
1

11/10/99 1

Whole Program Optimization
of OOPLs

C. Chambers, J. Dean, D.
Grove

University of Washington
Technical Report 96-06-02

see also OOPSLA’96 paper on Vortex

11/10/99 B.G. Ryder
2

Vortex
• Cecil: OOPL with multimethods using

dynamic dispatch, classes, inheritance,
closures

• Vortex: optimizing compiler written in Cecil,
emphasizes optimizations for OOPLs
– Performs whole program analysis and

transformation

• Goal: to reduce runtime performance costs of
OO style through static analysis based and
dynamic profiling guided techniques

2

11/10/99 B.G. Ryder
3

Vortex
• Static analyses

– Intraprocedural class analysis
• for compile-time method resolution and elimination of

runtime class checks

– Class hierarchy analysis
• to use with exhaustive class testing and cloned codes

• Execution time profiling
– Frequency counts

• for prediction with cloning or splitting code

– Selective method specialization for argument
subsets

11/10/99 B.G. Ryder
4

Intraprocedural Class Analysis

• A flow-sensitive, forward intraproc data-flow
analysis
– Map M: Variables → power set of Classes

– Safety requires if M(x) = S, then S contains all the
possible runtime classes of x

• Details
– Need to define transfer functions at control flow

graph nodes

– Use fixed point iteration to solve

3

11/10/99 B.G. Ryder
5

Interprocedural Class Analysis
• result(x) =

– x an operator, predefined class
– x a message, declared return type T and all of its subclasses (cone(T))
– x an instance variable of type Q, cone(Q)

• Assume Unknown is set of all classes
• Let Class be the set of incoming (reference, set of types) pairs
• Then

– x := const class[x → class of const]
– x:= new C class[x → {C}]
– x:= y class[x → class(y)]
– x:= y.foo(…) class[x → result(y.foo(…))
– x:= obj.var class[x → result(obj.var)]

• At control merges, union classes associated with same
variable; at runtime type tests, propagate narrowed type
information forward

11/10/99 B.G. Ryder
6

Comments

• Existence of cone(C) as a type impedes
optimization

• Can improve analysis by interleaving it with
inlining

• Automatic inlining performed with heuristics
about size of callee, expected call frequncy
and whether or not function is recursive
– User directives allowed

4

11/10/99 B.G. Ryder
7

Experiments in Inlining

• Performed inlining speculatively
– Measured optimization benefits

– Stored persistently static information used in opts

– Reused this cost/benefit info at different call sites
with same characteristics

– Results showed inlining decisions less sensitive to
superficial changes in source code’s structure and
to thresholds set to choose inlining candidates

• Research Issue: when and how to inline?

11/10/99 B.G. Ryder
8

Class Hierarchy Analysis

• Presumes you have whole program
• Complication of interprocedural analysis of

OOPLs: cyclic dependency between structure
of call graph and static class info inferred for
receivers

• Augments intraprocedural class analysis with
knowledge of inheritance structure
– Can bound Cone(Q)

5

11/10/99 B.G. Ryder
9

Class Hierarchy Analysis
• Goal: program only pays for dynamic

dispatch insofar as it uses it
– E.g., Extensible libraries incur a compilation cost

only when extended
– Problems

• Union and Cone(Q) may involve a bounded
enumerable set of classes

• Even if object type is a set of classes there may be only
one possible method called

• Using Vortex as data, over 50% messages that can be
statically bound with CHA have more than 1 class in
the receiver’s type

11/10/99 B.G. Ryder
10

Class Hierarchy Analysis

• Build inheritance tree for whole program and
decorate with methods and their signature

• For each class C in tree and each relevant
method f, can compute at compile time, which
f is called by a C receiver

• Now, compile-time method resolution involves
finding the possible type(s) of the receiver and
unioning all possible methods for those types,
hoping for a singleton method

6

11/10/99 B.G. Ryder
11

Class Hierarchy Analysis

• Problem: need quick lookup of appropriate
method for non-singleton receiver classes
– Precompute applies-to set of method f: set of

classes that resolve to this method

– At method call, test receiver’s type (a set of
classes) for overlap with applies-to set for each
potential method

• for x.f(), applies-to(f_i) ∩ type(x) == ?

• if there’s only 1 applies-to set with an overlap, have
uniquely resolved the call

• memoize the result of the test for future lookup

11/10/99 B.G. Ryder
12

Calculating Applies-to Sets
A
 m()

B
 m()

C
 m()

E
 m()

D F

G H

A::m

B::m C::m

E::m

For each function, find subtree of
inheritance tree.
Initialize applies-to sets at C to Cone(C)
In depth first order, subtract
descendent sets from parents

{B,D}

{E}

{C,E,F,G,H}

{A,B,D,C,E,F,G,H}

{B,D}

{A}

{C,F,G,H}

{E}

7

11/10/99 B.G. Ryder
13

Class Hierarchy Analysis

• Problems
– If super is used as a receiver, then this analysis

doesn’t work because the invocation through
super is not accounted for in the applies-to set

• This violates the initialization of an applies-to set(f) in
class C to Cone(C).

– For multimethods, need more than receiver type
in lookup

• Can do lookup on k-tuple of runtime types or do some
precomputation at compile-time (Java) to restrict
runtime choices

11/10/99 B.G. Ryder
14

Implementation Notes

• Vortex implementation
– Overlap test efficiency using bitstring rep for sets

is most difficult for set differences and cones
• Note testing algorithm allows for use with extensible

class sets

– O(N) test where N is number of classes in
program

8

11/10/99 B.G. Ryder
15

Analysis/Transfn
Interdependences

• Incremental compilation requires
intermodule dependency information
– DAG of module dependences for information

used during compilation

– Granularity chosen has DAG half the size of the
program representation

– Claims to have saved 7 times recompilation over
C++ header-based scheme and factor of 2 over
Scheme’s finer--grained mechanism

11/10/99 B.G. Ryder
16

Example

Cone(C)

applies-to(f)
methods
f with 3 args

method
lookup
entry

compiled
code for
classes
A,B,C

9

11/10/99 B.G. Ryder
17

Annotations versus Analysis
• Requiring virtual keyword forces

programmer to choose what client can
override early

• Keywords make change onerous (changing
design means changing old source code)

• CHA can often obtain an unique static
binding for virtual functions in specific apps
– About 1/2 calls in codes in paper were statically

bindable through CHA, but needed to be virtual

• Java’s final helps analysis

11/10/99 B.G. Ryder
18

Exhaustive Class Testing

• Empirical studies show that often call sites
actually call only a few methods

• Can insert explicit type tests for all potential
classes at a call site (if it’s a small number)
– Must worry about cost/benefits
– Want to improve code performance at minimal

cost in time and space
– Vortex choices: do if small (<=3) number of

candidate classes and all methods would be
inlinable; test methods in BU tree order

10

11/10/99 B.G. Ryder
19

Exhaustive Class Testing

• Single class membership tests
– Virtual function table pointer in C++
x = obj.m(); becomes id_x = obj.class_id;

 if (id == D) … elseif (id == E)…else ….;

– On each branch, inline and further optimize
using known type of receiver

– Problems:
• Large hierarchies make testing impractical (especially

if many classes use same function)
• Sensitivity to program changes (extended classes have

to be instantiated in old test code)

cost: 5 instructs

11/10/99 B.G. Ryder
20

Exhaustive Class Testing

• Cone tests (subclass relation check)
– Single inheritance

• x has y as ancestor in tree iff x.l >= y.l && x.h<=y.h
where l is preorder# and h is postorder#

– Multiple inheritance
• N classes numbered 0 to (N-1)
• Build NxN bit matrix X, X[k,j] = true if class k is

subclass of class j

cost: 6 instructs

cost: 5-6 instructs
NxN space

11

11/10/99 B.G. Ryder
21

Other Static Analyses
• Constant propagation (value flow)
• Instance variable optimizations

– Elimination of redundant reads and writes

– Use of base+offset addressing with value flow info

• Dead store elimination
– e.g., when inlined object constructor does

initializations overriden by caller code

• Dead object elimination
– Can use escape analysis to see which objects exist

past creator block’s lifetime

11/10/99 B.G. Ryder
22

Profile-guided Optimizations

• Execution frequency data
– Guides inlining decisions and scales down

optimization in infrequently used methods
– Provides input to guide receiver class prediction
– Guides selective specialization of code

• Granularity of data collection
– How much calling context to save?
– How many method calls to fold together?
– Balance efficiency of data gathering (cost) versus

utility of data gathered (profitability)

12

11/10/99 B.G. Ryder
23

Receiver Class Distributions

• Each distribution associated with set of
method calls
– Message summary - all messages with same name
– Call-site-specific (1-CCP)

• k-Call Chain Profile delimits k dynamically enclosing
call sites (stored in factored tree form)

– Call-chain-specific (n-CCP)

• Collect histogram for each of receiver classes
– Shows if a few classes dominate
– Shows which classes are most common

11/10/99 B.G. Ryder
24

Receiver Class Distributions

• Vortex gathers info off-line in separate
training runs of program and uses into in
optimization

• Alternative: SELF does dynamic compilation,
gathering profiling info as program runs and
recompiling using this info for “hot methods”

• Code generated like exhaustive class testing
except types are those seen in profiles, not
statically gathered

13

11/10/99 B.G. Ryder
25

Example

x2 := x1.area();
x1.class == Rectangle?

code for
Rectangles

x1.class==Circle?

code for
Circles

x2:=area(x1);

Assumption:
benefits of avoiding
dynamic dispatch or
inlining outweigh
runtime cost of class
test

11/10/99 B.G. Ryder
26

Splitting

• To avoid redundant tests, can split control
flow path between merge following one
occurrence of a class test and the next
occurrence of same class test

• Vortex does this lazily

14

11/10/99 B.G. Ryder
27

Example
x1.class == Rectangle?

t1:=x1.len;
t2:=x1.wid;

x1.class==Circle?

t3:=x1.radius
t4:=t3*t3*pi

x2:=area(x1);

...

x1.class == Rectangle?

x5:=x1; x1.class==Circle?

t5:= x1.center; x3:=bb(x1);

11/10/99 B.G. Ryder
28

Example
x1.class == Rectangle?

t1:=x1.len;
t2:=x1.wid;
x5:=x1;

x1.class==Circle?

t3:=x1.radius
t4:=t3*t3*pi;
t5:= x1.center;

x2:=area(x1);
x3:=bb(x1);

...

Vortex does not
split past loop
entry or exit, for
simplicity

15

11/10/99 B.G. Ryder
29

Profiling

• Want profiles to be stable across inputs
• Want profiles to be stable across program

versions
• Want peaked profiles to find some methods

are more frequently called than others
• Vortex trials on C++ and Cecil programs

– 71% of C++ messages (72% Cecil) were sent to
most common receiver class

– in C++, 36%(Cecil 50%) dynamic dispatches
occurred at call sites with single receiver class!

11/10/99 B.G. Ryder
30

Profile Stability

• Two metrics studied on profiles derived from
different inputs to same programs
– FirstSame: same most common receiver class

– OrderSame: 2 distributions are same only if they
are comprised of same classes in same frequency
order

– in C++,
• for FirstSame, 99% match for method summary and

79% match for 1-call-site-specific
• for OrderSame, 28% match for method summary and

45% match for 1-call-site-specific

16

11/10/99 B.G. Ryder
31

Profile Stability

• Gathered profiles across different versions of
Vortex using 6 month version control history
– OrderSame metric was not similar

– FirstSame found distributions stable
• Fewer than 5% method summaries changed over

entire 6 month period

• Claim: this validates utility of profiles for
optimization of future versions of a program

11/10/99 B.G. Ryder
32

Method Specialization

• Factoring shared code into base classes which
contain virtual calls to specialized behavior
subclasses hurts runtime performance

• Compiler must undo effects of factorization
• Vortex, profile-guided selective specialization

– Idea: given weighted call graph derived from
profile data, eliminate heavily travelled,
dynamically dispatched calls by specializing to
particular patterns in their parameters

17

11/10/99 B.G. Ryder
33

Method Specialization

• Drawbacks
– Overspecialization - multiple specialized versions

may be too much alike

– Underspecialization - methods may only be
specialized on receiver type

• Pass-through call sites use formals of caller as
arguments to callee, specializable call sites
– f(A a,B b,C c){…a.s(c)….} can specialize s() for

set of known static types of a and c

11/10/99 B.G. Ryder
34

Some Questions

• How is set of classes which enable
specialization of pass-through arc calculated?

• How should specializations for multiple call
sites to same method be combined?

• If a method f is specialized, how can we avoid
converting statically bound calls to f into
dynamically bound calls?

• When is an arc important to specialize?

18

11/10/99 B.G. Ryder
35

Specialization Algorithm

• At a pass-through edge, determine most
general class set tuple for pass-through
formals that allows static binding of call

• Must combine class set tuples from different
call sites in same method, somehow
– Have info on specific class sets for args but not on

their occurrence in specific combinations
– Vortex: try all plausible combinations and be

careful about code blowup (didn’t occur in
practice)

11/10/99 B.G. Ryder
36

Specialization Algorithm

• May change a statically bound call to the
unspecialized method to a dynamic test to
choose between specialized versions OR can
leave original translation as target of
statically bound call

• Cascading specializations - tries to recursively
specialize caller to match the specialized
callee
– Has effect of hoisting dynamic dispatch to lower

frequency parts of call graph

19

11/10/99 B.G. Ryder
37

Specialization Algorithm

• Cost/benefit threshold: 1000 invocations
• Drawbacks

– Doesn’t consider code growth

– Treats all dynamic dispatches as same benefit

– NO global view on code growth as do the
optimization

11/10/99 B.G. Ryder
38

Performance Studies

• Methodology
– Vortex compiles into C which is compiled using

gcc2.6.3 -O2.

– Reported times are average over 11 runs of
SPARC 20/61 with 128 MB memory

– Space measured as bytes in a stripped executable

– Training data different from input measured
(except for richard)

20

11/10/99 B.G. Ryder
39

Data
• Five benchmark Cecil programs
• Effects (Figure 18)

– unopt - no optimizations of sends
– intra(or i) - intraproc class analysis, automatic

inlining, hard-wired class prediction for built-ins,
intraprocedural opts (e.g., splitting, dead code
elim)

– i + CHA
– i + CHA + exh - plus exhaustive class testing for

call sites with small# of candidates
– i + CHA + exh + spec - plus selective specialization

11/10/99 B.G. Ryder
40

Improvements Reported

(1) hard-wired class prediction (e.g., +)
(2) 60% performance improvement from

adding CHA

(3) 18% performance improvement from
adding exhaustive class testing

(4) 2.8 performance improvement by adding
profile-guided class prediction to intra

Hypothesis: interprocedural class analysis techniques might
further narrow performance gap between purely static and
static+profile-guided system

21

11/10/99 B.G. Ryder
41

OOPL Comparison

• C++ 3-4 times faster than Cecil 3-4 faster
than Smalltalk-80

• Based on performance on 2 benchmarks

• Base is i+CHA+exh+spec in the data
gathering figures

