Whole Program Optimization
of OOPLs
C. Chambers, J. Dean, D.
Grove

University of Washington
Technical Report 96-06-02

see also OOPSL A’ 96 paper on Vortex

11/10/99 1

Vortex

e Cecil: OOPL with multimethods using
dynamic dispatch, classes, inheritance,
closures

» Vortex: optimizing compiler written in Cecil,
emphasizes optimizations for OOPL s
— Performswhole program analysisand

transformation

» Goal: to reduce runtime perfor mance costs of
OO stylethrough static analysis based and
dynamic profiling guided techniques

11/10/99 B.G. Ryder

Vortex
» Static analyses

— Intraprocedural classanalysis

» for compile-time method resolution and elimination of
runtime class checks

— Class hierarchy analysis
* to use with exhaustive classtesting and cloned codes
» Execution time profiling
— Frequency counts
« for prediction with cloning or splitting code

— Selective method specialization for argument
subsets

11/10/99 B.G. Ryder

|ntraprocedural Class Analysis

» A flow-senditive, forward intraproc data-flow
analysis
—Map M: Variables ® power set of Classes

— Safety requiresif M(x) = S, then Scontainsall the
possible runtime classes of x

» Detalls

— Need to definetransfer functions at control flow
graph nodes

— Usefixed point iteration to solve

11/10/99 B.G. Ryder

|nter procedural Class Analysis

e result(x) =
— X an operator, predefined class
— X amessage, declared return type T and all of its subclasses (cone(T))
— X an instance variable of type Q, cong(Q)

» Assume Unknown is set of all classes

» Let Classbethe set of incoming (reference, set of types) pairs

e Then

— X:=const clasgx ® class of const]
— X:=newC clasgx ® {C}]

- X:=y clasgx ® class(y)]

- x:=y.foo(...) clasgx ® result(y.foo(...))
— X:=obj.var clasgx ® result(abj.var)]

» At control merges, union classes associated with same
variable; at runtimetypetests, propagate narrowed type
information forward s

11/10/99 B.G. Ryder

Comments

» Existence of coneg(C) asatypeimpedes
optimization

« Can improve analysis by interleaving it with
inlining

« Automatic inlining performed with heuristics
about size of callee, expected call frequncy
and whether or not function isrecursive

— User directives allowed

11/10/99 B.G. Ryder

Experimentsin Inlining

» Performed inlining speculatively
— Measur ed optimization benefits
— Stored persistently static information used in opts

— Reused this cost/benefit info at different call sites
with same characteristics

— Results showed inlining decisions less sensitive to
superficial changesin source code' s structure and
to thresholds set to choose inlining candidates

e Research Issue: when and how to inline?

11/10/99 B.G. Ryder

ClassHierarchy Analysis

» Presumesyou have whole program

o Complication of interprocedural analysis of
OOPLs: cyclic dependency between structure
of call graph and static classinfo inferred for
receivers

» Augmentsintraprocedural class analysiswith
knowledge of inheritance structure

— Can bound Cone(Q)

11/10/99 B.G. Ryder

ClassHierarchy Analysis

» Goal: program only paysfor dynamic
dispatch insofar asit usesit

— E.g., Extensiblelibrariesincur a compilation cost
only when extended

— Problems

» Union and Cone(Q) may involve a bounded
enumerable set of classes

» Even if object typeisa set of classesthere may be only
one possible method called

» Using Vortex asdata, over 50% messagesthat can be
statically bound with CHA have morethan 1 classin
thereceiver’'stype

11/10/99 B.G. Ryder

ClassHierarchy Analysis

* Build inheritancetree for whole program and
decor ate with methods and their signature

» For each classC in tree and each relevant
method f, can compute at compile time, which
fiscalled by a C receiver

* Now, compile-time method resolution involves
finding the possible type(s) of thereceiver and
unioning all possible methods for those types,
hoping for a singleton method

11/10/99 B.G. Ryder 10

ClassHierarchy Analysis

» Problem: need quick lookup of appropriate
method for non-singleton receiver classes

— Precompute applies-to set of method f: set of
classesthat resolve to this method

— At method call, test recelver’stype (a set of
classes) for overlap with applies-to set for each
potential method

o for x.f(), applies-to(f_i) C type(x) == "7

« if there'sonly 1 applies-to set with an overlap, have
uniquely resolved the call

» memoizetheresult of thetest for futurelookup

11/10/99 B.G. Ryder u

Calculating Applies-to Sets

A For each function, find subtree of

m() inheritance tree.
Initialize applies-to sets at C to Cone(C)

B C In depth first order, subtract
‘ m() / m() descendent sets from parents
A:m {A,B,D,C,E,F,GH}
°F F / (A}
m() | \ B::m c'm
¢ H By {CEFGH)
{E}

11/10/99 B.G. Ryder { E} 12

ClassHierarchy Analysis

e Problems

— If super isused asareceiver, then thisanalysis
doesn’t work because the invocation through
super isnot accounted for in the applies-to set

» Thisviolatestheinitialization of an applies-to set(f) in
class C to Cong(C).

— For multimethods, need mor e than receiver type
in lookup

» Can dolookup on k-tuple of runtimetypesor do some
precomputation at compile-time (Java) to restrict
runtime choices

11/10/99 B.G. Ryder 1

| mplementation Notes

* Vortex implementation
— Overlap test efficiency using bitstring rep for sets
iIsmost difficult for set differencesand cones

» Notetesting algorithm allows for use with extensible
class sets

— O(N) test where N isnumber of classesin
program

11/10/99 B.G. Ryder 14

Analysis/Transfn
| nter dependences

* Incremental compilation requires
intermodule dependency infor mation
— DAG of module dependences for information
used during compilation

— Granularity chosen has DAG half the size of the
program representation

— Claimsto have saved 7 times recompilation over
C++ header-based scheme and factor of 2 over
Scheme’ s finer--grained mechanism

11/10/99 B.G. Ryder 15

Example

C (OO

applies-to(f) Method compiled
methods lookup code for
f with 3 args entry classes

A,B,C

11/10/99 B.G. Ryder 16

Annotations versus Analysis

* Requiring virtual keyword forces
programmer to choose what client can
overrideearly

» Keywords make change oner ous (changing
design means changing old sour ce code)

 CHA can often obtain an unique static
binding for virtual functionsin specific apps
— About 1/2 callsin codesin paper were statically
bindable through CHA, but needed to bevirtual

» Java'sfinal helpsanalysis

11/10/99 B.G. Ryder b

Exhaustive Class Testing

» Empirical studies show that often call sites
actually call only a few methods

e Caninsert explicit typetestsfor all potential
classes at a call site (if it’sa small number)
— Must worry about cost/benefits

— Want to improve code performance at minimal
cost in time and space

—Vortex choices. do if small (<=3) number of
candidate classes and all methods would be
inlinable; test methodsin BU tree order

11/10/99 B.G. Ryder 18

Exhaustive Class Testing

e Singleclassmembership tests [cos: 5instructs

— Virtual function table pointer in C++
x = obj.m(); becomes id_x = abj.class id;
if (id == D) ... elseif (id == E)...else;
— On each branch, inline and further optimize
using known type of receiver

— Problems:
» Large hierarchies maketesting impractical (especially
if many classes use same function)

 Sensitivity to program changes (extended classes have
to beinstantiated in old test code)

11/10/99 B.G. Ryder

19

Exhaustive Class Testing

» Conetests (subclassrelation check)

— Sing|e inheritance cost: 6 instructs
» X hasy asancestor in treeiff x.| >=y.l && x.h<=y.h
wherel ispreorder#and h is postor der#
— Multipleinheritance cost: 5-6 instructs
* N classes numbered 0to (N-1) NxN space

 Build NxN bit matrix X, X[k,j] =trueif classk is
subclass of class]j

11/10/99 B.G. Ryder 2

Other Static Analyses

Constant propagation (value flow)

| nstance variable optimizations

— Elimination of redundant reads and writes

— Use of baset+offset addressing with value flow info
Dead store elimination

— e.g., when inlined object constructor does
initializations overriden by caller code

Dead object elimination
— Can use escape analysisto see which objects exist
ast creator block’slifetime 2

11/10/99 B.G Ryder

Profile-guided Optimizations

» Execution frequency data

— Guidesinlining decisions and scales down
optimization in infrequently used methods

— Providesinput to guide receiver class prediction
— Guides selective specialization of code
» Granularity of data collection
— How much calling context to save?
— How many method callsto fold together ?

— Balance efficiency of data gathering (cost) versus
utility of data gathered (profitability)

11/10/99 B.G. Ryder 2

Receaver Class Distributions

e Each distribution associated with set of
method calls

— Message summary - all messages with same name
— Call-site-specific (1-CCP)

 k-Call Chain Profile delimits k dynamically enclosing
call sites(stored in factored tree form)

— Call-chain-specific (n-CCP)

» Collect histogram for each of receiver classes
— Showsif a few classes dominate
— Shows which classes are most common

11/10/99 B.G. Ryder 3

Receiver Class Distributions

» Vortex gathersinfo off-linein separate
training runs of program and usesintoin
optimization

o Alternative: SEL F does dynamic compilation,
gathering profiling info as program runs and
recompiling using thisinfo for “hot methods’

» Codegenerated like exhaustive classtesting
except types are those seen in profiles, not
statically gathered

11/10/99 B.G. Ryder 24

Example

x2 :=xl.area();
x1.class == Rectangle?

Assumption:
benefits of avoiding

dynamic dispatch or x1.class==Circle?
inlining outweigh code for

runtime cost of class| | Rectangles / \
test

code for X2:=area(x1)
Circles

11/10/99 B.G. Ryder %

Splitting

* To avoid redundant tests, can split control
flow path between merge following one
occurrence of a classtest and the next
occurrence of same classtest

» Vortex doesthislazily

11/10/99 B.G. Ryder %

Example

x1.class == Rectangle?

x1.class==Circle?
tl:=x1.len;

t2:=x1.wid;

x2:=area(x1);

t3:=x1l.radius
t4:=t3*t3*pi

x1.class == Rectangle?

X5:=x1; - xl.class=\:CircI e?
11/10/99 B.G. Ryder t5:= x1.center; x3: :bb(X1), 2
Example

x1.class == Rectangle?

x1.class==Circle?
tl:=x1l.len;
t2:=x1.wid; X2:=area(x1);
X5:=x1; t3:=x1.radius x3:=bb(x1);

t4:=t3*t3*pi;
t5:= x1.center;

Vortex does not

split past loop \(
entry or exit, for

simplicity

11/10/99 B.G. Ryder 28

Profiling

Want profilesto be stable acrossinputs

Want profilesto be stable acr oss program
versions

Want peaked profilesto find some methods
are more frequently called than others

Vortex trialson C++ and Cecil programs

— 71% of C++ messages (72% Cecil) were sent to
most common receiver class
—in C++, 36% (Cecil 50%) dynamic dispatches
wossc@ECUr red at call siteswith singlereceiver class! =

Profile Stability

 Two metricsstudied on profilesderived from

different inputsto same programs

— FirstSame: same most common receiver class

— OrderSame: 2 distributions are sameonly if they
are comprised of same classesin same frequency
order

—in C++,

o for FirstSame, 99% match for method summary and
79% match for 1-call-site-specific

o for Order Same, 28% match for method summary and
45% match for 1-call-site-specific »

11/10/99 B.G. Ryder

Profile Stability

» Gathered profiles across different versions of
Vortex using 6 month version control history
— Order Same metric was not similar

— FirstSame found distributions stable

» Fewer than 5% method summaries changed over
entire 6 month period

» Claim: thisvalidates utility of profilesfor
optimization of future versions of a program

11/10/99 B.G. Ryder s

Method Specialization

» Factoring shared code into base classes which
contain virtual callsto specialized behavior
subclasses hurts runtime perfor mance

o Compiler must undo effects of factorization

» Vortex, profile-guided selective specialization

— Idea: given weighted call graph derived from
profile data, eliminate heavily travelled,
dynamically dispatched calls by specializing to
particular patternsin their parameters

11/10/99 B.G. Ryder 32

Method Specialization

» Drawbacks
— Over specialization - multiple specialized versions
may betoo much alike

— Under specialization - methods may only be
specialized on receiver type
» Pass-through call sitesuse formalsof caller as
argumentsto callee, specializable call sites

—f(AaBDb,Cc)...as(c)....} can specializes() for
set of known static typesof aand ¢

11/10/99 B.G. Ryder

33

Some Questions

» How isset of classes which enable
specialization of pass-through arc calculated?

* How should specializations for multiple call
sitesto same method be combined?

» |f amethod f is specialized, how can we avoid
converting statically bound callsto f into
dynamically bound calls?

 When isan arc important to specialize?

11/10/99 B.G. Ryder

Specialization Algorithm

» At apass-through edge, deter mine most
general class set tuple for pass-through
formalsthat allows static binding of call

* Must combine class set tuples from different
call sitesin same method, somehow

— Haveinfo on specific class setsfor args but not on
their occurrencein specific combinations

—Vortex: try all plausible combinations and be
car eful about code blowup (didn’t occur in
practice)

11/10/99 B.G. Ryder 3

Specialization Algorithm

* May changea statically bound call tothe
unspecialized method to a dynamic test to
choose between specialized versions OR can
leave original tranglation astarget of
statically bound call

» Cascading specializations - triesto recursively
gpecialize caller to match the specialized
callee

— Has effect of hoisting dynamic dispatch to lower
frequency partsof call graph

11/10/99 B.G. Ryder 36

Specialization Algorithm

e Cost/ben€fit threshold: 1000 invocations

» Drawbacks
— Doesn’'t consider code growth
— Treats all dynamic dispatches as same benefit

— NO global view on code growth asdo the
optimization

11/10/99 B.G. Ryder 87

Perfor mance Studies

M ethodology

— Vortex compilesinto C which is compiled using
gcc2.6.3 -0O2.

— Reported times are average over 11 runs of
SPARC 20/61 with 128 MB memory

— Space measured as bytesin a stripped executable

— Training data different from input measur ed
(except for richard)

11/10/99 B.G. Ryder 38

Data

» Five benchmark Cecil programs

o Effects(Figure 18)

— unopt - no optimizations of sends

—intra(or i) - intraproc class analysis, automatic
inlining, hard-wired class prediction for built-ins,
intraprocedural opts (e.g., splitting, dead code
elim)

— i+ CHA

— i+ CHA + exh - plus exhaustive classtesting for
call siteswith small# of candidates

— i+ CHA + exh + spec - plus selective specialization

11/10/99 B.G. Ryder 39

| mprovements Reported

(1) hard-wired class prediction (e.g., +)
(2) 60% performance improvement from
adding CHA

(3) 18% performance improvement from
adding exhaustive classtesting

(4) 2.8 performance improvement by adding
profile-guided class prediction tointra

Hypothesis: interprocedural class analysistechniques might
further narrow performance gap between purely static and
static+profile-guided system

11/10/99 B.G. Ryder

OOPL Comparison

e C++ 3-4timesfaster than Cecil 3-4 faster
than Smalltalk-80

» Based on performance on 2 benchmarks

» Baseisi+tCHA+exh+specin the data
gathering figures

11/10/99 B.G. Ryder

