] = ArgEscape

• Connection graph at method exit
– return=ref, for each returned reference

– ByPass each reference node

– Do reachability analysis over CG of M

12
December 12, 1999

Reachability Analysis

• At method exit!

• A two phase transitive closure
1. Find globally escaping nodes

2. Find argument escaping nodes

• Partition CG of M into three parts
– Global - set reachable from a GlobalEscape node

– Arg - set reachable from an ArgEscape node

– Local - set which retains NoEscape

13
December 12, 1999

Interprocedural Analysis, cont.

• Connection graph before a call site
– Process âi = ui,

âi is a dummy node, ui is an actual

– â1 and u1 reference the receiver object

• Connection graph after a call site
– “Map” âi’s to ai’s

– Add nodes to caller

– Add edges to caller

14
December 12, 1999

MapsTo

• Propagates effects of the callee to caller

• Recursive rules
– ai -> âi

– Op -> Oq Op∈PointsTo(p), Oq∈PointsTo(q),
p and q are ai, and âi,
or p and q are corresponding fields in
two mapping objects Op and Oq

15
December 12, 1999

Example

16
December 12, 1999

Java Special Features

• Bottom methods
– Most conservative CG, using type information

• Exceptions
– Kill edges from “try-local” nodes only

• Finalization
– If object class overrides finalize - mark

GlobalEscape

17
December 12, 1999

Experiments
• IBM HP (static) Java Compiler

• 333MHz Power PC, AIX 4.1.5, 1 Mb L2,
512 Mb RAM

• 10 medium to large sized Java programs

• Two optimizations

• Four variants of the algorithm
– Flow Sensitive
– Bounded Field FS - k mod m, m=3
– Flow Insensitive
– Bounded Field FI

18
December 12, 1999

Benchmarks

19
December 12, 1999

Experimental Results
• Stack Allocation of NoEscape objects

HPCJ native alloca routine

20
December 12, 1999

Experimental Results
• Lock Elimination

At object use site bypass compare &swap

21
December 12, 1999

Conclusions

• 2 - 23% speedup, 8% avg

• Lots of stack-allocable objects

• 11 - 92% of locks eliminated

• FS as bad as FI?

• Very similar to point-to Graphs

• Need benchmarks with larger footprint

• Need algorithm time and space

