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Preface

We study data structures so that we can learn to write more efficient programs.
But why must programs be efficient when new computers are faster every year?
The reason is that our ambitions grow with our capabilities. Instead of rendering
efficiency needs obsolete, the modern revolution in computing power and storage
capability merely raises the efficiency stakes as we attempt more complex tasks.

The quest for program efficiency need not and should not conflict with sound
design and clear coding. Creating efficient programs has little to do with “program-
ming tricks” but rather is based on good organization of information and good al-
gorithms. A programmer who has not mastered the basic principles of clear design
is not likely to write efficient programs. Conversely, concerns related to develop-
ment costs and maintainability should not be used as an excuse to justify inefficient
performance. Generality in design can and should be achieved without sacrificing
performance, but this can only be done if the designer understands how to measure
performance and does so as an integral part of the design and implementation pro-
cess. Most computer science curricula recognize that good programming skills be-
gin with a strong emphasis on fundamental software engineering principles. Then,
once a programmer has learned the principles of clear program design and imple-
mentation, the next step is to study the effects of data organization and algorithms
on program efficiency.

Approach: This book describes many techniques for representing data. These
techniques are presented within the context of the following principles:

1. Each data structure and each algorithm has costs and benefits. Practitioners
need a thorough understanding of how to assess costs and benefits to be able
to adapt to new design challenges. This requires an understanding of the
principles of algorithm analysis, and also an appreciation for the significant
effects of the physical medium employed (e.g., data stored on disk versus
main memory).

2. Related to costs and benefits is the notion of tradeoffs. For example, it is quite
common to reduce time requirements at the expense of an increase in space
requirements, or vice versa. Programmers face tradeoff issues regularly in all

xiii
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phases of software design and implementation, so the concept must become
deeply ingrained.

3. Programmers should know enough about common practice to avoid rein-
venting the wheel. Thus, programmers need to learn the commonly used
data structures, their related algorithms, and the most frequently encountered
design patterns found in programming.

4. Data structures follow needs. Programmers must learn to assess application
needs first, then find a data structure with matching capabilities. To do this
requires competence in Principles 1, 2, and 3.

As I have taught data structures through the years, I have found that design
issues have played an ever greater role in my courses. This can be traced through
the various editions of this textbook by the increasing coverage for design patterns
and generic interfaces. The first edition had no mention of design patterns. The
second edition had limited coverage of a few example patterns, and introduced the
dictionary ADT and comparator classes. With the third edition, there is explicit
coverage of some design patterns that are encountered when programming the basic
data structures and algorithms covered in the book.

Using the Book in Class: Data structures and algorithms textbooks tend to fall
into one of two categories: teaching texts or encyclopedias. Books that attempt to
do both usually fail at both. This book is intended as a teaching text. I believe it is
more important for a practitioner to understand the principles required to select or
design the data structure that will best solve some problem than it is to memorize a
lot of textbook implementations. Hence, I have designed this as a teaching text that
covers most standard data structures, but not all. A few data structures that are not
widely adopted are included to illustrate important principles. Some relatively new
data structures that should become widely used in the future are included.

Within an undergraduate program, this textbook is designed for use in either an
advanced lower division (sophomore or junior level) data structures course, or for
a senior level algorithms course. New material has been added in the third edition
to support its use in an algorithms course. Normally, this text would be used in a
course beyond the standard freshman level “CS2” course that often serves as the
initial introduction to data structures. Readers of this book should typically have
two semesters of the equivalent of programming experience, including at least some
exposure to C++. Readers who are already familiar with recursion will have an
advantage. Students of data structures will also benefit from having first completed
a good course in Discrete Mathematics. Nonetheless, Chapter 2 attempts to give
a reasonably complete survey of the prerequisite mathematical topics at the level
necessary to understand their use in this book. Readers may wish to refer back
to the appropriate sections as needed when encountering unfamiliar mathematical
material.
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A sophomore-level class where students have only a little background in basic
data structures or analysis (that is, background equivalent to what would be had
from a traditional CS2 course) might cover Chapters 1-11 in detail, as well as se-
lected topics from Chapter 13. That is how I use the book for my own sophomore-
level class. Students with greater background might cover Chapter 1, skip most
of Chapter 2 except for reference, briefly cover Chapters 3 and 4, and then cover
chapters 5-12 in detail. Again, only certain topics from Chapter 13 might be cov-
ered, depending on the programming assignments selected by the instructor. A
senior-level algorithms course would focus on Chapters 11 and 14-17.

Chapter 13 is intended in part as a source for larger programming exercises.
I recommend that all students taking a data structures course be required to im-
plement some advanced tree structure, or another dynamic structure of comparable
difficulty such as the skip list or sparse matrix representations of Chapter 12. None
of these data structures are significantly more difficult to implement than the binary
search tree, and any of them should be within a student’s ability after completing
Chapter 5.

While I have attempted to arrange the presentation in an order that makes sense,
instructors should feel free to rearrange the topics as they see fit. The book has been
written so that once the reader has mastered Chapters 1-6, the remaining material
has relatively few dependencies. Clearly, external sorting depends on understand-
ing internal sorting and disk files. Section 6.2 on the UNION/FIND algorithm is
used in Kruskal’s Minimum-Cost Spanning Tree algorithm. Section 9.2 on self-
organizing lists mentions the buffer replacement schemes covered in Section 8.3.
Chapter 14 draws on examples from throughout the book. Section 17.2 relies on
knowledge of graphs. Otherwise, most topics depend only on material presented
earlier within the same chapter.

Most chapters end with a section entitled “Further Reading.” These sections
are not comprehensive lists of references on the topics presented. Rather, I include
books and articles that, in my opinion, may prove exceptionally informative or
entertaining to the reader. In some cases I include references to works that should
become familiar to any well-rounded computer scientist.

Use of C++: The programming examples are written in C++, but I do not wish to
discourage those unfamiliar with C++ from reading this book. I have attempted to
make the examples as clear as possible while maintaining the advantages of C++.
C-++ is used here strictly as a tool to illustrate data structures concepts. In particu-
lar, I make use of C++’s support for hiding implementation details, including fea-
tures such as classes, private class members, constructors, and destructors. These
features of the language support the crucial concept of separating logical design, as
embodied in the abstract data type, from physical implementation as embodied in
the data structure.
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To keep the presentation as clear as possible, some important features of C++
are avoided here. I deliberately minimize use of certain features commonly used
by experienced C++ programmers such as class hierarchy, inheritance, and virtual
functions. Operator and function overloading is used sparingly. C-like initialization
syntax is preferred to some of the alternatives offered by C++.

While the C++ features mentioned above have valid design rationale in real
programs, they tend to obscure rather than enlighten the principles espoused in
this book. For example, inheritance is an important tool that helps programmers
avoid duplication, and thus minimize bugs. From a pedagogical standpoint, how-
ever, inheritance often makes code examples harder to understand since it tends to
spread the description for one logical unit among several classes. Thus, my class
definitions only use inheritance where inheritance is explicitly relevant to the point
illustrated (e.g., Section 5.3.1). This does not mean that a programmer should do
likewise. Avoiding code duplication and minimizing errors are important goals.
Treat the programming examples as illustrations of data structure principles, but do
not copy them directly into your own programs.

One painful decision I had to make was whether to use templates in the code
examples. In the first edition of this book, the decision was to leave templates out
as it was felt that their syntax obscures the meaning of the code for those not famil-
iar with C++. In the years following, the use of C++ in computer science curricula
has greatly expanded. I now assume that readers of the text will be familiar with
template syntax. Thus, templates are now used extensively in the code examples.

My implementations are meant to provide concrete illustrations of data struc-
ture principles, as an aid to the textual exposition. Code examples should not be
read or used in isolation from the associated text because the bulk of each exam-
ple’s documentation is contained in the text, not the code. The code complements
the text, not the other way around. They are not meant to be a series of commercial-
quality class implementations. If you are looking for a complete implementation
of a standard data structure for use in your own code, you would do well to do an
Internet search.

For instance, the code examples provide less parameter checking than is sound
programming practice, since including such checking would obscure rather than il-
luminate the text. Some parameter checking and testing for other constraints (e.g.,
whether a value is being removed from an empty container) is included in the form
of acall to Assert. The inputs to Assert are a Boolean expression and a charac-
ter string. If this expression evaluates to f£alse, then a message is printed and the
program terminates immediately. Terminating a program when a function receives
a bad parameter is generally considered undesirable in real programs, but is quite
adequate for understanding how a data structure is meant to operate. In real pro-
gramming applications, C++’s exception handling features should be used to deal
with input data errors. However, assertions provide a simpler mechanism for indi-
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cating required conditions in a way that is both adequate for clarifying how a data
structure is meant to operate, and is easily modified into true exception handling.
See the Appendix for the implementation of Assert.

I make a distinction in the text between “C++ implementations” and “pseu-
docode.” Code labeled as a C++ implementation has actually been compiled and
tested on one or more C++ compilers. Pseudocode examples often conform closely
to C++ syntax, but typically contain one or more lines of higher-level description.
Pseudocode is used where I perceived a greater pedagogical advantage to a simpler,
but less precise, description.

Exercises and Projects: Proper implementation and analysis of data structures
cannot be learned simply by reading a book. You must practice by implementing
real programs, constantly comparing different techniques to see what really works
best in a given situation.

One of the most important aspects of a course in data structures is that it is
where students really learn to program using pointers and dynamic memory al-
location, by implementing data structures such as linked lists and trees. It is often
where students truly learn recursion. In our curriculum, this is the first course where
students do significant design, because it often requires real data structures to mo-
tivate significant design exercises. Finally, the fundamental differences between
memory-based and disk-based data access cannot be appreciated without practical
programming experience. For all of these reasons, a data structures course cannot
succeed without a significant programming component. In our department, the data
structures course is one of the most difficult programming course in the curriculum.

Students should also work problems to develop their analytical abilities. I pro-
vide over 450 exercises and suggestions for programming projects. I urge readers
to take advantage of them.

Contacting the Author and Supplementary Materials: A book such as this
is sure to contain errors and have room for improvement. I welcome bug reports
and constructive criticism. I can be reached by electronic mail via the Internet at
shaffer@vt.edu. Alternatively, comments can be mailed to

CIiff Shaffer
Department of Computer Science
Virginia Tech
Blacksburg, VA 24061
The electronic posting of this book, along with a set of lecture notes for use in
class can be obtained at

http://www.cs.vt.edu/~shaffer/book.html.

The code examples used in the book are available at the same site. Online Web
pages for Virginia Tech’s sophomore-level data structures class can be found at
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http://courses.cs.vt.edu/~cs3114.

This book was typeset by the author using IATEX. The bibliography was pre-
pared using BIBTEX. The index was prepared using makeindex. The figures were
mostly drawn with Xfig. Figures 3.1 and 9.10 were partially created using Math-
ematica.
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1

Data Structures and Algorithms

How many cities with more than 250,000 people lie within 500 miles of Dallas,
Texas? How many people in my company make over $100,000 per year? Can we
connect all of our telephone customers with less than 1,000 miles of cable? To
answer questions like these, it is not enough to have the necessary information. We
must organize that information in a way that allows us to find the answers in time
to satisfy our needs.

Representing information is fundamental to computer science. The primary
purpose of most computer programs is not to perform calculations, but to store and
retrieve information — usually as fast as possible. For this reason, the study of
data structures and the algorithms that manipulate them is at the heart of computer
science. And that is what this book is about — helping you to understand how to
structure information to support efficient processing.

This book has three primary goals. The first is to present the commonly used
data structures. These form a programmer’s basic data structure “toolkit.” For
many problems, some data structure in the toolkit provides a good solution.

The second goal is to introduce the idea of tradeoffs and reinforce the concept
that there are costs and benefits associated with every data structure. This is done
by describing, for each data structure, the amount of space and time required for
typical operations.

The third goal is to teach how to measure the effectiveness of a data structure or
algorithm. Only through such measurement can you determine which data structure
in your toolkit is most appropriate for a new problem. The techniques presented
also allow you to judge the merits of new data structures that you or others might
invent.

There are often many approaches to solving a problem. How do we choose
between them? At the heart of computer program design are two (sometimes con-
flicting) goals:

1. To design an algorithm that is easy to understand, code, and debug.
2. To design an algorithm that makes efficient use of the computer’s resources.
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Ideally, the resulting program is true to both of these goals. We might say that
such a program is “elegant.” While the algorithms and program code examples pre-
sented here attempt to be elegant in this sense, it is not the purpose of this book to
explicitly treat issues related to goal (1). These are primarily concerns of the disci-
pline of Software Engineering. Rather, this book is mostly about issues relating to
goal (2).

How do we measure efficiency? Chapter 3 describes a method for evaluating
the efficiency of an algorithm or computer program, called asymptotic analysis.
Asymptotic analysis also allows you to measure the inherent difficulty of a problem.
The remaining chapters use asymptotic analysis techniques to estimate the time cost
for every algorithm presented. This allows you to see how each algorithm compares
to other algorithms for solving the same problem in terms of its efficiency.

This first chapter sets the stage for what is to follow, by presenting some higher-
order issues related to the selection and use of data structures. We first examine the
process by which a designer selects a data structure appropriate to the task at hand.
We then consider the role of abstraction in program design. We briefly consider
the concept of a design pattern and see some examples. The chapter ends with an
exploration of the relationship between problems, algorithms, and programs.

1.1 A Philosophy of Data Structures

1.1.1 The Need for Data Structures

You might think that with ever more powerful computers, program efficiency is
becoming less important. After all, processor speed and memory size still con-
tinue to improve. Won’t any efficiency problem we might have today be solved by
tomorrow’s hardware?

As we develop more powerful computers, our history so far has always been to
use that additional computing power to tackle more complex problems, be it in the
form of more sophisticated user interfaces, bigger problem sizes, or new problems
previously deemed computationally infeasible. More complex problems demand
more computation, making the need for efficient programs even greater. Worse yet,
as tasks become more complex, they become less like our everyday experience.
Today’s computer scientists must be trained to have a thorough understanding of the
principles behind efficient program design, because their ordinary life experiences
often do not apply when designing computer programs.

In the most general sense, a data structure is any data representation and its
associated operations. Even an integer or floating point number stored on the com-
puter can be viewed as a simple data structure. More commonly, people use the
term “data structure” to mean an organization or structuring for a collection of data
items. A sorted list of integers stored in an array is an example of such a structuring.
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Given sufficient space to store a collection of data items, it is always possible to
search for specified items within the collection, print or otherwise process the data
items in any desired order, or modify the value of any particular data item. Thus,
it is possible to perform all necessary operations on any data structure. However,
using the proper data structure can make the difference between a program running
in a few seconds and one requiring many days.

A solution is said to be efficient if it solves the problem within the required
resource constraints. Examples of resource constraints include the total space
available to store the data — possibly divided into separate main memory and disk
space constraints — and the time allowed to perform each subtask. A solution is
sometimes said to be efficient if it requires fewer resources than known alternatives,
regardless of whether it meets any particular requirements. The cost of a solution is
the amount of resources that the solution consumes. Most often, cost is measured
in terms of one key resource such as time, with the implied assumption that the
solution meets the other resource constraints.

It should go without saying that people write programs to solve problems. How-
ever, it is crucial to keep this truism in mind when selecting a data structure to solve
a particular problem. Only by first analyzing the problem to determine the perfor-
mance goals that must be achieved can there be any hope of selecting the right data
structure for the job. Poor program designers ignore this analysis step and apply a
data structure that they are familiar with but which is inappropriate to the problem.
The result is typically a slow program. Conversely, there is no sense in adopting
a complex representation to “improve” a program that can meet its performance
goals when implemented using a simpler design.

When selecting a data structure to solve a problem, you should follow these
steps.

1. Analyze your problem to determine the basic operations that must be sup-
ported. Examples of basic operations include inserting a data item into the
data structure, deleting a data item from the data structure, and finding a
specified data item.

2. Quantify the resource constraints for each operation.

3. Select the data structure that best meets these requirements.

This three-step approach to selecting a data structure operationalizes a data-
centered view of the design process. The first concern is for the data and the op-
erations to be performed on them, the next concern is the representation for those
data, and the final concern is the implementation of that representation.

Resource constraints on certain key operations, such as search, inserting data
records, and deleting data records, normally drive the data structure selection pro-
cess. Many issues relating to the relative importance of these operations are ad-
dressed by the following three questions, which you should ask yourself whenever
you must choose a data structure:



6 Chap. 1 Data Structures and Algorithms

* Are all data items inserted into the data structure at the beginning, or are
insertions interspersed with other operations? Static applications (where the
data are loaded at the beginning and never change) typically require only
simpler data structures to get an efficient implementation than do dynamic
applications.

* Can data items be deleted? If so, this will probably make the implementation
more complicated.

* Are all data items processed in some well-defined order, or is search for spe-
cific data items allowed? “Random access” search generally requires more
complex data structures.

1.1.2 Costs and Benefits

Each data structure has associated costs and benefits. In practice, it is hardly ever
true that one data structure is better than another for use in all situations. If one
data structure or algorithm is superior to another in all respects, the inferior one
will usually have long been forgotten. For nearly every data structure and algorithm
presented in this book, you will see examples of where it is the best choice. Some
of the examples might surprise you.

A data structure requires a certain amount of space for each data item it stores,
a certain amount of time to perform a single basic operation, and a certain amount
of programming effort. Each problem has constraints on available space and time.
Each solution to a problem makes use of the basic operations in some relative pro-
portion, and the data structure selection process must account for this. Only after a
careful analysis of your problem’s characteristics can you determine the best data
structure for the task.

Example 1.1 A bank must support many types of transactions with its
customers, but we will examine a simple model where customers wish to
open accounts, close accounts, and add money or withdraw money from
accounts. We can consider this problem at two distinct levels: (1) the re-
quirements for the physical infrastructure and workflow process that the
bank uses in its interactions with its customers, and (2) the requirements
for the database system that manages the accounts.

The typical customer opens and closes accounts far less often than he
or she accesses the account. Customers are willing to wait many minutes
while accounts are created or deleted but are typically not willing to wait
more than a brief time for individual account transactions such as a deposit
or withdrawal. These observations can be considered as informal specifica-
tions for the time constraints on the problem.

It is common practice for banks to provide two tiers of service. Hu-
man tellers or automated teller machines (ATMSs) support customer access
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to account balances and updates such as deposits and withdrawals. Spe-
cial service representatives are typically provided (during restricted hours)
to handle opening and closing accounts. Teller and ATM transactions are
expected to take little time. Opening or closing an account can take much
longer (perhaps up to an hour from the customer’s perspective).

From a database perspective, we see that ATM transactions do not mod-
ify the database significantly. For simplicity, assume that if money is added
or removed, this transaction simply changes the value stored in an account
record. Adding a new account to the database is allowed to take several
minutes. Deleting an account need have no time constraint, because from
the customer’s point of view all that matters is that all the money be re-
turned (equivalent to a withdrawal). From the bank’s point of view, the
account record might be removed from the database system after business
hours, or at the end of the monthly account cycle.

When considering the choice of data structure to use in the database
system that manages customer accounts, we see that a data structure that
has little concern for the cost of deletion, but is highly efficient for search
and moderately efficient for insertion, should meet the resource constraints
imposed by this problem. Records are accessible by unique account number
(sometimes called an exact-match query). One data structure that meets
these requirements is the hash table described in Chapter 9.4. Hash tables
allow for extremely fast exact-match search. A record can be modified
quickly when the modification does not affect its space requirements. Hash
tables also support efficient insertion of new records. While deletions can
also be supported efficiently, too many deletions lead to some degradation
in performance for the remaining operations. However, the hash table can
be reorganized periodically to restore the system to peak efficiency. Such
reorganization can occur offline so as not to affect ATM transactions.

Example 1.2 A company is developing a database system containing in-
formation about cities and towns in the United States. There are many
thousands of cities and towns, and the database program should allow users
to find information about a particular place by name (another example of
an exact-match query). Users should also be able to find all places that
match a particular value or range of values for attributes such as location or
population size. This is known as a range query.

A reasonable database system must answer queries quickly enough to
satisfy the patience of a typical user. For an exact-match query, a few sec-
onds is satisfactory. If the database is meant to support range queries that
can return many cities that match the query specification, the entire opera-
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tion may be allowed to take longer, perhaps on the order of a minute. To
meet this requirement, it will be necessary to support operations that pro-
cess range queries efficiently by processing all cities in the range as a batch,
rather than as a series of operations on individual cities.

The hash table suggested in the previous example is inappropriate for
implementing our city database, because it cannot perform efficient range
queries. The B -tree of Section 10.5.1 supports large databases, insertion
and deletion of data records, and range queries. However, a simple linear in-
dex as described in Section 10.1 would be more appropriate if the database
is created once, and then never changed, such as an atlas distributed on a
CD or accessed from a website.

1.2 Abstract Data Types and Data Structures

The previous section used the terms “data item” and “data structure” without prop-
erly defining them. This section presents terminology and motivates the design
process embodied in the three-step approach to selecting a data structure. This mo-
tivation stems from the need to manage the tremendous complexity of computer
programs.

A type is a collection of values. For example, the Boolean type consists of the
values true and false. The integers also form a type. An integer is a simple
type because its values contain no subparts. A bank account record will typically
contain several pieces of information such as name, address, account number, and
account balance. Such a record is an example of an aggregate type or composite
type. A data item is a piece of information or a record whose value is drawn from
atype. A data item is said to be a member of a type.

A data type is a type together with a collection of operations to manipulate
the type. For example, an integer variable is a member of the integer data type.
Addition is an example of an operation on the integer data type.

A distinction should be made between the logical concept of a data type and its
physical implementation in a computer program. For example, there are two tra-
ditional implementations for the list data type: the linked list and the array-based
list. The list data type can therefore be implemented using a linked list or an ar-
ray. Even the term “array” is ambiguous in that it can refer either to a data type
or an implementation. “Array” is commonly used in computer programming to
mean a contiguous block of memory locations, where each memory location stores
one fixed-length data item. By this meaning, an array is a physical data structure.
However, array can also mean a logical data type composed of a (typically ho-
mogeneous) collection of data items, with each data item identified by an index
number. It is possible to implement arrays in many different ways. For exam-
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ple, Section 12.2 describes the data structure used to implement a sparse matrix, a
large two-dimensional array that stores only a relatively few non-zero values. This
implementation is quite different from the physical representation of an array as
contiguous memory locations.

An abstract data type (ADT) is the realization of a data type as a software
component. The interface of the ADT is defined in terms of a type and a set of
operations on that type. The behavior of each operation is determined by its inputs
and outputs. An ADT does not specify how the data type is implemented. These
implementation details are hidden from the user of the ADT and protected from
outside access, a concept referred to as encapsulation.

A data structure is the implementation for an ADT. In an object-oriented lan-
guage such as C++, an ADT and its implementation together make up a class.
Each operation associated with the ADT is implemented by a member function or
method. The variables that define the space required by a data item are referred
to as data members. An object is an instance of a class, that is, something that is
created and takes up storage during the execution of a computer program.

The term “data structure” often refers to data stored in a computer’s main mem-
ory. The related term file structure often refers to the organization of data on
peripheral storage, such as a disk drive or CD.

Example 1.3 The mathematical concept of an integer, along with oper-
ations that manipulate integers, form a data type. The C++ int variable
type is a physical representation of the abstract integer. The int variable
type, along with the operations that act on an int variable, form an ADT.
Unfortunately, the int implementation is not completely true to the ab-
stract integer, as there are limitations on the range of values an int variable
can store. If these limitations prove unacceptable, then some other repre-
sentation for the ADT “integer” must be devised, and a new implementation
must be used for the associated operations.

Example 1.4 An ADT for a list of integers might specify the following
operations:

* Insert a new integer at a particular position in the list.

* Return true if the list is empty.

* Reinitialize the list.

¢ Return the number of integers currently in the list.

* Delete the integer at a particular position in the list.

From this description, the input and output of each operation should be
clear, but the implementation for lists has not been specified.
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One application that makes use of some ADT might use particular member
functions of that ADT more than a second application, or the two applications might
have different time requirements for the various operations. These differences in the
requirements of applications are the reason why a given ADT might be supported
by more than one implementation.

Example 1.5 Two popular implementations for large disk-based database
applications are hashing (Section 9.4) and the B -tree (Section 10.5). Both
support efficient insertion and deletion of records, and both support exact-
match queries. However, hashing is more efficient than the B -tree for
exact-match queries. On the other hand, the BT-tree can perform range
queries efficiently, while hashing is hopelessly inefficient for range queries.
Thus, if the database application limits searches to exact-match queries,
hashing is preferred. On the other hand, if the application requires support
for range queries, the B -tree is preferred. Despite these performance is-
sues, both implementations solve versions of the same problem: updating
and searching a large collection of records.

The concept of an ADT can help us to focus on key issues even in non-comp-
uting applications.

Example 1.6 When operating a car, the primary activities are steering,
accelerating, and braking. On nearly all passenger cars, you steer by turn-
ing the steering wheel, accelerate by pushing the gas pedal, and brake by
pushing the brake pedal. This design for cars can be viewed as an ADT
with operations “steer,” “accelerate,” and “brake.” Two cars might imple-
ment these operations in radically different ways, say with different types
of engine, or front- versus rear-wheel drive. Yet, most drivers can oper-
ate many different cars because the ADT presents a uniform method of
operation that does not require the driver to understand the specifics of any
particular engine or drive design. These differences are deliberately hidden.

The concept of an ADT is one instance of an important principle that must be
understood by any successful computer scientist: managing complexity through
abstraction. A central theme of computer science is complexity and techniques
for handling it. Humans deal with complexity by assigning a label to an assembly
of objects or concepts and then manipulating the label in place of the assembly.
Cognitive psychologists call such a label a metaphor. A particular label might be
related to other pieces of information or other labels. This collection can in turn be
given a label, forming a hierarchy of concepts and labels. This hierarchy of labels
allows us to focus on important issues while ignoring unnecessary details.
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Example 1.7 We apply the label “hard drive” to a collection of hardware
that manipulates data on a particular type of storage device, and we ap-
ply the label “CPU” to the hardware that controls execution of computer
instructions. These and other labels are gathered together under the label
“computer.” Because even the smallest home computers today have mil-
lions of components, some form of abstraction is necessary to comprehend
how a computer operates.

Consider how you might go about the process of designing a complex computer
program that implements and manipulates an ADT. The ADT is implemented in
one part of the program by a particular data structure. While designing those parts
of the program that use the ADT, you can think in terms of operations on the data
type without concern for the data structure’s implementation. Without this ability
to simplify your thinking about a complex program, you would have no hope of
understanding or implementing it.

Example 1.8 Consider the design for a relatively simple database system
stored on disk. Typically, records on disk in such a program are accessed
through a buffer pool (see Section 8.3) rather than directly. Variable length
records might use a memory manager (see Section 12.3) to find an appro-
priate location within the disk file to place the record. Multiple index struc-
tures (see Chapter 10) will typically be used to access records in various
ways. Thus, we have a chain of classes, each with its own responsibili-
ties and access privileges. A database query from a user is implemented
by searching an index structure. This index requests access to the record
by means of a request to the buffer pool. If a record is being inserted or
deleted, such a request goes through the memory manager, which in turn
interacts with the buffer pool to gain access to the disk file. A program such
as this is far too complex for nearly any human programmer to keep all of
the details in his or her head at once. The only way to design and imple-
ment such a program is through proper use of abstraction and metaphors.
In object-oriented programming, such abstraction is handled using classes.

Data types have both a logical and a physical form. The definition of the data
type in terms of an ADT is its logical form. The implementation of the data type as
a data structure is its physical form. Figure 1.1 illustrates this relationship between
logical and physical forms for data types. When you implement an ADT, you
are dealing with the physical form of the associated data type. When you use an
ADT elsewhere in your program, you are concerned with the associated data type’s
logical form. Some sections of this book focus on physical implementations for a
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Figure 1.1 The relationship between data items, abstract data types, and data
structures. The ADT defines the logical form of the data type. The data structure
implements the physical form of the data type.

given data structure. Other sections use the logical ADT for the data structure in
the context of a higher-level task.

Example 1.9 A particular C++ environment might provide a library that
includes a list class. The logical form of the list is defined by the public
functions, their inputs, and their outputs that define the class. This might be
all that you know about the list class implementation, and this should be all
you need to know. Within the class, a variety of physical implementations
for lists is possible. Several are described in Section 4.1.

1.3 Design Patterns

At a higher level of abstraction than ADTs are abstractions for describing the design
of programs — that is, the interactions of objects and classes. Experienced software
designers learn and reuse patterns for combining software components. These have
come to be referred to as design patterns.

A design pattern embodies and generalizes important design concepts for a
recurring problem. A primary goal of design patterns is to quickly transfer the
knowledge gained by expert designers to newer programmers. Another goal is
to allow for efficient communication between programmers. It is much easier to
discuss a design issue when you share a technical vocabulary relevant to the topic.

Specific design patterns emerge from the realization that a particular design
problem appears repeatedly in many contexts. They are meant to solve real prob-
lems. Design patterns are a bit like templates. They describe the structure for a
design solution, with the details filled in for any given problem. Design patterns
are a bit like data structures: Each one provides costs and benefits, which implies
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that tradeoffs are possible. Therefore, a given design pattern might have variations
on its application to match the various tradeoffs inherent in a given situation.

The rest of this section introduces a few simple design patterns that are used
later in the book.

1.3.1 Flyweight

The Flyweight design pattern is meant to solve the following problem. You have an
application with many objects. Some of these objects are identical in the informa-
tion that they contain, and the role that they play. But they must be reached from
various places, and conceptually they really are distinct objects. Because there is
so much duplication of the same information, we would like to take advantage of
the opportunity to reduce memory cost by sharing that space. An example comes
from representing the layout for a document. The letter “C” might reasonably be
represented by an object that describes that character’s strokes and bounding box.
However, we do not want to create a separate “C” object everywhere in the doc-
ument that a “C” appears. The solution is to allocate a single copy of the shared
representation for “C” objects. Then, every place in the document that needs a
“C” in a given font, size, and typeface will reference this single copy. The various
instances of references to a specific form of “C” are called flyweights.

We could describe the layout of text on a page by using a tree structure. The
root of the tree represents the entire page. The page has multiple child nodes, one
for each column. The column nodes have child nodes for each row. And the rows
have child nodes for each character. These representations for characters are the fly-
weights. The flyweight includes the reference to the shared shape information, and
might contain additional information specific to that instance. For example, each
instance for “C” will contain a reference to the shared information about strokes
and shapes, and it might also contain the exact location for that instance of the
character on the page.

Flyweights are used in the implementation for the PR quadtree data structure
for storing collections of point objects, described in Section 13.3. In a PR quadtree,
we again have a tree with leaf nodes. Many of these leaf nodes represent empty
areas, and so the only information that they store is the fact that they are empty.
These identical nodes can be implemented using a reference to a single instance of
the flyweight for better memory efficiency.

1.3.2 Visitor

Given a tree of objects to describe a page layout, we might wish to perform some
activity on every node in the tree. Section 5.2 discusses tree traversal, which is the
process of visiting every node in the tree in a defined order. A simple example for
our text composition application might be to count the number of nodes in the tree
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that represents the page. At another time, we might wish to print a listing of all the
nodes for debugging purposes.

We could write a separate traversal function for each such activity that we in-
tend to perform on the tree. A better approach would be to write a generic traversal
function, and pass in the activity to be performed at each node. This organization
constitutes the visitor design pattern. The visitor design pattern is used in Sec-
tions 5.2 (tree traversal) and 11.3 (graph traversal).

1.3.3 Composite

There are two fundamental approaches to dealing with the relationship between
a collection of actions and a hierarchy of object types. First consider the typical
procedural approach. Say we have a base class for page layout entities, with a sub-
class hierarchy to define specific subtypes (page, columns, rows, figures, charac-
ters, etc.). And say there are actions to be performed on a collection of such objects
(such as rendering the objects to the screen). The procedural design approach is for
each action to be implemented as a method that takes as a parameter a pointer to
the base class type. Each action such method will traverse through the collection
of objects, visiting each object in turn. Each action method contains something
like a switch statement that defines the details of the action for each subclass in the
collection (e.g., page, column, row, character). We can cut the code down some by
using the visitor design pattern so that we only need to write the traversal once, and
then write a visitor subroutine for each action that might be applied to the collec-
tion of objects. But each such visitor subroutine must still contain logic for dealing
with each of the possible subclasses.

In our page composition application, there are only a few activities that we
would like to perform on the page representation. We might render the objects in
full detail. Or we might want a “rough draft” rendering that prints only the bound-
ing boxes of the objects. If we come up with a new activity to apply to the collection
of objects, we do not need to change any of the code that implements the existing
activities. But adding new activities won’t happen often for this application. In
contrast, there could be many object types, and we might frequently add new ob-
ject types to our implementation. Unfortunately, adding a new object type requires
that we modify each activity, and the subroutines implementing the activities get
rather long switch statements to distinguish the behavior of the many subclasses.

An alternative design is to have each object subclass in the hierarchy embody
the action for each of the various activities that might be performed. Each subclass
will have code to perform each activity (such as full rendering or bounding box
rendering). Then, if we wish to apply the activity to the collection, we simply call
the first object in the collection and specify the action (as a method call on that
object). In the case of our page layout and its hierarchical collection of objects,
those objects that contain other objects (such as a row objects that contains letters)
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will call the appropriate method for each child. If we want to add a new activity
with this organization, we have to change the code for every subclass. But this is
relatively rare for our text compositing application. In contrast, adding a new object
into the subclass hierarchy (which for this application is far more likely than adding
anew rendering function) is easy. Adding a new subclass does not require changing
any of the existing subclasses. It merely requires that we define the behavior of each
activity that can be performed on the new subclass.

This second design approach of burying the functional activity in the subclasses
is called the Composite design pattern. A detailed example for using the Composite
design pattern is presented in Section 5.3.1.

1.3.4 Strategy

Our final example of a design pattern lets us encapsulate and make interchangeable
a set of alternative actions that might be performed as part of some larger activity.
Again continuing our text compositing example, each output device that we wish
to render to will require its own function for doing the actual rendering. That is,
the objects will be broken down into constituent pixels or strokes, but the actual
mechanics of rendering a pixel or stroke will depend on the output device. We
don’t want to build this rendering functionality into the object subclasses. Instead,
we want to pass to the subroutine performing the rendering action a method or class
that does the appropriate rendering details for that output device. That is, we wish
to hand to the object the appropriate “strategy” for accomplishing the details of the
rendering task. Thus, this approach is called the Strategy design pattern.

The Strategy design pattern will be discussed further in Chapter 7. There, a
sorting function is given a class (called a comparator) that understands how to
extract and compare the key values for records to be sorted. In this way, the sorting
function does not need to know any details of how its record type is implemented.

One of the biggest challenges to understanding design patterns is that some-
times one is only subtly different from another. For example, you might be con-
fused about the difference between the composite pattern and the visitor pattern.
The distinction is that the composite design pattern is about whether to give control
of the traversal process to the nodes of the tree or to the tree itself. Both approaches
can make use of the visitor design pattern to avoid rewriting the traversal function
many times, by encapsulating the activity performed at each node.

But isn’t the strategy design pattern doing the same thing? The difference be-
tween the visitor pattern and the strategy pattern is more subtle. Here the difference
is primarily one of intent and focus. In both the strategy design pattern and the visi-
tor design pattern, an activity is being passed in as a parameter. The strategy design
pattern is focused on encapsulating an activity that is part of a larger process, so
that different ways of performing that activity can be substituted. The visitor de-
sign pattern is focused on encapsulating an activity that will be performed on all
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members of a collection so that completely different activities can be substituted
within a generic method that accesses all of the collection members.

1.4 Problems, Algorithms, and Programs

Programmers commonly deal with problems, algorithms, and computer programs.
These are three distinct concepts.

Problems: As your intuition would suggest, a problem is a task to be performed.
It is best thought of in terms of inputs and matching outputs. A problem definition
should not include any constraints on #ow the problem is to be solved. The solution
method should be developed only after the problem is precisely defined and thor-
oughly understood. However, a problem definition should include constraints on
the resources that may be consumed by any acceptable solution. For any problem
to be solved by a computer, there are always such constraints, whether stated or
implied. For example, any computer program may use only the main memory and
disk space available, and it must run in a “reasonable” amount of time.

Problems can be viewed as functions in the mathematical sense. A function
is a matching between inputs (the domain) and outputs (the range). An input
to a function might be a single value or a collection of information. The values
making up an input are called the parameters of the function. A specific selection
of values for the parameters is called an instance of the problem. For example,
the input parameter to a sorting function might be an array of integers. A particular
array of integers, with a given size and specific values for each position in the array,
would be an instance of the sorting problem. Different instances might generate the
same output. However, any problem instance must always result in the same output
every time the function is computed using that particular input.

This concept of all problems behaving like mathematical functions might not
match your intuition for the behavior of computer programs. You might know of
programs to which you can give the same input value on two separate occasions,
and two different outputs will result. For example, if you type “date” to a typical
UNIX command line prompt, you will get the current date. Naturally the date will
be different on different days, even though the same command is given. However,
there is obviously more to the input for the date program than the command that you
type to run the program. The date program computes a function. In other words,
on any particular day there can only be a single answer returned by a properly
running date program on a completely specified input. For all computer programs,
the output is completely determined by the program’s full set of inputs. Even a
“random number generator” is completely determined by its inputs (although some
random number generating systems appear to get around this by accepting a random
input from a physical process beyond the user’s control). The relationship between
programs and functions is explored further in Section 17.3.
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Algorithms: An algorithm is a method or a process followed to solve a problem.
If the problem is viewed as a function, then an algorithm is an implementation for
the function that transforms an input to the corresponding output. A problem can be
solved by many different algorithms. A given algorithm solves only one problem
(i.e., computes a particular function). This book covers many problems, and for
several of these problems I present more than one algorithm. For the important
problem of sorting I present nearly a dozen algorithms!

The advantage of knowing several solutions to a problem is that solution A
might be more efficient than solution B for a specific variation of the problem,
or for a specific class of inputs to the problem, while solution B might be more
efficient than A for another variation or class of inputs. For example, one sorting
algorithm might be the best for sorting a small collection of integers (which is
important if you need to do this many times). Another might be the best for sorting
a large collection of integers. A third might be the best for sorting a collection of
variable-length strings.

By definition, something can only be called an algorithm if it has all of the
following properties.

1. It must be correct. In other words, it must compute the desired function,
converting each input to the correct output. Note that every algorithm im-
plements some function, because every algorithm maps every input to some
output (even if that output is a program crash). At issue here is whether a
given algorithm implements the intended function.

2. It is composed of a series of concrete steps. Concrete means that the action
described by that step is completely understood — and doable — by the
person or machine that must perform the algorithm. Each step must also be
doable in a finite amount of time. Thus, the algorithm gives us a “recipe” for
solving the problem by performing a series of steps, where each such step
is within our capacity to perform. The ability to perform a step can depend
on who or what is intended to execute the recipe. For example, the steps of
a cookie recipe in a cookbook might be considered sufficiently concrete for
instructing a human cook, but not for programming an automated cookie-
making factory.

3. There can be no ambiguity as to which step will be performed next. Often it
is the next step of the algorithm description. Selection (e.g., the i f statement
in C++) is normally a part of any language for describing algorithms. Selec-
tion allows a choice for which step will be performed next, but the selection
process is unambiguous at the time when the choice is made.

4. It must be composed of a finite number of steps. If the description for the alg-
orithm were made up of an infinite number of steps, we could never hope to
write it down, nor implement it as a computer program. Most languages for
describing algorithms (including English and “pseudocode”) provide some
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way to perform repeated actions, known as iteration. Examples of iteration
in programming languages include the while and for loop constructs of
C++. Iteration allows for short descriptions, with the number of steps actu-
ally performed controlled by the input.

5. It must terminate. In other words, it may not go into an infinite loop.

Programs: We often think of a computer program as an instance, or concrete
representation, of an algorithm in some programming language. In this book,
nearly all of the algorithms are presented in terms of programs, or parts of pro-
grams. Naturally, there are many programs that are instances of the same alg-
orithm, because any modern computer programming language can be used to im-
plement the same collection of algorithms (although some programming languages
can make life easier for the programmer). To simplify presentation, I often use
the terms “algorithm” and “program” interchangeably, despite the fact that they are
really separate concepts. By definition, an algorithm must provide sufficient detail
that it can be converted into a program when needed.

The requirement that an algorithm must terminate means that not all computer
programs meet the technical definition of an algorithm. Your operating system is
one such program. However, you can think of the various tasks for an operating sys-
tem (each with associated inputs and outputs) as individual problems, each solved
by specific algorithms implemented by a part of the operating system program, and
each one of which terminates once its output is produced.

To summarize: A problem is a function or a mapping of inputs to outputs.
An algorithm is a recipe for solving a problem whose steps are concrete and un-
ambiguous. Algorithms must be correct, of finite length, and must terminate for all
inputs. A program is an instantiation of an algorithm in a programming language.

1.5 Further Reading

An early authoritative work on data structures and algorithms was the series of
books The Art of Computer Programming by Donald E. Knuth, with Volumes 1
and 3 being most relevant to the study of data structures [Knu97, Knu98]. A mod-
ern encyclopedic approach to data structures and algorithms that should be easy
to understand once you have mastered this book is Algorithms by Robert Sedge-
wick [Sed11]. For an excellent and highly readable (but more advanced) teaching
introduction to algorithms, their design, and their analysis, see Introduction to Al-
gorithms: A Creative Approach by Udi Manber [Man89]. For an advanced, en-
cyclopedic approach, see Introduction to Algorithms by Cormen, Leiserson, and
Rivest [CLRS09]. Steven S. Skiena’s The Algorithm Design Manual [Skil0] pro-
vides pointers to many implementations for data structures and algorithms that are
available on the Web.
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The claim that all modern programming languages can implement the same
algorithms (stated more precisely, any function that is computable by one program-
ming language is computable by any programming language with certain standard
capabilities) is a key result from computability theory. For an easy introduction to
this field see James L. Hein, Discrete Structures, Logic, and Computability [Hei09].

Much of computer science is devoted to problem solving. Indeed, this is what
attracts many people to the field. How to Solve It by George Polya [P6157] is con-
sidered to be the classic work on how to improve your problem-solving abilities. If
you want to be a better student (as well as a better problem solver in general), see
Strategies for Creative Problem Solving by Folger and LeBlanc [FL95], Effective
Problem Solving by Marvin Levine [Lev94], and Problem Solving & Comprehen-
sion by Arthur Whimbey and Jack Lochhead [WL99], and Puzzle-Based Learning
by Zbigniew and Matthew Michaelewicz [MMOS].

See The Origin of Consciousness in the Breakdown of the Bicameral Mind by
Julian Jaynes [Jay90] for a good discussion on how humans use the concept of
metaphor to handle complexity. More directly related to computer science educa-
tion and programming, see “Cogito, Ergo Sum! Cognitive Processes of Students
Dealing with Data Structures” by Dan Aharoni [Aha(00] for a discussion on mov-
ing from programming-context thinking to higher-level (and more design-oriented)
programming-free thinking.

On a more pragmatic level, most people study data structures to write better
programs. If you expect your program to work correctly and efficiently, it must
first be understandable to yourself and your co-workers. Kernighan and Pike’s The
Practice of Programming [KP99] discusses a number of practical issues related to
programming, including good coding and documentation style. For an excellent
(and entertaining!) introduction to the difficulties involved with writing large pro-
grams, read the classic The Mythical Man-Month: Essays on Software Engineering
by Frederick P. Brooks [Bro95].

If you want to be a successful C++ programmer, you need good reference
manuals close at hand. The standard reference for C++ is The C++ Program-
ming Language by Bjarne Stroustrup [Str00], with further information provided in
The Annotated C++ Reference Manual by Ellis and Stroustrup [ES90]. No C++
programmer should be without Stroustrup’s book, as it provides the definitive de-
scription of the language and also includes a great deal of information about the
principles of object-oriented design. Unfortunately, it is a poor text for learning
how to program in C++. A good, gentle introduction to the basics of the language
is Patrick Henry Winston’s On to C++ [Win94]. A good introductory teaching text
for a wider range of C++ is Deitel and Deitel’s C++ How to Program [DDO0S].

After gaining proficiency in the mechanics of program writing, the next step
is to become proficient in program design. Good design is difficult to learn in any
discipline, and good design for object-oriented software is one of the most difficult
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of arts. The novice designer can jump-start the learning process by studying well-
known and well-used design patterns. The classic reference on design patterns
is Design Patterns: Elements of Reusable Object-Oriented Software by Gamma,
Helm, Johnson, and Vlissides [GHIV95] (this is commonly referred to as the “gang
of four” book). Unfortunately, this is an extremely difficult book to understand,
in part because the concepts are inherently difficult. A number of Web sites are
available that discuss design patterns, and which provide study guides for the De-
sign Patterns book. Two other books that discuss object-oriented software design
are Object-Oriented Software Design and Construction with C++ by Dennis Ka-
fura [Kaf98], and Object-Oriented Design Heuristics by Arthur J. Riel [Rie96].

1.6 Exercises

The exercises for this chapter are different from those in the rest of the book. Most
of these exercises are answered in the following chapters. However, you should
not look up the answers in other parts of the book. These exercises are intended to
make you think about some of the issues to be covered later on. Answer them to
the best of your ability with your current knowledge.

1.1 Think of a program you have used that is unacceptably slow. Identify the spe-
cific operations that make the program slow. Identify other basic operations
that the program performs quickly enough.

1.2 Most programming languages have a built-in integer data type. Normally
this representation has a fixed size, thus placing a limit on how large a value
can be stored in an integer variable. Describe a representation for integers
that has no size restriction (other than the limits of the computer’s available
main memory), and thus no practical limit on how large an integer can be
stored. Briefly show how your representation can be used to implement the
operations of addition, multiplication, and exponentiation.

1.3 Define an ADT for character strings. Your ADT should consist of typical
functions that can be performed on strings, with each function defined in
terms of its input and output. Then define two different physical representa-
tions for strings.

1.4 Define an ADT for a list of integers. First, decide what functionality your
ADT should provide. Example 1.4 should give you some ideas. Then, spec-
ify your ADT in C++ in the form of an abstract class declaration, showing
the functions, their parameters, and their return types.

1.5 Briefly describe how integer variables are typically represented on a com-
puter. (Look up one’s complement and two’s complement arithmetic in an
introductory computer science textbook if you are not familiar with these.)
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1.6

1.7

1.8

1.9
1.10
1.11

1.12

1.13

1.14

Why does this representation for integers qualify as a data structure as de-
fined in Section 1.27
Define an ADT for a two-dimensional array of integers. Specify precisely
the basic operations that can be performed on such arrays. Next, imagine an
application that stores an array with 1000 rows and 1000 columns, where less
than 10,000 of the array values are non-zero. Describe two different imple-
mentations for such arrays that would be more space efficient than a standard
two-dimensional array implementation requiring one million positions.
Imagine that you have been assigned to implement a sorting program. The
goal is to make this program general purpose, in that you don’t want to define
in advance what record or key types are used. Describe ways to generalize
a simple sorting algorithm (such as insertion sort, or any other sort you are
familiar with) to support this generalization.
Imagine that you have been assigned to implement a simple sequential search
on an array. The problem is that you want the search to be as general as pos-
sible. This means that you need to support arbitrary record and key types.
Describe ways to generalize the search function to support this goal. Con-
sider the possibility that the function will be used multiple times in the same
program, on differing record types. Consider the possibility that the func-
tion will need to be used on different keys (possibly with the same or differ-
ent types) of the same record. For example, a student data record might be
searched by zip code, by name, by salary, or by GPA.
Does every problem have an algorithm?
Does every algorithm have a C++ program?
Consider the design for a spelling checker program meant to run on a home
computer. The spelling checker should be able to handle quickly a document
of less than twenty pages. Assume that the spelling checker comes with a
dictionary of about 20,000 words. What primitive operations must be imple-
mented on the dictionary, and what is a reasonable time constraint for each
operation?
Imagine that you have been hired to design a database service containing
information about cities and towns in the United States, as described in Ex-
ample 1.2. Suggest two possible implementations for the database.
Imagine that you are given an array of records that is sorted with respect to
some key field contained in each record. Give two different algorithms for
searching the array to find the record with a specified key value. Which one
do you consider “better” and why?
How would you go about comparing two proposed algorithms for sorting an
array of integers? In particular,

(a) What would be appropriate measures of cost to use as a basis for com-

paring the two sorting algorithms?
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1.15

1.16

1.17

1.18

1.19

1.20
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(b) What tests or analysis would you conduct to determine how the two
algorithms perform under these cost measures?

A common problem for compilers and text editors is to determine if the
parentheses (or other brackets) in a string are balanced and properly nested.
For example, the string “((())())()” contains properly nested pairs of paren-
theses, but the string “)()(” does not; and the string “())” does not contain
properly matching parentheses.

(a) Give an algorithm that returns true if a string contains properly nested
and balanced parentheses, and false if otherwise. Hint: At no time
while scanning a legal string from left to right will you have encoun-
tered more right parentheses than left parentheses.

(b) Give an algorithm that returns the position in the string of the first of-
fending parenthesis if the string is not properly nested and balanced.
That is, if an excess right parenthesis is found, return its position; if
there are too many left parentheses, return the position of the first ex-
cess left parenthesis. Return —1 if the string is properly balanced and
nested.

A graph consists of a set of objects (called vertices) and a set of edges, where
each edge connects two vertices. Any given pair of vertices can be connected
by only one edge. Describe at least two different ways to represent the con-
nections defined by the vertices and edges of a graph.

Imagine that you are a shipping clerk for a large company. You have just
been handed about 1000 invoices, each of which is a single sheet of paper
with a large number in the upper right corner. The invoices must be sorted by
this number, in order from lowest to highest. Write down as many different
approaches to sorting the invoices as you can think of.

How would you sort an array of about 1000 integers from lowest value to
highest value? Write down at least five approaches to sorting the array. Do
not write algorithms in C++ or pseudocode. Just write a sentence or two for
each approach to describe how it would work.

Think of an algorithm to find the maximum value in an (unsorted) array.
Now, think of an algorithm to find the second largest value in the array.
Which is harder to implement? Which takes more time to run (as measured
by the number of comparisons performed)? Now, think of an algorithm to
find the third largest value. Finally, think of an algorithm to find the middle
value. Which is the most difficult of these problems to solve?

An unsorted list allows for constant-time insert by adding a new element at
the end of the list. Unfortunately, searching for the element with key value X
requires a sequential search through the unsorted list until X is found, which
on average requires looking at half the list element. On the other hand, a
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sorted array-based list of n elements can be searched in logn time with a
binary search. Unfortunately, inserting a new element requires a lot of time
because many elements might be shifted in the array if we want to keep it
sorted. How might data be organized to support both insertion and search in
log n time?






2

Mathematical Preliminaries

This chapter presents mathematical notation, background, and techniques used
throughout the book. This material is provided primarily for review and reference.
You might wish to return to the relevant sections when you encounter unfamiliar
notation or mathematical techniques in later chapters.

Section 2.7 on estimation might be unfamiliar to many readers. Estimation is
not a mathematical technique, but rather a general engineering skill. It is enor-
mously useful to computer scientists doing design work, because any proposed
solution whose estimated resource requirements fall well outside the problem’s re-
source constraints can be discarded immediately, allowing time for greater analysis
of more promising solutions.

2.1 Sets and Relations

The concept of a set in the mathematical sense has wide application in computer
science. The notations and techniques of set theory are commonly used when de-
scribing and implementing algorithms because the abstractions associated with sets
often help to clarify and simplify algorithm design.

A set is a collection of distinguishable members or elements. The members
are typically drawn from some larger population known as the base type. Each
member of a set is either a primitive element of the base type or is a set itself.
There is no concept of duplication in a set. Each value from the base type is either
in the set or not in the set. For example, a set named P might consist of the three
integers 7, 11, and 42. In this case, P’s members are 7, 11, and 42, and the base
type is integer.

Figure 2.1 shows the symbols commonly used to express sets and their rela-
tionships. Here are some examples of this notation in use. First define two sets, P
and Q.

P={2 3,5}, Q= {5,10}.

25
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{1, 4} A set composed of the members 1 and 4
{x|x is a positive integer} | A set definition using a set former
Example: the set of all positive integers

xeP x is a member of set P
x¢P x is not a member of set P
1] The null or empty set
P Cardinality: size of set P
or number of members for set P
PCQQDP Set P is included in set Q,

set P is a subset of set Q,
set Q is a superset of set P

PuaQ Set Union:

all elements appearing in P OR Q
PnQ Set Intersection:

all elements appearing in P AND Q
P-Q Set difference:

all elements of set P NOT in set Q

Figure 2.1 Set notation.

|P| = 3 (because P has three members) and |Q| = 2 (because Q has two members).
The union of P and Q, written P U Q, is the set of elements in either P or Q, which
is {2, 3, 5, 10}. The intersection of P and Q, written P N Q, is the set of elements
that appear in both P and Q, which is {5}. The set difference of P and Q, written
P — Q, is the set of elements that occur in P but not in Q, which is {2, 3}. Note
that PUQ = QUPand that PN Q = QN P, but in general P — Q # Q — P.
In this example, Q — P = {10}. Note that the set {4,3,5} is indistinguishable
from set P, because sets have no concept of order. Likewise, set {4,3,4,5} is also
indistinguishable from P, because sets have no concept of duplicate elements.

The powerset of a set S is the set of all possible subsets for S. Consider the set
S = {a, b, c}. The powerset of S is

{0, {a}, {0}, {c}, {a,0}, {a, ¢}, {b,¢}, {a,b,c}}.

A collection of elements with no order (like a set), but with duplicate-valued el-
ements is called a bag.! To distinguish bags from sets, I use square brackets []
around a bag’s elements. For example, bag [3, 4, 5, 4] is distinct from bag [3, 4, 5],
while set {3,4,5,4} is indistinguishable from set {3, 4, 5}. However, bag [3, 4, 5,
4] is indistinguishable from bag [3, 4, 4, 5].

'The object referred to here as a bag is sometimes called a multilist. But, I reserve the term
multilist for a list that may contain sublists (see Section 12.1).
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A sequence is a collection of elements with an order, and which may contain
duplicate-valued elements. A sequence is also sometimes called a tuple or a vec-
tor. In a sequence, there is a Oth element, a 1st element, 2nd element, and so
on. I indicate a sequence by using angle brackets () to enclose its elements. For
example, (3,4, 5,4) is a sequence. Note that sequence (3,5, 4,4) is distinct from
sequence (3,4, 5, 4), and both are distinct from sequence (3, 4, 5).

A relation R over set S is a set of ordered pairs from S. As an example of a
relation, if S is {a, b, ¢}, then

{{a; ¢}, (b, ¢), {c;b)}

is a relation, and
{(a,a), (a,c), (b,b), (b, c), {c,c)}

is a different relation. If tuple (x, y) is in relation R, we may use the infix notation
xRy. We often use relations such as the less than operator (<) on the natural
numbers, which includes ordered pairs such as (1, 3) and (2, 23), but not (3, 2) or
(2,2). Rather than writing the relationship in terms of ordered pairs, we typically
use an infix notation for such relations, writing 1 < 3.

Define the properties of relations as follows, with R a binary relation over set S.

¢ Risreflexive if aRa for all a € S.

* R is symmetric if whenever a Rb, then bRa, for all a,b € S.

* R is antisymmetric if whenever a Rb and bRa, then a = b, for all a,b € S.
* R is transitive if whenever a Rb and bRc, then aRc, for all a, b, c € S.

As examples, for the natural numbers, < is antisymmetric (because there is
no case where aRb and bRa) and transitive; < is reflexive, antisymmetric, and
transitive, and = is reflexive, symmetric (and antisymmetric!), and transitive. For
people, the relation “is a sibling of” is symmetric and transitive. If we define a
person to be a sibling of himself, then it is reflexive; if we define a person not to be
a sibling of himself, then it is not reflexive.

R is an equivalence relation on set S if it is reflexive, symmetric, and transitive.
An equivalence relation can be used to partition a set into equivalence classes. If
two elements a and b are equivalent to each other, we write @ = b. A partition of
a set S is a collection of subsets that are disjoint from each other and whose union
is S. An equivalence relation on set S partitions the set into subsets whose elements
are equivalent. See Section 6.2 for a discussion on how to represent equivalence
classes on a set. One application for disjoint sets appears in Section 11.5.2.

Example 2.1 For the integers, = is an equivalence relation that partitions
each element into a distinct subset. In other words, for any integer a, three
things are true.

1. a=a,
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2. ifa = bthen b = a, and
3.ifa=band b = ¢, thena = c.
Of course, for distinct integers a, b, and c there are never cases where
a =b,b = a,or b= c. So the claims that = is symmetric and transitive are
vacuously true (there are never examples in the relation where these events
occur). But because the requirements for symmetry and transitivity are not
violated, the relation is symmetric and transitive.

Example 2.2 If we clarify the definition of sibling to mean that a person
is a sibling of him- or herself, then the sibling relation is an equivalence
relation that partitions the set of people.

Example 2.3 We can use the modulus function (defined in the next sec-
tion) to define an equivalence relation. For the set of integers, use the mod-
ulus function to define a binary relation such that two numbers = and y are
in the relation if and only if x mod m = y mod m. Thus, for m = 4,
(1,5) is in the relation because 1 mod 4 = 5 mod 4. We see that modulus
used in this way defines an equivalence relation on the integers, and this re-
lation can be used to partition the integers into m equivalence classes. This
relation is an equivalence relation because

1. £ mod m =  mod m for all z;

2. if x mod m = y mod m, then y mod m = x mod m; and

3. if z mod m = y mod m and y mod m = z mod m, then & mod

m = z mod m.

A binary relation is called a partial order if it is antisymmetric and transitive.?
The set on which the partial order is defined is called a partially ordered set or a
poset. Elements x and y of a set are comparable under a given relation if either
xRy or yRz. If every pair of distinct elements in a partial order are comparable,
then the order is called a total order or linear order.

Example 2.4 For the integers, relations < and < define partial orders.
Operation < is a total order because, for every pair of integers x and y such
that x # y, either x < y or y < x. Likewise, < is a total order because, for
every pair of integers = and y such that x # y, either x < y ory < .

Not all authors use this definition for partial order. T have seen at least three significantly different
definitions in the literature. I have selected the one that lets < and < both define partial orders on the
integers, because this seems the most natural to me.



Sec. 2.2 Miscellaneous Notation 29

Example 2.5 For the powerset of the integers, the subset operator defines
a partial order (because it is antisymmetric and transitive). For example,
{1,2} C{1,2,3}. However, sets {1,2} and {1, 3} are not comparable by
the subset operator, because neither is a subset of the other. Therefore, the
subset operator does not define a total order on the powerset of the integers.

2.2 Miscellaneous Notation

Units of measure: I use the following notation for units of measure. “B” will
be used as an abbreviation for bytes, “b” for bits, “KB” for kilobytes (2'0 =
1024 bytes), “MB” for megabytes (220 bytes), “GB” for gigabytes (23° bytes), and
“ms” for milliseconds (a millisecond is ﬁ of a second). Spaces are not placed be-
tween the number and the unit abbreviation when a power of two is intended. Thus
a disk drive of size 25 gigabytes (where a gigabyte is intended as 23 bytes) will be
written as “25GB.” Spaces are used when a decimal value is intended. An amount
of 2000 bits would therefore be written ‘2 Kb while “2Kb” represents 2048 bits.
2000 milliseconds is written as 2000 ms. Note that in this book large amounts of
storage are nearly always measured in powers of two and times in powers of ten.

Factorial function: The factorial function, written n! for n an integer greater
than 0, is the product of the integers between 1 and n, inclusive. Thus, 5! =
1-2-3-4-5 = 120. As a special case, 0! = 1. The factorial function grows
quickly as n becomes larger. Because computing the factorial function directly
is a time-consuming process, it can be useful to have an equation that provides a
good approximation. Stirling’s approximation states that n! ~ v/27n(2)", where
e ~ 2.71828 (e is the base for the system of natural logarithms).? Thus we see that
while n! grows slower than n” (because v/27n/e™ < 1), it grows faster than ¢" for
any positive integer constant c.

Permutations: A permutation of a sequence S is simply the members of S ar-
ranged in some order. For example, a permutation of the integers 1 through n
would be those values arranged in some order. If the sequence contains n distinct
members, then there are n! different permutations for the sequence. This is because
there are n choices for the first member in the permutation; for each choice of first
member there are n — 1 choices for the second member, and so on. Sometimes
one would like to obtain a random permutation for a sequence, that is, one of the
n! possible permutations is selected in such a way that each permutation has equal
probability of being selected. A simple C++ function for generating a random per-
mutation is as follows. Here, the n values of the sequence are stored in positions 0

3The symbol “~” means “approximately equal.”
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through n — 1 of array A, function swap (A, i, 3j) exchanges elements i and
j in array A, and Random (n) returns an integer value in the range 0 ton — 1 (see
the Appendix for more information on swap and Random).

// Randomly permute the "n" values of array "A"
template<typename E>
void permute(E A[], int n) {
for (int i=n; i>0; i--)
swap (A, i-1, Random(i));

Boolean variables: A Boolean variable is a variable (of type bool in C++)
that takes on one of the two values true and false. These two values are often
associated with the values 1 and 0, respectively, although there is no reason why
this needs to be the case. It is poor programming practice to rely on the corre-
spondence between 0 and false, because these are logically distinct objects of
different types.

Logic Notation: We will occasionally make use of the notation of symbolic or
Boolean logic. A = B means “A implies B” or “If A then B.” A < B means “A
if and only if B” or “A is equivalent to B.” A V B means “A or B” (useful both in
the context of symbolic logic or when performing a Boolean operation). A A B
means “A and B.” ~ A and A both mean “not A” or the negation of A where A is a
Boolean variable.

Floor and ceiling: The floor of = (written |x |) takes real value x and returns the
greatest integer < x. For example, |3.4] = 3, as does |3.0|, while [—3.4] = —4
and |—3.0] = —3. The ceiling of = (written [z]) takes real value = and returns
the least integer > z. For example, [3.4] = 4, as does [4.0], while [—3.4] =
[—3.0] = -3.

Modulus operator: The modulus (or mod) function returns the remainder of an
integer division. Sometimes written n mod m in mathematical expressions, the
syntax for the C++ modulus operator isn % m. From the definition of remainder,
n mod m is the integer r such that n = gm + r for ¢ an integer, and |r| < |m)|.
Therefore, the result of n mod m must be between 0 and m — 1 when n and m are
positive integers. For example, 5 mod 3 = 2; 25 mod 3 = 1, 5 mod 7 = 5, and
5 mod 5 = 0.

There is more than one way to assign values to ¢ and r, depending on how in-
teger division is interpreted. The most common mathematical definition computes
the mod function as n mod m = n — m|n/m|. In this case, —3 mod 5 = 2.
However, Java and C++ compilers typically use the underlying processor’s ma-
chine instruction for computing integer arithmetic. On many computers this is done
by truncating the resulting fraction, meaning n mod m = n — m(trunc(n/m)).
Under this definition, —3 mod 5 = —3.
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Unfortunately, for many applications this is not what the user wants or expects.
For example, many hash systems will perform some computation on a record’s key
value and then take the result modulo the hash table size. The expectation here
would be that the result is a legal index into the hash table, not a negative number.
Implementers of hash functions must either insure that the result of the computation
is always positive, or else add the hash table size to the result of the modulo function
when that result is negative.

2.3 Logarithms

A logarithm of base b for value y is the power to which b is raised to get y. Nor-
mally, this is written as log, y = x. Thus, if log, y = x then b* = g, and b/°%Y =y,
Logarithms are used frequently by programmers. Here are two typical uses.

Example 2.6 Many programs require an encoding for a collection of ob-
jects. What is the minimum number of bits needed to represent n distinct
code values? The answer is [log, n] bits. For example, if you have 1000
codes to store, you will require at least [log, 1000] = 10 bits to have 1000
different codes (10 bits provide 1024 distinct code values).

Example 2.7 Consider the binary search algorithm for finding a given
value within an array sorted by value from lowest to highest. Binary search
first looks at the middle element and determines if the value being searched
for is in the upper half or the lower half of the array. The algorithm then
continues splitting the appropriate subarray in half until the desired value
is found. (Binary search is described in more detail in Section 3.5.) How
many times can an array of size n be split in half until only one element
remains in the final subarray? The answer is [log, 1| times.

In this book, nearly all logarithms used have a base of two. This is because
data structures and algorithms most often divide things in half, or store codes with
binary bits. Whenever you see the notation log n in this book, either log, n is meant
or else the term is being used asymptotically and so the actual base does not matter.
Logarithms using any base other than two will show the base explicitly.

Logarithms have the following properties, for any positive values of m, n, and
r, and any positive integers a and b.

1. log(nm) = logn + log m.
2. log(n/m) = logn — logm.
3. log(n") = rlogn.

4. log, n = log, n/log, a.
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The first two properties state that the logarithm of two numbers multiplied (or
divided) can be found by adding (or subtracting) the logarithms of the two num-
bers.* Property (3) is simply an extension of property (1). Property (4) tells us that,
for variable n and any two integer constants a and b, log, n and logy n differ by
the constant factor logy, a, regardless of the value of ». Most runtime analyses in
this book are of a type that ignores constant factors in costs. Property (4) says that
such analyses need not be concerned with the base of the logarithm, because this
can change the total cost only by a constant factor. Note that 21°8™ = .

When discussing logarithms, exponents often lead to confusion. Property (3)
tells us that logn? = 2logn. How do we indicate the square of the logarithm
(as opposed to the logarithm of n?)? This could be written as (logn)?, but it is
traditional to use log? nn. On the other hand, we might want to take the logarithm of
the logarithm of n. This is written log log n.

A special notation is used in the rare case when we need to know how many
times we must take the log of a number before we reach a value < 1. This quantity
is written log™ n. For example, log* 1024 = 4 because log 1024 = 10, log 10 =~
3.33,10g 3.33 = 1.74, and log 1.74 < 1, which is a total of 4 log operations.

2.4 Summations and Recurrences

Most programs contain loop constructs. When analyzing running time costs for
programs with loops, we need to add up the costs for each time the loop is executed.
This is an example of a summation. Summations are simply the sum of costs for
some function applied to a range of parameter values. Summations are typically
written with the following “Sigma” notation:

> 1)

This notation indicates that we are summing the value of f(i) over some range of
(integer) values. The parameter to the expression and its initial value are indicated
below the > symbol. Here, the notation ¢ = 1 indicates that the parameter is ¢ and
that it begins with the value 1. At the top of the > symbol is the expression n. This
indicates the maximum value for the parameter 7. Thus, this notation means to sum
the values of f(i) as i ranges across the integers from 1 through 7. This can also be

“These properties are the idea behind the slide rule. Adding two numbers can be viewed as joining
two lengths together and measuring their combined length. Multiplication is not so easily done.
However, if the numbers are first converted to the lengths of their logarithms, then those lengths can
be added and the inverse logarithm of the resulting length gives the answer for the multiplication (this
is simply logarithm property (1)). A slide rule measures the length of the logarithm for the numbers,
lets you slide bars representing these lengths to add up the total length, and finally converts this total
length to the correct numeric answer by taking the inverse of the logarithm for the result.
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written f(1) + f(2) +--- 4+ f(n — 1) + f(n). Within a sentence, Sigma notation
is typeset as » ., f(1).

Given a summation, you often wish to replace it with an algebraic equation
with the same value as the summation. This is known as a closed-form solution,
and the process of replacing the summation with its closed-form solution is known
as solving the summation. For example, the summation ;" ; 1 is simply the ex-
pression “1” summed n times (remember that ¢ ranges from 1 to n). Because the
sum of n 1s is n, the closed-form solution is n. The following is a list of useful
summations, along with their closed-form solutions.

dio= nnt 1) (2.1)

2
=1
- 2 2n3+3n2—|—n:n(2n+1)(n+1)' 22)
P 6 6
logn
Z n = mnlogn. (2.3)
=1
d at = ——for0<a<l. (2.4)
=0 —a
n . n+1l 1
a = ail fora # 1. (2.5)
i=0 N
As special cases to Equation 2.5,
"1 1
=1
and
n .
d o2t o= vt (2.7)
i=0
As a corollary to Equation 2.7,
logn
Z 20 = olentl _ 1 _9p_ 1. (2.8)
=0
Finally,
n .
1 n-+2
22 =2 2.9)
1=

The sum of reciprocals from 1 to n, called the Harmonic Series and written
‘H,,, has a value between log, n and log, n + 1. To be more precise, as n grows, the
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summation grows closer to

H, ~log.n+ v+ i,
2n
where v is Euler’s constant and has the value 0.5772...

Most of these equalities can be proved easily by mathematical induction (see
Section 2.6.3). Unfortunately, induction does not help us derive a closed-form solu-
tion. It only confirms when a proposed closed-form solution is correct. Techniques
for deriving closed-form solutions are discussed in Section 14.1.

The running time for a recursive algorithm is most easily expressed by a recur-
sive expression because the total time for the recursive algorithm includes the time
to run the recursive call(s). A recurrence relation defines a function by means
of an expression that includes one or more (smaller) instances of itself. A classic
example is the recursive definition for the factorial function:

(2.10)

nl=Mm-1)!"nforn>1; 1=0=1.
Another standard example of a recurrence is the Fibonacci sequence:
Fib(n) = Fib(n — 1) + Fib(n — 2) forn > 2;  Fib(1) = Fib(2) = 1.
From this definition, the first seven numbers of the Fibonacci sequence are
1,1,2,3,5,8, and 13.

Notice that this definition contains two parts: the general definition for Fib(n) and
the base cases for Fib(1) and Fib(2). Likewise, the definition for factorial contains
a recursive part and base cases.

Recurrence relations are often used to model the cost of recursive functions. For
example, the number of multiplications required by function fact of Section 2.5
for an input of size n will be zero when n = 0 or n = 1 (the base cases), and it will
be one plus the cost of calling £act on a value of n — 1. This can be defined using
the following recurrence:

T(n)=T(n—1)+1forn>1; T(0)=T(1)=0.

As with summations, we typically wish to replace the recurrence relation with
a closed-form solution. One approach is to expand the recurrence by replacing any
occurrences of T on the right-hand side with its definition.

Example 2.8 If we expand the recurrence T(n) = T(n — 1) + 1, we get
T(n) = T(n—1)+1
= (T(n—2)+1)+1.
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We can expand the recurrence as many steps as we like, but the goal is
to detect some pattern that will permit us to rewrite the recurrence in terms
of a summation. In this example, we might notice that

(Tn—-2)+1)+1=T(n—-2)+2
and if we expand the recurrence again, we get
Tn)=Tn—2)+2=Tn—-3)+1+2=T(n—-3)+3

which generalizes to the pattern T(n) = T(n — i) + 7. We might conclude
that

T(n) = T(h—(n—1))+(n—-1)
T(1)+n—-1
= n-—1.
Because we have merely guessed at a pattern and not actually proved

that this is the correct closed form solution, we should use an induction
proof to complete the process (see Example 2.13).

Example 2.9 A slightly more complicated recurrence is
T(n)=T(n—1)+n; T(1) =1
Expanding this recurrence a few steps, we get
T(n) = T(n—1)+n
Tn—2)+(n—1)+n
= Tn—-3)+(n—-2)+(n—-1)+n.

We should then observe that this recurrence appears to have a pattern that
leads to

T(n) = Th—(n—-1)4+n—-—nN—-2)+---+(n—1)+n
= 142+ +(n—-1)+n.

This is equivalent to the summation » ", ¢, for which we already know the
closed-form solution.

Techniques to find closed-form solutions for recurrence relations are discussed
in Section 14.2. Prior to Chapter 14, recurrence relations are used infrequently in
this book, and the corresponding closed-form solution and an explanation for how
it was derived will be supplied at the time of use.
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2.5 Recursion

An algorithm is recursive if it calls itself to do part of its work. For this approach
to be successful, the “call to itself” must be on a smaller problem then the one
originally attempted. In general, a recursive algorithm must have two parts: the
base case, which handles a simple input that can be solved without resorting to
a recursive call, and the recursive part which contains one or more recursive calls
to the algorithm where the parameters are in some sense “closer” to the base case
than those of the original call. Here is a recursive C++ function to compute the
factorial of n. A trace of fact’s execution for a small value of n is presented in
Section 4.2.4.

long fact (int n) { // Compute n! recursively
// To fit n! into a long variable, we require n <= 12
Assert ((n >= 0) && (n <= 12), "Input out of range");
if (n <= 1) return 1; // Base case: return base solution
return n * fact(n-1); // Recursive call for n > 1

}

The first two lines of the function constitute the base cases. If n < 1, then one
of the base cases computes a solution for the problem. If n > 1, then fact calls
a function that knows how to find the factorial of n — 1. Of course, the function
that knows how to compute the factorial of n — 1 happens to be fact itself. But
we should not think too hard about this while writing the algorithm. The design
for recursive algorithms can always be approached in this way. First write the base
cases. Then think about solving the problem by combining the results of one or
more smaller — but similar — subproblems. If the algorithm you write is correct,
then certainly you can rely on it (recursively) to solve the smaller subproblems.
The secret to success is: Do not worry about how the recursive call solves the
subproblem. Simply accept that it will solve it correctly, and use this result to in
turn correctly solve the original problem. What could be simpler?

Recursion has no counterpart in everyday, physical-world problem solving. The
concept can be difficult to grasp because it requires you to think about problems in
a new way. To use recursion effectively, it is necessary to train yourself to stop
analyzing the recursive process beyond the recursive call. The subproblems will
take care of themselves. You just worry about the base cases and how to recombine
the subproblems.

The recursive version of the factorial function might seem unnecessarily com-
plicated to you because the same effect can be achieved by using a while loop.
Here is another example of recursion, based on a famous puzzle called “Towers of
Hanoi.” The natural algorithm to solve this problem has multiple recursive calls. It
cannot be rewritten easily using while loops.

The Towers of Hanoi puzzle begins with three poles and n rings, where all rings
start on the leftmost pole (labeled Pole 1). The rings each have a different size, and
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(a) (b)

Figure 2.2 Towers of Hanoi example. (a) The initial conditions for a problem
with six rings. (b) A necessary intermediate step on the road to a solution.

are stacked in order of decreasing size with the largest ring at the bottom, as shown
in Figure 2.2(a). The problem is to move the rings from the leftmost pole to the
rightmost pole (labeled Pole 3) in a series of steps. At each step the top ring on
some pole is moved to another pole. There is one limitation on where rings may be
moved: A ring can never be moved on top of a smaller ring.

How can you solve this problem? It is easy if you don’t think too hard about
the details. Instead, consider that all rings are to be moved from Pole 1 to Pole 3.
It is not possible to do this without first moving the bottom (largest) ring to Pole 3.
To do that, Pole 3 must be empty, and only the bottom ring can be on Pole 1.
The remaining n — 1 rings must be stacked up in order on Pole 2, as shown in
Figure 2.2(b). How can you do this? Assume that a function X is available to
solve the problem of moving the top n — 1 rings from Pole 1 to Pole 2. Then move
the bottom ring from Pole 1 to Pole 3. Finally, again use function X to move the
remaining n — 1 rings from Pole 2 to Pole 3. In both cases, “function X is simply
the Towers of Hanoi function called on a smaller version of the problem.

The secret to success is relying on the Towers of Hanoi algorithm to do the
work for you. You need not be concerned about the gory details of how the Towers
of Hanoi subproblem will be solved. That will take care of itself provided that two
things are done. First, there must be a base case (what to do if there is only one
ring) so that the recursive process will not go on forever. Second, the recursive call
to Towers of Hanoi can only be used to solve a smaller problem, and then only one
of the proper form (one that meets the original definition for the Towers of Hanoi
problem, assuming appropriate renaming of the poles).

Here is an implementation for the recursive Towers of Hanoi algorithm. Func-
tion move (start, goal) takes the top ring from Pole start and moves it to
Pole goal. If move were to print the values of its parameters, then the result of
calling TOH would be a list of ring-moving instructions that solves the problem.
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void TOH(int n, Pole start, Pole goal, Pole temp) {

if (n == 0) return; // Base case
TOH (n-1, start, temp, goal); // Recursive call: n-1 rings
move (start, goal); // Move bottom disk to goal

TOH (n-1, temp, goal, start); // Recursive call: n-1 rings

}

Those who are unfamiliar with recursion might find it hard to accept that it is
used primarily as a tool for simplifying the design and description of algorithms.
A recursive algorithm usually does not yield the most efficient computer program
for solving the problem because recursion involves function calls, which are typi-
cally more expensive than other alternatives such as a while loop. However, the
recursive approach usually provides an algorithm that is reasonably efficient in the
sense discussed in Chapter 3. (But not always! See Exercise 2.11.) If necessary,
the clear, recursive solution can later be modified to yield a faster implementation,
as described in Section 4.2.4.

Many data structures are naturally recursive, in that they can be defined as be-
ing made up of self-similar parts. Tree structures are an example of this. Thus,
the algorithms to manipulate such data structures are often presented recursively.
Many searching and sorting algorithms are based on a strategy of divide and con-
quer. That is, a solution is found by breaking the problem into smaller (similar)
subproblems, solving the subproblems, then combining the subproblem solutions
to form the solution to the original problem. This process is often implemented
using recursion. Thus, recursion plays an important role throughout this book, and
many more examples of recursive functions will be given.

2.6 Mathematical Proof Techniques

Solving any problem has two distinct parts: the investigation and the argument.
Students are too used to seeing only the argument in their textbooks and lectures.
But to be successful in school (and in life after school), one needs to be good at
both, and to understand the differences between these two phases of the process.
To solve the problem, you must investigate successfully. That means engaging the
problem, and working through until you find a solution. Then, to give the answer
to your client (whether that “client” be your instructor when writing answers on
a homework assignment or exam, or a written report to your boss), you need to
be able to make the argument in a way that gets the solution across clearly and
succinctly. The argument phase involves good technical writing skills — the ability
to make a clear, logical argument.

Being conversant with standard proof techniques can help you in this process.
Knowing how to write a good proof helps in many ways. First, it clarifies your
thought process, which in turn clarifies your explanations. Second, if you use one of
the standard proof structures such as proof by contradiction or an induction proof,
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then both you and your reader are working from a shared understanding of that
structure. That makes for less complexity to your reader to understand your proof,
because the reader need not decode the structure of your argument from scratch.

This section briefly introduces three commonly used proof techniques: (i) de-
duction, or direct proof; (ii) proof by contradiction, and (iii) proof by mathematical
induction.

2.6.1 Direct Proof

In general, a direct proof is just a “logical explanation.” A direct proof is some-
times referred to as an argument by deduction. This is simply an argument in terms
of logic. Often written in English with words such as “if ... then,” it could also
be written with logic notation such as “P = @.” Even if we don’t wish to use
symbolic logic notation, we can still take advantage of fundamental theorems of
logic to structure our arguments. For example, if we want to prove that P and )
are equivalent, we can first prove P = () and then prove ) = P.

In some domains, proofs are essentially a series of state changes from a start
state to an end state. Formal predicate logic can be viewed in this way, with the vari-
ous “rules of logic” being used to make the changes from one formula or combining
a couple of formulas to make a new formula on the route to the destination. Sym-
bolic manipulations to solve integration problems in introductory calculus classes
are similar in spirit, as are high school geometry proofs.

2.6.2 Proof by Contradiction

The simplest way to disprove a theorem or statement is to find a counterexample
to the theorem. Unfortunately, no number of examples supporting a theorem is
sufficient to prove that the theorem is correct. However, there is an approach that
is vaguely similar to disproving by counterexample, called Proof by Contradiction.
To prove a theorem by contradiction, we first assume that the theorem is false. We
then find a logical contradiction stemming from this assumption. If the logic used
to find the contradiction is correct, then the only way to resolve the contradiction is
to recognize that the assumption that the theorem is false must be incorrect. That
is, we conclude that the theorem must be true.

Example 2.10 Here is a simple proof by contradiction.

Theorem 2.1 There is no largest integer.
Proof: Proof by contradiction.

Step 1. Contrary assumption: Assume that there is a largest integer.
Call it B (for “biggest”).

Step 2. Show this assumption leads to a contradiction: Consider
C = B + 1. Cis an integer because it is the sum of two integers. Also,
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C > B, which means that B is not the largest integer after all. Thus, we
have reached a contradiction. The only flaw in our reasoning is the initial
assumption that the theorem is false. Thus, we conclude that the theorem is
correct. |

A related proof technique is proving the contrapositive. We can prove that
P = @ by proving (not Q) = (not P).

2.6.3 Proof by Mathematical Induction

Mathematical induction can be used to prove a wide variety of theorems. Induction
also provides a useful way to think about algorithm design, because it encourages
you to think about solving a problem by building up from simple subproblems.
Induction can help to prove that a recursive function produces the correct result..
Understanding recursion is a big step toward understanding induction, and vice
versa, since they work by essentially the same process.

Within the context of algorithm analysis, one of the most important uses for
mathematical induction is as a method to test a hypothesis. As explained in Sec-
tion 2.4, when seeking a closed-form solution for a summation or recurrence we
might first guess or otherwise acquire evidence that a particular formula is the cor-
rect solution. If the formula is indeed correct, it is often an easy matter to prove
that fact with an induction proof.

Let Thrm be a theorem to prove, and express Thrm in terms of a positive
integer parameter n. Mathematical induction states that Thrm is true for any value
of parameter n (for n > ¢, where c is some constant) if the following two conditions
are true:

1. Base Case: Thrm holds for n = ¢, and
2. Induction Step: If Thrm holds for n — 1, then Thrm holds for n.

Proving the base case is usually easy, typically requiring that some small value
such as 1 be substituted for n in the theorem and applying simple algebra or logic
as necessary to verify the theorem. Proving the induction step is sometimes easy,
and sometimes difficult. An alternative formulation of the induction step is known
as strong induction. The induction step for strong induction is:

2a. Induction Step: If Thrm holds for all £, ¢ < k < n, then Thrm holds for n.

Proving either variant of the induction step (in conjunction with verifying the base
case) yields a satisfactory proof by mathematical induction.

The two conditions that make up the induction proof combine to demonstrate
that Thrm holds for n = 2 as an extension of the fact that Thrm holds for n = 1.
This fact, combined again with condition (2) or (2a), indicates that Thrm also holds
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for n = 3, and so on. Thus, Thrm holds for all values of n (larger than the base
cases) once the two conditions have been proved.

What makes mathematical induction so powerful (and so mystifying to most
people at first) is that we can take advantage of the assumption that Thrm holds
for all values less than n as a tool to help us prove that Thrm holds for n. This is
known as the induction hypothesis. Having this assumption to work with makes
the induction step easier to prove than tackling the original theorem itself. Being
able to rely on the induction hypothesis provides extra information that we can
bring to bear on the problem.

Recursion and induction have many similarities. Both are anchored on one or
more base cases. A recursive function relies on the ability to call itself to get the
answer for smaller instances of the problem. Likewise, induction proofs rely on the
truth of the induction hypothesis to prove the theorem. The induction hypothesis
does not come out of thin air. It is true if and only if the theorem itself is true, and
therefore is reliable within the proof context. Using the induction hypothesis it do
work is exactly the same as using a recursive call to do work.

Example 2.11 Here is a sample proof by mathematical induction. Call
the sum of the first n positive integers S(n).

Theorem 2.2 S(n) =n(n+1)/2.
Proof: The proof is by mathematical induction.

1. Check the base case. For n = 1, verify that S(1) = 1(1+1)/2. S(1)
is simply the sum of the first positive number, which is 1. Because
1(1+1)/2 = 1, the formula is correct for the base case.

2. State the induction hypothesis. The induction hypothesis is

n—1

Sn—1)=Y i= (n=D((n-D+1) _(n=1)n)

2 2

i=1

3. Use the assumption from the induction hypothesis for n — 1 to

show that the result is true for n. The induction hypothesis states

that S(n — 1) = (n — 1)(n)/2, and because S(n) = S(n — 1) + n,
we can substitute for S(n — 1) to get

n n—1
-1
S = (Z) b= D0,
i=1 =1
- 2 -T2
Thus, by mathematical induction,

n?—n+2n nn+1)

n

S(n) = Zl =n(n+1)/2.

=1
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a

Note carefully what took place in this example. First we cast S(n) in terms
of a smaller occurrence of the problem: S(n) = S(n — 1) + n. This is important
because once S(n — 1) comes into the picture, we can use the induction hypothesis
to replace S(n — 1) with (n — 1)(n)/2. From here, it is simple algebra to prove
that S(n — 1) + n equals the right-hand side of the original theorem.

Example 2.12 Here is another simple proof by induction that illustrates
choosing the proper variable for induction. We wish to prove by induction
that the sum of the first n positive odd numbers is n2. First we need a way
to describe the nth odd number, which is simply 2n — 1. This also allows
us to cast the theorem as a summation.

Theorem 2.3 >0 | (2i — 1) = n?
Proof: The base case of n = 1 yields 1 = 12, which is true. The induction
hypothesis is

n—1

> @i-1)=(n-1)>

i=1
We now use the induction hypothesis to show that the theorem holds true
for n. The sum of the first n odd numbers is simply the sum of the first
n — 1 odd numbers plus the nth odd number. In the second line below, we
will use the induction hypothesis to replace the partial summation (shown
in brackets in the first line) with its closed-form solution. After that, algebra
takes care of the rest.

n n—1
dRi-1) = [Z(Qi —1)| +2n-1
i=1 i=1

= [(n—-1)%+2n—-1
= n*—2n+1+2n—1

= n2.

Thus, by mathematical induction, >, (2i — 1) = n?. O

Example 2.13 This example shows how we can use induction to prove
that a proposed closed-form solution for a recurrence relation is correct.

Theorem 2.4 The recurrence relation T(n) = T(n—1)+1; T(1) =0
has closed-form solution T(n) = n — 1.
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Proof: To prove the base case, we observe that T(1) = 1 —1 = 0. The
induction hypothesis is that T(n — 1) = n — 2. Combining the definition
of the recurrence with the induction hypothesis, we see immediately that

Tn)=Tn—1)+1=n—-2+1=n-1

for n > 1. Thus, we have proved the theorem correct by mathematical
induction. O

Example 2.14 This example uses induction without involving summa-
tions or other equations. It also illustrates a more flexible use of base cases.

Theorem 2.5 2¢ and 5¢ stamps can be used to form any value (for values
> 4).

Proof: The theorem defines the problem for values > 4 because it does
not hold for the values 1 and 3. Using 4 as the base case, a value of 4¢
can be made from two 2¢ stamps. The induction hypothesis is that a value
of n — 1 can be made from some combination of 2¢ and 5¢ stamps. We
now use the induction hypothesis to show how to get the value n from 2¢
and 5¢ stamps. Either the makeup for value n — 1 includes a 5¢ stamp, or
it does not. If so, then replace a 5¢ stamp with three 2¢ stamps. If not,
then the makeup must have included at least two 2¢ stamps (because it is
at least of size 4 and contains only 2¢ stamps). In this case, replace two of
the 2¢ stamps with a single 5¢ stamp. In either case, we now have a value
of n made up of 2¢ and 5¢ stamps. Thus, by mathematical induction, the
theorem is correct. O

Example 2.15 Here is an example using strong induction.

Theorem 2.6 Forn > 1, n is divisible by some prime number.

Proof: For the base case, choose n = 2. 2 is divisible by the prime num-
ber 2. The induction hypothesis is that any value a, 2 < a < n, is divisible
by some prime number. There are now two cases to consider when proving
the theorem for n. If n is a prime number, then n is divisible by itself. If n
is not a prime number, then n = a x b for a and b, both integers less than
n but greater than 1. The induction hypothesis tells us that a is divisible by
some prime number. That same prime number must also divide n. Thus,
by mathematical induction, the theorem is correct. O

43
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Figure 2.3 A two-coloring for the regions formed by three lines in the plane.

Our next example of mathematical induction proves a theorem from geometry.
It also illustrates a standard technique of induction proof where we take n objects
and remove some object to use the induction hypothesis.

Example 2.16 Define a two-coloring for a set of regions as a way of as-
signing one of two colors to each region such that no two regions sharing a
side have the same color. For example, a chessboard is two-colored. Fig-
ure 2.3 shows a two-coloring for the plane with three lines. We will assume
that the two colors to be used are black and white.

Theorem 2.7 The set of regions formed by n infinite lines in the plane can
be two-colored.

Proof: Consider the base case of a single infinite line in the plane. This line
splits the plane into two regions. One region can be colored black and the
other white to get a valid two-coloring. The induction hypothesis is that the
set of regions formed by n — 1 infinite lines can be two-colored. To prove
the theorem for n, consider the set of regions formed by the n — 1 lines
remaining when any one of the n lines is removed. By the induction hy-
pothesis, this set of regions can be two-colored. Now, put the nth line back.
This splits the plane into two half-planes, each of which (independently)
has a valid two-coloring inherited from the two-coloring of the plane with
n — 1 lines. Unfortunately, the regions newly split by the nth line violate
the rule for a two-coloring. Take all regions on one side of the nth line and
reverse their coloring (after doing so, this half-plane is still two-colored).
Those regions split by the nth line are now properly two-colored, because
the part of the region to one side of the line is now black and the region
to the other side is now white. Thus, by mathematical induction, the entire
plane is two-colored. O
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Compare the proof of Theorem 2.7 with that of Theorem 2.5. For Theorem 2.5,
we took a collection of stamps of size n — 1 (which, by the induction hypothesis,
must have the desired property) and from that “built” a collection of size n that
has the desired property. We therefore proved the existence of some collection of
stamps of size n with the desired property.

For Theorem 2.7 we must prove that any collection of n lines has the desired
property. Thus, our strategy is to take an arbitrary collection of n lines, and “re-
duce” it so that we have a set of lines that must have the desired property because
it matches the induction hypothesis. From there, we merely need to show that re-
versing the original reduction process preserves the desired property.

In contrast, consider what is required if we attempt to “build” from a set of lines
of size n — 1 to one of size n. We would have great difficulty justifying that all
possible collections of n lines are covered by our building process. By reducing
from an arbitrary collection of n lines to something less, we avoid this problem.

This section’s final example shows how induction can be used to prove that a
recursive function produces the correct result.

Example 2.17 We would like to prove that function fact does indeed
compute the factorial function. There are two distinct steps to such a proof.
The first is to prove that the function always terminates. The second is to
prove that the function returns the correct value.

Theorem 2.8 Function £act will terminate for any value of n.

Proof: For the base case, we observe that fact will terminate directly
whenever n < 0. The induction hypothesis is that £act will terminate for
n — 1. For n, we have two possibilities. One possibility is that n > 12.
In that case, fact will terminate directly because it will fail its assertion
test. Otherwise, fact will make a recursive call to fact (n—1). By the
induction hypothesis, fact (n—1) must terminate. O

Theorem 2.9 Function £act does compute the factorial function for any
value in the range 0 to 12.

Proof: To prove the base case, observe that when n = 0 or n = 1,
fact (n) returns the correct value of 1. The induction hypothesis is that
fact (n-1) returns the correct value of (n — 1)!. For any value n within
the legal range, fact (n) returns n * fact (n—1). By the induction hy-
pothesis, fact (n-1) = (n —1)!, and because n * (n — 1)! = n!, we have
proved that fact (n) produces the correct result. O

We can use a similar process to prove many recursive programs correct. The
general form is to show that the base cases perform correctly, and then to use the
induction hypothesis to show that the recursive step also produces the correct result.
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Prior to this, we must prove that the function always terminates, which might also
be done using an induction proof.

2.7 Estimation

One of the most useful life skills that you can gain from your computer science
training is the ability to perform quick estimates. This is sometimes known as “back
of the napkin” or “back of the envelope” calculation. Both nicknames suggest
that only a rough estimate is produced. Estimation techniques are a standard part
of engineering curricula but are often neglected in computer science. Estimation
is no substitute for rigorous, detailed analysis of a problem, but it can serve to
indicate when a rigorous analysis is warranted: If the initial estimate indicates that
the solution is unworkable, then further analysis is probably unnecessary.
Estimation can be formalized by the following three-step process:

1. Determine the major parameters that affect the problem.
2. Derive an equation that relates the parameters to the problem.

3. Select values for the parameters, and apply the equation to yield an estimated
solution.

When doing estimations, a good way to reassure yourself that the estimate is
reasonable is to do it in two different ways. In general, if you want to know what
comes out of a system, you can either try to estimate that directly, or you can
estimate what goes into the system (assuming that what goes in must later come
out). If both approaches (independently) give similar answers, then this should
build confidence in the estimate.

When calculating, be sure that your units match. For example, do not add feet
and pounds. Verify that the result is in the correct units. Always keep in mind that
the output of a calculation is only as good as its input. The more uncertain your
valuation for the input parameters in Step 3, the more uncertain the output value.
However, back of the envelope calculations are often meant only to get an answer
within an order of magnitude, or perhaps within a factor of two. Before doing an
estimate, you should decide on acceptable error bounds, such as within 25%, within
a factor of two, and so forth. Once you are confident that an estimate falls within
your error bounds, leave it alone! Do not try to get a more precise estimate than
necessary for your purpose.

Example 2.18 How many library bookcases does it take to store books
containing one million pages? I estimate that a 500-page book requires
one inch on the library shelf (it will help to look at the size of any handy
book), yielding about 200 feet of shelf space for one million pages. If a
shelf is 4 feet wide, then 50 shelves are required. If a bookcase contains
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5 shelves, this yields about 10 library bookcases. To reach this conclusion,
I estimated the number of pages per inch, the width of a shelf, and the
number of shelves in a bookcase. None of my estimates are likely to be
precise, but I feel confident that my answer is correct to within a factor of
two. (After writing this, I went to Virginia Tech’s library and looked at
some real bookcases. They were only about 3 feet wide, but typically had
7 shelves for a total of 21 shelf-feet. So I was correct to within 10% on
bookcase capacity, far better than I expected or needed. One of my selected
values was too high, and the other too low, which canceled out the errors.)

Example 2.19 Is it more economical to buy a car that gets 20 miles per
gallon, or one that gets 30 miles per gallon but costs $3000 more? The
typical car is driven about 12,000 miles per year. If gasoline costs $3/gallon,
then the yearly gas bill is $1800 for the less efficient car and $1200 for the
more efficient car. If we ignore issues such as the payback that would be
received if we invested $3000 in a bank, it would take 5 years to make
up the difference in price. At this point, the buyer must decide if price is
the only criterion and if a 5-year payback time is acceptable. Naturally,
a person who drives more will make up the difference more quickly, and
changes in gasoline prices will also greatly affect the outcome.

Example 2.20 When at the supermarket doing the week’s shopping, can
you estimate about how much you will have to pay at the checkout? One
simple way is to round the price of each item to the nearest dollar, and add
this value to a mental running total as you put the item in your shopping
cart. This will likely give an answer within a couple of dollars of the true
total.

2.8 Further Reading

Most of the topics covered in this chapter are considered part of Discrete Math-
ematics. An introduction to this field is Discrete Mathematics with Applications
by Susanna S. Epp [Epp10]. An advanced treatment of many mathematical topics
useful to computer scientists is Concrete Mathematics: A Foundation for Computer
Science by Graham, Knuth, and Patashnik [GKP94].

See “Technically Speaking” from the February 1995 issue of IEEE Spectrum
[Sel95] for a discussion on the standard for indicating units of computer storage
used in this book.



48 Chap. 2 Mathematical Preliminaries

Introduction to Algorithms by Udi Manber [Man89] makes extensive use of
mathematical induction as a technique for developing algorithms.

For more information on recursion, see Thinking Recursively by Eric S. Roberts
[Rob86]. To learn recursion properly, it is worth your while to learn the program-
ming languages LISP or Scheme, even if you never intend to write a program in
either language. In particular, Friedman and Felleisen’s “Little” books (including
The Little LISPer[FF89] and The Little Schemer[FFBS95]) are designed to teach
you how to think recursively as well as teach you the language. These books are
entertaining reading as well.

A good book on writing mathematical proofs is Daniel Solow’s How fo Read
and Do Proofs [Sol09]. To improve your general mathematical problem-solving
abilities, see The Art and Craft of Problem Solving by Paul Zeitz [Zei07]. Zeitz
also discusses the three proof techniques presented in Section 2.6, and the roles of
investigation and argument in problem solving.

For more about estimation techniques, see two Programming Pearls by John
Louis Bentley entitled The Back of the Envelope and The Envelope is Back [Ben84,
Ben00, Ben86, Ben88]. Genius: The Life and Science of Richard Feynman by
James Gleick [Gle92] gives insight into how important back of the envelope calcu-
lation was to the developers of the atomic bomb, and to modern theoretical physics
in general.

2.9 Exercises

2.1 For each relation below, explain why the relation does or does not satisfy
each of the properties reflexive, symmetric, antisymmetric, and transitive.

(a) “isBrotherOf” on the set of people.

(b) “isFatherOf” on the set of people.

(¢) The relation R = {(z,y) | 2> + y? = 1} for real numbers z and y.

(d) The relation R = {{x, %) | 22 = y?} for real numbers z and .

(e) The relation R = {(z,y) |z mod y = 0} for z,y € {1,2,3,4}.

(f) The empty relation () (i.e., the relation with no ordered pairs for which
it is true) on the set of integers.

(g) The empty relation () (i.e., the relation with no ordered pairs for which
it is true) on the empty set.

2.2 For each of the following relations, either prove that it is an equivalence
relation or prove that it is not an equivalence relation.

(a) For integers a and b, a = b if and only if a + b is even.

(b) For integers a and b, a = b if and only if a + b is odd.

(¢) For nonzero rational numbers a and b, a = b if and only if a x b > 0.

(d) For nonzero rational numbers a and b, a = b if and only if a/b is an
integer.
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(e) For rational numbers a and b, a = b if and only if a — b is an integer.

(f) For rational numbers a and b, @ = b if and only if |a — b| < 2.
State whether each of the following relations is a partial ordering, and explain
why or why not.

(a) “isFatherOf” on the set of people.

(b) “isAncestorOf” on the set of people.

(¢) “isOlderThan” on the set of people.

(d) “isSisterOf” on the set of people.

(e) {(a,b),(a,a),(b,a)} onthe set {a,b}.

® {(2,1),(1,3),(2,3)} onthe set {1,2,3}.
How many total orderings can be defined on a set with n elements? Explain
your answer.
Define an ADT for a set of integers (remember that a set has no concept of
duplicate elements, and has no concept of order). Your ADT should consist
of the functions that can be performed on a set to control its membership,
check the size, check if a given element is in the set, and so on. Each function
should be defined in terms of its input and output.
Define an ADT for a bag of integers (remember that a bag may contain du-
plicates, and has no concept of order). Your ADT should consist of the func-
tions that can be performed on a bag to control its membership, check the
size, check if a given element is in the set, and so on. Each function should
be defined in terms of its input and output.
Define an ADT for a sequence of integers (remember that a sequence may
contain duplicates, and supports the concept of position for its elements).
Your ADT should consist of the functions that can be performed on a se-
quence to control its membership, check the size, check if a given element is
in the set, and so on. Each function should be defined in terms of its input
and output.
An investor places $30,000 into a stock fund. 10 years later the account has
a value of $69,000. Using logarithms and anti-logarithms, present a formula
for calculating the average annual rate of increase. Then use your formula to
determine the average annual growth rate for this fund.
Rewrite the factorial function of Section 2.5 without using recursion.
Rewrite the for loop for the random permutation generator of Section 2.2
as a recursive function.
Here is a simple recursive function to compute the Fibonacci sequence:

long fibr(int n) { // Recursive Fibonacci generator
// fibr (46) is largest value that fits in a long
Assert((n > 0) && (n < 47), "Input out of range");
if ((n == 1) || (n == 2)) return 1l; // Base cases
return fibr (n-1) + fibr(n-2); // Recursion
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This algorithm turns out to be very slow, calling Fibr a total of Fib(n) times.
Contrast this with the following iterative algorithm:

long fibi(int n) { // Iterative Fibonacci generator
// £ibi (46) is largest value that fits in a long
Assert((n > 0) && (n < 47), "Input out of range");
long past, prev, curr; // Store temporary values

past = prev = curr = 1; // initialize

for (int i=3; i<=n; i++) { // Compute next value
past = prev; // past holds fibi (i-2)
prev = curr; // prev holds fibi (i-1)
curr = past + prev; // curr now holds fibi (i)

}

return curr;

}

Function Fibi executes the for loop n — 2 times.

(a) Which version is easier to understand? Why?

(b) Explain why Fibr is so much slower than Fibi.
Write a recursive function to solve a generalization of the Towers of Hanoi
problem where each ring may begin on any pole so long as no ring sits on
top of a smaller ring.
Revise the recursive implementation for Towers of Hanoi from Section 2.5
to return the list of moves needed to solve the problem.
Consider the following function:

void foo (double val) {
if (val !'= 0.0)
foo(val/2.0);
}

This function makes progress towards the base case on every recursive call.
In theory (that is, if double variables acted like true real numbers), would
this function ever terminate for input val a nonzero number? In practice (an
actual computer implementation), will it terminate?

Write a function to print all of the permutations for the elements of an array
containing n distinct integer values.

Write a recursive algorithm to print all of the subsets for the set of the first n
positive integers.

The Largest Common Factor (LCF) for two positive integers n and m is
the largest integer that divides both n and m evenly. LCF(n, m) is at least
one, and at most m, assuming that n > m. Over two thousand years ago,
Euclid provided an efficient algorithm based on the observation that, when
n mod m # 0, LCF(n, m) = LCF(m, n mod m). Use this fact to write two
algorithms to find the LCF for two positive integers. The first version should
compute the value iteratively. The second version should compute the value
using recursion.
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Prove by contradiction that the number of primes is infinite.
(a) Use induction to show that n? — n is always even.
(b) Give a direct proof in one or two sentences that n?> — n is always even.
(c) Show that n® — n is always divisible by three.
(d) Is n® — n aways divisible by 5? Explain your answer.
Prove that v/2 is irrational.

Explain why
n n n—1
dYi=> (n—it1)=> (n—i).
i=1 i=1 i=0

Prove Equation 2.2 using mathematical induction.
Prove Equation 2.6 using mathematical induction.
Prove Equation 2.7 using mathematical induction.
Find a closed-form solution and prove (using induction) that your solution is
correct for the summation .
S
i=1

Prove that the sum of the first n even numbers is n2 + n

(a) by assuming that the sum of the first n odd numbers is n2.

(b) by mathematical induction.

Give a closed-form formula for the summation ;" 4 where a is an integer
between 1 and n.

Prove that Fib(n) < ()™

Prove, for n > 1, that

zn:i?’ ~n?(n+1)?
: B 4
=1

The following theorem is called the Pigeonhole Principle.

Theorem 2.10 When n + 1 pigeons roost in 1 holes, there must be some
hole containing at least two pigeons.

(a) Prove the Pigeonhole Principle using proof by contradiction.
(b) Prove the Pigeonhole Principle using mathematical induction.

For this problem, you will consider arrangements of infinite lines in the plane
such that three or more lines never intersect at a single point and no two lines
are parallel.

(a) Give a recurrence relation that expresses the number of regions formed
by n lines, and explain why your recurrence is correct.
(b) Give the summation that results from expanding your recurrence.
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(¢) Give a closed-form solution for the summation.

2.32 Prove (using induction) that the recurrence T(n) = T(n — 1) +n; T(1) =1
has as its closed-form solution T(n) = n(n + 1)/2.

2.33 Expand the following recurrence to help you find a closed-form solution, and
then use induction to prove your answer is correct.

T(n) =2T(n—1)+ 1 forn > 0; T(0) = 0.

2.34 Expand the following recurrence to help you find a closed-form solution, and
then use induction to prove your answer is correct.

T(n) =T(n—1)+3n+1forn > 0; T(0) =1.

2.35 Assume that an n-bit integer (represented by standard binary notation) takes
any value in the range O to 2" — 1 with equal probability.

(a) For each bit position, what is the probability of its value being 1 and
what is the probability of its value being 0?7

(b) What is the average number of “1” bits for an n-bit random number?

(c) What is the expected value for the position of the leftmost “1” bit? In
other words, how many positions on average must we examine when
moving from left to right before encountering a “1” bit? Show the
appropriate summation.

2.36 What is the total volume of your body in liters (or, if you prefer, gallons)?
2.37 An art historian has a database of 20,000 full-screen color images.

(a) About how much space will this require? How many CDs would be
required to store the database? (A CD holds about 600MB of data). Be
sure to explain all assumptions you made to derive your answer.

(b) Now, assume that you have access to a good image compression tech-
nique that can store the images in only 1/10 of the space required for
an uncompressed image. Will the entire database fit onto a single CD
if the images are compressed?

2.38 How many cubic miles of water flow out of the mouth of the Mississippi
River each day? DO NOT look up the answer or any supplemental facts. Be
sure to describe all assumptions made in arriving at your answer.

2.39 When buying a home mortgage, you often have the option of paying some
money in advance (called “discount points”) to get a lower interest rate. As-
sume that you have the choice between two 15-year fixed-rate mortgages:
one at 8% with no up-front charge, and the other at 7%% with an up-front
charge of 1% of the mortgage value. How long would it take to recover the
1% charge when you take the mortgage at the lower rate? As a second, more
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precise estimate, how long would it take to recover the charge plus the in-
terest you would have received if you had invested the equivalent of the 1%
charge in the bank at 5% interest while paying the higher rate? DO NOT use
a calculator to help you answer this question.

When you build a new house, you sometimes get a “construction loan” which
is a temporary line of credit out of which you pay construction costs as they
occur. At the end of the construction period, you then replace the construc-
tion loan with a regular mortgage on the house. During the construction loan,
you only pay each month for the interest charged against the actual amount
borrowed so far. Assume that your house construction project starts at the
beginning of April, and is complete at the end of six months. Assume that
the total construction cost will be $300,000 with the costs occurring at the be-
ginning of each month in $50,000 increments. The construction loan charges
6% interest. Estimate the total interest payments that must be paid over the
life of the construction loan.

Here are some questions that test your working knowledge of how fast com-
puters operate. Is disk drive access time normally measured in milliseconds
(thousandths of a second) or microseconds (millionths of a second)? Does
your RAM memory access a word in more or less than one microsecond?
How many instructions can your CPU execute in one year if the machine is
left running at full speed all the time? DO NOT use paper or a calculator to
derive your answers.

Does your home contain enough books to total one million pages? How
many total pages are stored in your school library building? Explain how
you got your answer.

How many words are in this book? Explain how you got your answer.

How many hours are one million seconds? How many days? Answer these
questions doing all arithmetic in your head. Explain how you got your an-
SWer.

How many cities and towns are there in the United States? Explain how you
got your answer.

How many steps would it take to walk from Boston to San Francisco? Ex-
plain how you got your answer.

A man begins a car trip to visit his in-laws. The total distance is 60 miles,
and he starts off at a speed of 60 miles per hour. After driving exactly 1 mile,
he loses some of his enthusiasm for the journey, and (instantaneously) slows
down to 59 miles per hour. After traveling another mile, he again slows to
58 miles per hour. This continues, progressively slowing by 1 mile per hour
for each mile traveled until the trip is complete.

(a) How long does it take the man to reach his in-laws?
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(b) How long would the trip take in the continuous case where the speed
smoothly diminishes with the distance yet to travel?



3

Algorithm Analysis

How long will it take to process the company payroll once we complete our planned
merger? Should I buy a new payroll program from vendor X or vendor Y? If a
particular program is slow, is it badly implemented or is it solving a hard problem?
Questions like these ask us to consider the difficulty of a problem, or the relative
efficiency of two or more approaches to solving a problem.

This chapter introduces the motivation, basic notation, and fundamental tech-
niques of algorithm analysis. We focus on a methodology known as asymptotic
algorithm analysis, or simply asymptotic analysis. Asymptotic analysis attempts
to estimate the resource consumption of an algorithm. It allows us to compare the
relative costs of two or more algorithms for solving the same problem. Asymptotic
analysis also gives algorithm designers a tool for estimating whether a proposed
solution is likely to meet the resource constraints for a problem before they imple-
ment an actual program. After reading this chapter, you should understand

* the concept of a growth rate, the rate at which the cost of an algorithm grows
as the size of its input grows;

* the concept of upper and lower bounds for a growth rate, and how to estimate
these bounds for a simple program, algorithm, or problem; and

* the difference between the cost of an algorithm (or program) and the cost of
a problem.

The chapter concludes with a brief discussion of the practical difficulties encoun-
tered when empirically measuring the cost of a program, and some principles for
code tuning to improve program efficiency.

3.1 Introduction

How do you compare two algorithms for solving some problem in terms of effi-
ciency? We could implement both algorithms as computer programs and then run

55
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them on a suitable range of inputs, measuring how much of the resources in ques-
tion each program uses. This approach is often unsatisfactory for four reasons.
First, there is the effort involved in programming and testing two algorithms when
at best you want to keep only one. Second, when empirically comparing two al-
gorithms there is always the chance that one of the programs was “better written”
than the other, and therefor the relative qualities of the underlying algorithms are
not truly represented by their implementations. This can easily occur when the
programmer has a bias regarding the algorithms. Third, the choice of empirical
test cases might unfairly favor one algorithm. Fourth, you could find that even the
better of the two algorithms does not fall within your resource budget. In that case
you must begin the entire process again with yet another program implementing a
new algorithm. But, how would you know if any algorithm can meet the resource
budget? Perhaps the problem is simply too difficult for any implementation to be
within budget.

These problems can often be avoided by using asymptotic analysis. Asymp-
totic analysis measures the efficiency of an algorithm, or its implementation as a
program, as the input size becomes large. It is actually an estimating technique and
does not tell us anything about the relative merits of two programs where one is
always “slightly faster” than the other. However, asymptotic analysis has proved
useful to computer scientists who must determine if a particular algorithm is worth
considering for implementation.

The critical resource for a program is most often its running time. However,
you cannot pay attention to running time alone. You must also be concerned with
other factors such as the space required to run the program (both main memory and
disk space). Typically you will analyze the time required for an algorithm (or the
instantiation of an algorithm in the form of a program), and the space required for
a data structure.

Many factors affect the running time of a program. Some relate to the environ-
ment in which the program is compiled and run. Such factors include the speed of
the computer’s CPU, bus, and peripheral hardware. Competition with other users
for the computer’s (or the network’s) resources can make a program slow to a crawl.
The programming language and the quality of code generated by a particular com-
piler can have a significant effect. The “coding efficiency” of the programmer who
converts the algorithm to a program can have a tremendous impact as well.

If you need to get a program working within time and space constraints on a
particular computer, all of these factors can be relevant. Yet, none of these factors
address the differences between two algorithms or data structures. To be fair, pro-
grams derived from two algorithms for solving the same problem should both be
compiled with the same compiler and run on the same computer under the same
conditions. As much as possible, the same amount of care should be taken in the
programming effort devoted to each program to make the implementations “equally
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efficient.” In this sense, all of the factors mentioned above should cancel out of the
comparison because they apply to both algorithms equally.

If you truly wish to understand the running time of an algorithm, there are other
factors that are more appropriate to consider than machine speed, programming
language, compiler, and so forth. Ideally we would measure the running time of
the algorithm under standard benchmark conditions. However, we have no way
to calculate the running time reliably other than to run an implementation of the
algorithm on some computer. The only alternative is to use some other measure as
a surrogate for running time.

Of primary consideration when estimating an algorithm’s performance is the
number of basic operations required by the algorithm to process an input of a
certain size. The terms “basic operations” and “size” are both rather vague and
depend on the algorithm being analyzed. Size is often the number of inputs pro-
cessed. For example, when comparing sorting algorithms, the size of the problem
is typically measured by the number of records to be sorted. A basic operation
must have the property that its time to complete does not depend on the particular
values of its operands. Adding or comparing two integer variables are examples
of basic operations in most programming languages. Summing the contents of an
array containing n integers is not, because the cost depends on the value of n (i.e.,
the size of the input).

Example 3.1 Consider a simple algorithm to solve the problem of finding
the largest value in an array of n integers. The algorithm looks at each
integer in turn, saving the position of the largest value seen so far. This
algorithm is called the largest-value sequential search and is illustrated by
the following function:

// Return position of largest value in "A" of size "n"
int largest(int A[], int n) {
int currlarge = 0; // Holds largest element position

for (int i=1l; i<n; i++) // For each array element

if (A[currlarge] < A[i]) // if A[i] is larger
currlarge = i; // remember its position

return currlarge; // Return largest position

}

Here, the size of the problem is A. length, the number of integers stored
in array A. The basic operation is to compare an integer’s value to that of
the largest value seen so far. It is reasonable to assume that it takes a fixed
amount of time to do one such comparison, regardless of the value of the
two integers or their positions in the array.

Because the most important factor affecting running time is normally
size of the input, for a given input size n we often express the time T to run
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the algorithm as a function of n, written as T(n). We will always assume
T(n) is a non-negative value.

Let us call ¢ the amount of time required to compare two integers in
function largest. We do not care right now what the precise value of ¢
might be. Nor are we concerned with the time required to increment vari-
able ¢ because this must be done for each value in the array, or the time
for the actual assignment when a larger value is found, or the little bit of
extra time taken to initialize currlarge. We just want a reasonable ap-
proximation for the time taken to execute the algorithm. The total time
to run largest is therefore approximately cn, because we must make n
comparisons, with each comparison costing ¢ time. We say that function
largest (and by extension ,the largest-value sequential search algorithm
for any typical implementation) has a running time expressed by the equa-
tion

T(n) = cn.

This equation describes the growth rate for the running time of the largest-
value sequential search algorithm.

Example 3.2 The running time of a statement that assigns the first value
of an integer array to a variable is simply the time required to copy the value
of the first array value. We can assume this assignment takes a constant
amount of time regardless of the value. Let us call ¢; the amount of time
necessary to copy an integer. No matter how large the array on a typical
computer (given reasonable conditions for memory and array size), the time
to copy the value from the first position of the array is always c;. Thus, the
equation for this algorithm is simply

T(n) = ci,

indicating that the size of the input n has no effect on the running time.
This is called a constant running time.

Example 3.3 Consider the following code:

sum = 0;
for (i=1; i<=n; i++)
for (j=1; j<=n; j++)
sum++;

What is the running time for this code fragment? Clearly it takes longer
to run when n is larger. The basic operation in this example is the increment
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Figure 3.1 Two views of a graph illustrating the growth rates for six equations.
The bottom view shows in detail the lower-left portion of the top view. The hor-
izontal axis represents input size. The vertical axis can represent time, space, or
any other measure of cost.

operation for variable sum. We can assume that incrementing takes constant
time; call this time co. (We can ignore the time required to initialize sum,
and to increment the loop counters ¢ and j. In practice, these costs can
safely be bundled into time c3.) The total number of increment operations

is n?. Thus, we say that the running time is T(n) = can?.
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n loglogn |logn | n nlogn n? | n3 2"
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Figure 3.2 Costs for growth rates representative of most computer algorithms.

The growth rate for an algorithm is the rate at which the cost of the algorithm
grows as the size of its input grows. Figure 3.1 shows a graph for six equations, each
meant to describe the running time for a particular program or algorithm. A variety
of growth rates representative of typical algorithms are shown. The two equations
labeled 10m and 20n are graphed by straight lines. A growth rate of cn (for ¢ any
positive constant) is often referred to as a linear growth rate or running time. This
means that as the value of n grows, the running time of the algorithm grows in the
same proportion. Doubling the value of n roughly doubles the running time. An
algorithm whose running-time equation has a highest-order term containing a factor
of n? is said to have a quadratic growth rate. In Figure 3.1, the line labeled 2n?
represents a quadratic growth rate. The line labeled 2" represents an exponential
growth rate. This name comes from the fact that n appears in the exponent. The
line labeled n! is also growing exponentially.

As you can see from Figure 3.1, the difference between an algorithm whose
running time has cost T(n) = 10n and another with cost T(n) = 2n? becomes
tremendous as n grows. For n > 5, the algorithm with running time T(n) = 2n? is
already much slower. This is despite the fact that 10n has a greater constant factor
than 2n?. Comparing the two curves marked 20n and 2n? shows that changing the
constant factor for one of the equations only shifts the point at which the two curves
cross. For n > 10, the algorithm with cost T(n) = 2n?2 is slower than the algorithm
with cost T(n) = 20n. This graph also shows that the equation T(n) = 5nlogn
grows somewhat more quickly than both T(n) = 10n and T(n) = 20n, but not
nearly so quickly as the equation T(n) = 2n?. For constants a,b > 1, n® grows
faster than either log® n or logn®. Finally, algorithms with cost T(n) = 2" or
T(n) = n! are prohibitively expensive for even modest values of n. Note that for
constants a, b > 1, a™ grows faster than n?.

We can get some further insight into relative growth rates for various algorithms
from Figure 3.2. Most of the growth rates that appear in typical algorithms are
shown, along with some representative input sizes. Once again, we see that the
growth rate has a tremendous effect on the resources consumed by an algorithm.
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3.2 Best, Worst, and Average Cases

Consider the problem of finding the factorial of n. For this problem, there is only
one input of a given “size” (that is, there is only a single instance for each size of
n). Now consider our largest-value sequential search algorithm of Example 3.1,
which always examines every array value. This algorithm works on many inputs of
a given size n. That is, there are many possible arrays of any given size. However,
no matter what array of size n that the algorithm looks at, its cost will always be
the same in that it always looks at every element in the array one time.

For some algorithms, different inputs of a given size require different amounts
of time. For example, consider the problem of searching an array containing n
integers to find the one with a particular value K (assume that K appears exactly
once in the array). The sequential search algorithm begins at the first position in
the array and looks at each value in turn until K is found. Once K is found, the
algorithm stops. This is different from the largest-value sequential search algorithm
of Example 3.1, which always examines every array value.

There is a wide range of possible running times for the sequential search alg-
orithm. The first integer in the array could have value K, and so only one integer
is examined. In this case the running time is short. This is the best case for this
algorithm, because it is not possible for sequential search to look at less than one
value. Alternatively, if the last position in the array contains K, then the running
time is relatively long, because the algorithm must examine n values. This is the
worst case for this algorithm, because sequential search never looks at more than
n values. If we implement sequential search as a program and run it many times
on many different arrays of size n, or search for many different values of K within
the same array, we expect the algorithm on average to go halfway through the array
before finding the value we seek. On average, the algorithm examines about n/2
values. We call this the average case for this algorithm.

When analyzing an algorithm, should we study the best, worst, or average case?
Normally we are not interested in the best case, because this might happen only
rarely and generally is too optimistic for a fair characterization of the algorithm’s
running time. In other words, analysis based on the best case is not likely to be
representative of the behavior of the algorithm. However, there are rare instances
where a best-case analysis is useful — in particular, when the best case has high
probability of occurring. In Chapter 7 you will see some examples where taking
advantage of the best-case running time for one sorting algorithm makes a second
more efficient.

How about the worst case? The advantage to analyzing the worst case is that
you know for certain that the algorithm must perform at least that well. This is es-
pecially important for real-time applications, such as for the computers that monitor
an air traffic control system. Here, it would not be acceptable to use an algorithm
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that can handle n airplanes quickly enough most of the time, but which fails to
perform quickly enough when all n airplanes are coming from the same direction.

For other applications — particularly when we wish to aggregate the cost of
running the program many times on many different inputs — worst-case analy-
sis might not be a representative measure of the algorithm’s performance. Often
we prefer to know the average-case running time. This means that we would like
to know the typical behavior of the algorithm on inputs of size n. Unfortunately,
average-case analysis is not always possible. Average-case analysis first requires
that we understand how the actual inputs to the program (and their costs) are dis-
tributed with respect to the set of all possible inputs to the program. For example, it
was stated previously that the sequential search algorithm on average examines half
of the array values. This is only true if the element with value K is equally likely
to appear in any position in the array. If this assumption is not correct, then the
algorithm does nof necessarily examine half of the array values in the average case.
See Section 9.2 for further discussion regarding the effects of data distribution on
the sequential search algorithm.

The characteristics of a data distribution have a significant effect on many
search algorithms, such as those based on hashing (Section 9.4) and search trees
(e.g., see Section 5.4). Incorrect assumptions about data distribution can have dis-
astrous consequences on a program’s space or time performance. Unusual data
distributions can also be used to advantage, as shown in Section 9.2.

In summary, for real-time applications we are likely to prefer a worst-case anal-
ysis of an algorithm. Otherwise, we often desire an average-case analysis if we
know enough about the distribution of our input to compute the average case. If
not, then we must resort to worst-case analysis.

3.3 A Faster Computer, or a Faster Algorithm?

Imagine that you have a problem to solve, and you know of an algorithm whose
running time is proportional to n2. Unfortunately, the resulting program takes ten
times too long to run. If you replace your current computer with a new one that
is ten times faster, will the n? algorithm become acceptable? If the problem size
remains the same, then perhaps the faster computer will allow you to get your work
done quickly enough even with an algorithm having a high growth rate. But a funny
thing happens to most people who get a faster computer. They don’t run the same
problem faster. They run a bigger problem! Say that on your old computer you
were content to sort 10,000 records because that could be done by the computer
during your lunch break. On your new computer you might hope to sort 100,000
records in the same time. You won’t be back from lunch any sooner, so you are
better off solving a larger problem. And because the new machine is ten times
faster, you would like to sort ten times as many records.
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f(n) n n’ Change n’/n
10n 1000 | 10,000 | n” = 10n 10
20n 500 | 5000 | n’ = 10n 10
Snlogn| 250 | 1842 |+/10n <n’ < 10n |7.37
2n2 70 223 | n’ = 4/10n 3.16
2" 13 16 [n"=n+3 —

Figure 3.3 The increase in problem size that can be run in a fixed period of time
on a computer that is ten times faster. The first column lists the right-hand sides
for each of five growth rate equations from Figure 3.1. For the purpose of this
example, arbitrarily assume that the old machine can run 10,000 basic operations
in one hour. The second column shows the maximum value for n that can be run
in 10,000 basic operations on the old machine. The third column shows the value
for n’, the new maximum size for the problem that can be run in the same time
on the new machine that is ten times faster. Variable n’ is the greatest size for the
problem that can run in 100,000 basic operations. The fourth column shows how
the size of n changed to become n’ on the new machine. The fifth column shows
the increase in the problem size as the ratio of n’ to n.

If your algorithm’s growth rate is linear (i.e., if the equation that describes the
running time on input size n is T(n) = cn for some constant c), then 100,000
records on the new machine will be sorted in the same time as 10,000 records on
the old machine. If the algorithm’s growth rate is greater than cn, such as ¢;n?,
then you will not be able to do a problem ten times the size in the same amount of

time on a machine that is ten times faster.

How much larger a problem can be solved in a given amount of time by a faster
computer? Assume that the new machine is ten times faster than the old. Say that
the old machine could solve a problem of size n in an hour. What is the largest
problem that the new machine can solve in one hour? Figure 3.3 shows how large
a problem can be solved on the two machines for five of the running-time functions
from Figure 3.1.

This table illustrates many important points. The first two equations are both
linear; only the value of the constant factor has changed. In both cases, the machine
that is ten times faster gives an increase in problem size by a factor of ten. In other
words, while the value of the constant does affect the absolute size of the problem
that can be solved in a fixed amount of time, it does not affect the improvement in
problem size (as a proportion to the original size) gained by a faster computer. This
relationship holds true regardless of the algorithm’s growth rate: Constant factors
never affect the relative improvement gained by a faster computer.

An algorithm with time equation T(n) = 2n? does not receive nearly as great
an improvement from the faster machine as an algorithm with linear growth rate.
Instead of an improvement by a factor of ten, the improvement is only the square
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root of that: /10 ~ 3.16. Thus, the algorithm with higher growth rate not only
solves a smaller problem in a given time in the first place, it also receives less of
a speedup from a faster computer. As computers get ever faster, the disparity in
problem sizes becomes ever greater.

The algorithm with growth rate T(n) = 5n log n improves by a greater amount
than the one with quadratic growth rate, but not by as great an amount as the algo-
rithms with linear growth rates.

Note that something special happens in the case of the algorithm whose running
time grows exponentially. In Figure 3.1, the curve for the algorithm whose time is
proportional to 2" goes up very quickly. In Figure 3.3, the increase in problem
size on the machine ten times as fast is shown to be about n + 3 (to be precise,
it is n + log, 10). The increase in problem size for an algorithm with exponential
growth rate is by a constant addition, not by a multiplicative factor. Because the
old value of n was 13, the new problem size is 16. If next year you buy another
computer ten times faster yet, then the new computer (100 times faster than the
original computer) will only run a problem of size 19. If you had a second program
whose growth rate is 2" and for which the original computer could run a problem
of size 1000 in an hour, than a machine ten times faster can run a problem only of
size 1003 in an hour! Thus, an exponential growth rate is radically different than
the other growth rates shown in Figure 3.3. The significance of this difference is
explored in Chapter 17.

Instead of buying a faster computer, consider what happens if you replace an
algorithm whose running time is proportional to n? with a new algorithm whose
running time is proportional to n log n. In the graph of Figure 3.1, a fixed amount of
time would appear as a horizontal line. If the line for the amount of time available
to solve your problem is above the point at which the curves for the two growth
rates in question meet, then the algorithm whose running time grows less quickly
is faster. An algorithm with running time T(n) = n? requires 1024 x 1024 =
1,048,576 time steps for an input of size n = 1024. An algorithm with running
time T(n) = nlogn requires 1024 x 10 = 10,240 time steps for an input of
size n = 1024, which is an improvement of much more than a factor of ten when
compared to the algorithm with running time T(n) = n?. Because n? > 10nlogn
whenever n > 58, if the typical problem size is larger than 58 for this example, then
you would be much better off changing algorithms instead of buying a computer
ten times faster. Furthermore, when you do buy a faster computer, an algorithm
with a slower growth rate provides a greater benefit in terms of larger problem size
that can run in a certain time on the new computer.
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3.4 Asymptotic Analysis

Despite the larger constant for the curve labeled 10n in Figure 3.1, 2n? crosses
it at the relatively small value of n = 5. What if we double the value of the
constant in front of the linear equation? As shown in the graph, 20n is surpassed
by 2n2 once n = 10. The additional factor of two for the linear growth rate does
not much matter. It only doubles the xz-coordinate for the intersection point. In
general, changes to a constant factor in either equation only shift where the two
curves cross, not whether the two curves cross.

When you buy a faster computer or a faster compiler, the new problem size
that can be run in a given amount of time for a given growth rate is larger by the
same factor, regardless of the constant on the running-time equation. The time
curves for two algorithms with different growth rates still cross, regardless of their
running-time equation constants. For these reasons, we usually ignore the con-
stants when we want an estimate of the growth rate for the running time or other
resource requirements of an algorithm. This simplifies the analysis and keeps us
thinking about the most important aspect: the growth rate. This is called asymp-
totic algorithm analysis. To be precise, asymptotic analysis refers to the study of
an algorithm as the input size “gets big” or reaches a limit (in the calculus sense).
However, it has proved to be so useful to ignore all constant factors that asymptotic
analysis is used for most algorithm comparisons.

It is not always reasonable to ignore the constants. When comparing algorithms
meant to run on small values of n, the constant can have a large effect. For exam-
ple, if the problem is to sort a collection of exactly five records, then an algorithm
designed for sorting thousands of records is probably not appropriate, even if its
asymptotic analysis indicates good performance. There are rare cases where the
constants for two algorithms under comparison can differ by a factor of 1000 or
more, making the one with lower growth rate impractical for most purposes due to
its large constant. Asymptotic analysis is a form of “back of the envelope” esti-
mation for algorithm resource consumption. It provides a simplified model of the
running time or other resource needs of an algorithm. This simplification usually
helps you understand the behavior of your algorithms. Just be aware of the limi-
tations to asymptotic analysis in the rare situation where the constant is important.

3.4.1 Upper Bounds

Several terms are used to describe the running-time equation for an algorithm.
These terms — and their associated symbols — indicate precisely what aspect of
the algorithm’s behavior is being described. One is the upper bound for the growth
of the algorithm’s running time. It indicates the upper or highest growth rate that
the algorithm can have.
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Because the phrase “has an upper bound to its growth rate of f(n)” is long and
often used when discussing algorithms, we adopt a special notation, called big-Oh
notation. If the upper bound for an algorithm’s growth rate (for, say, the worst
case) is f(n), then we would write that this algorithm is “in the set O(f(n))in the
worst case” (or just “in O(f(n))in the worst case”). For example, if n? grows as
fast as T(n) (the running time of our algorithm) for the worst-case input, we would
say the algorithm is “in O(n?) in the worst case.”

The following is a precise definition for an upper bound. T(n) represents the
true running time of the algorithm. f(n) is some expression for the upper bound.

For T(n) a non-negatively valued function, T(n) is in set O(f(n))
if there exist two positive constants ¢ and ng such that T(n) < cf(n)
for all n > ny.

Constant ng is the smallest value of n for which the claim of an upper bound holds
true. Usually ng is small, such as 1, but does not need to be. You must also be
able to pick some constant c, but it is irrelevant what the value for c actually is.
In other words, the definition says that for al/l inputs of the type in question (such
as the worst case for all inputs of size n) that are large enough (i.e., n > ng), the
algorithm always executes in less than cf(n) steps for some constant c.

Example 3.4 Consider the sequential search algorithm for finding a spec-
ified value in an array of integers. If visiting and examining one value in
the array requires cs steps where c; is a positive number, and if the value
we search for has equal probability of appearing in any position in the ar-

ray, then in the average case T(n) = csn/2. For all values of n > 1,
csn/2 < cgn. Therefore, by the definition, T(n) is in O(n) for ng = 1 and
c=cCs.

Example 3.5 For a particular algorithm, T(n) = c1n? + con in the av-
erage case where c; and cy are positive numbers. Then, cin? + con <
c1n? 4 can?® < (e1 + c)n? foralln > 1. So, T(n) < en? for ¢ = ¢1 + co,
and ng = 1. Therefore, T(n) is in O(n?) by the second definition.

Example 3.6 Assigning the value from the first position of an array to
a variable takes constant time regardless of the size of the array. Thus,
T(n) = c (for the best, worst, and average cases). We could say in this
case that T(n) is in O(c). However, it is traditional to say that an algorithm
whose running time has a constant upper bound is in O(1).
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If someone asked you out of the blue “Who is the best?” your natural reaction
should be to reply “Best at what?” In the same way, if you are asked “What is
the growth rate of this algorithm,” you would need to ask “When? Best case?
Average case? Or worst case?” Some algorithms have the same behavior no matter
which input instance they receive. An example is finding the maximum in an array
of integers. But for many algorithms, it makes a big difference, such as when
searching an unsorted array for a particular value. So any statement about the
upper bound of an algorithm must be in the context of some class of inputs of size
n. We measure this upper bound nearly always on the best-case, average-case, or
worst-case inputs. Thus, we cannot say, “this algorithm has an upper bound to
its growth rate of n°.” We must say something like, “this algorithm has an upper
bound to its growth rate of n? in the average case”’

Knowing that something is in O(f(n)) says only how bad things can be. Per-
haps things are not nearly so bad. Because sequential search is in O(n) in the worst
case, it is also true to say that sequential search is in O(n?). But sequential search
is practical for large n, in a way that is not true for some other algorithms in O(n?).
We always seek to define the running time of an algorithm with the tightest (low-
est) possible upper bound. Thus, we prefer to say that sequential search is in O(n).
This also explains why the phrase “is in O(f(n))” or the notation “€ O(f(n))” is
used instead of “is O(f(n))” or “= O( f(n)).” There is no strict equality to the use
of big-Oh notation. O(n) is in O(n?), but O(n?) is not in O(n).

3.4.2 Lower Bounds

Big-Oh notation describes an upper bound. In other words, big-Oh notation states
a claim about the greatest amount of some resource (usually time) that is required
by an algorithm for some class of inputs of size n (typically the worst such input,
the average of all possible inputs, or the best such input).

Similar notation is used to describe the least amount of a resource that an alg-
orithm needs for some class of input. Like big-Oh notation, this is a measure of the
algorithm’s growth rate. Like big-Oh notation, it works for any resource, but we
most often measure the least amount of time required. And again, like big-Oh no-
tation, we are measuring the resource required for some particular class of inputs:
the worst-, average-, or best-case input of size n.

The lower bound for an algorithm (or a problem, as explained later) is denoted
by the symbol €2, pronounced “big-Omega” or just “Omega.” The following defi-
nition for €2 is symmetric with the definition of big-Oh.

For T(n) a non-negatively valued function, T(n) is in set Q(g(n))
if there exist two positive constants ¢ and ng such that T(n) > cg(n)
for all n > ny.!

' An alternate (non-equivalent) definition for € is
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Example 3.7 Assume T(n) = c1n? + can for ¢1 and ¢ > 0. Then,

cln2 + con > cln2

for all n > 1. So, T(n) > en? for ¢ = ¢; and ng = 1. Therefore, T(n) is
in Q(n?) by the definition.

It is also true that the equation of Example 3.7 is in ©(n). However, as with
big-Oh notation, we wish to get the “tightest” (for ) notation, the largest) bound
possible. Thus, we prefer to say that this running time is in Q(n?).

Recall the sequential search algorithm to find a value K within an array of
integers. In the average and worst cases this algorithm is in 2(n), because in both
the average and worst cases we must examine at least cn values (where cis 1/2 in
the average case and 1 in the worst case).

3.4.3 O Notation

The definitions for big-Oh and () give us ways to describe the upper bound for an
algorithm (if we can find an equation for the maximum cost of a particular class of
inputs of size n) and the lower bound for an algorithm (if we can find an equation
for the minimum cost for a particular class of inputs of size 7). When the upper
and lower bounds are the same within a constant factor, we indicate this by using
© (big-Theta) notation. An algorithm is said to be ©(h(n)) if it is in O(h(n)) and

T(n) is in the set Q(g(n)) if there exists a positive constant ¢ such that T(n) >
cg(n) for an infinite number of values for n.

This definition says that for an “interesting” number of cases, the algorithm takes at least cg(n)
time. Note that this definition is not symmetric with the definition of big-Oh. For g(n) to be a lower
bound, this definition does not require that T(n) > cg(n) for all values of n greater than some
constant. It only requires that this happen often enough, in particular that it happen for an infinite
number of values for nn. Motivation for this alternate definition can be found in the following example.

Assume a particular algorithm has the following behavior:

T(n) = n foralloddn > 1
" n?/100 forallevenn >0

From this definition, n2/100 > ﬁionz for alleven n > 0. So, T(n) > ¢en? for an infinite number
of values of n (i.e., for all even n) for ¢ = 1/100. Therefore, T(n) is in (n?) by the definition.

For this equation for T(n), it is true that all inputs of size n take at least cn time. But an infinite
number of inputs of size n take cn? time, so we would like to say that the algorithm is in Q(n?).
Unfortunately, using our first definition will yield a lower bound of Q(n) because it is not possible to
pick constants ¢ and ng such that T(n) > cn? for all n > ng. The alternative definition does result
in a lower bound of (n?) for this algorithm, which seems to fit common sense more closely. Fortu-
nately, few real algorithms or computer programs display the pathological behavior of this example.
Our first definition for €2 generally yields the expected result.

As you can see from this discussion, asymptotic bounds notation is not a law of nature. It is merely
a powerful modeling tool used to describe the behavior of algorithms.
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it is in Q(h(n)). Note that we drop the word “in” for © notation, because there
is a strict equality for two equations with the same ©. In other words, if f(n) is
©(g(n)). then g(n) is O(f (n)).

Because the sequential search algorithm is both in O(n) and in Q(n) in the
average case, we say it is ©(n) in the average case.

Given an algebraic equation describing the time requirement for an algorithm,
the upper and lower bounds always meet. That is because in some sense we have
a perfect analysis for the algorithm, embodied by the running-time equation. For
many algorithms (or their instantiations as programs), it is easy to come up with
the equation that defines their runtime behavior. Most algorithms presented in this
book are well understood and we can almost always give a © analysis for them.
However, Chapter 17 discusses a whole class of algorithms for which we have no
O analysis, just some unsatisfying big-Oh and €2 analyses. Exercise 3.14 presents
a short, simple program fragment for which nobody currently knows the true upper
or lower bounds.

While some textbooks and programmers will casually say that an algorithm is
“order of” or “big-Oh” of some cost function, it is generally better to use © notation
rather than big-Oh notation whenever we have sufficient knowledge about an alg-
orithm to be sure that the upper and lower bounds indeed match. Throughout this
book, © notation will be used in preference to big-Oh notation whenever our state
of knowledge makes that possible. Limitations on our ability to analyze certain
algorithms may require use of big-Oh or €2 notations. In rare occasions when the
discussion is explicitly about the upper or lower bound of a problem or algorithm,
the corresponding notation will be used in preference to © notation.

3.4.4 Simplifying Rules

Once you determine the running-time equation for an algorithm, it really is a simple
matter to derive the big-Oh, €2, and © expressions from the equation. You do not
need to resort to the formal definitions of asymptotic analysis. Instead, you can use
the following rules to determine the simplest form.

1. If f(n)isin O(g(n)) and g(n) is in O(h(n)), then f(n) is in O(h(n)).
2. If f(n)isin O(kg(n)) for any constant £ > 0, then f(n) is in O(g(n)).
3. If fi(n) isin O(gl(n)))) and f2(n) is in O(g2(n)), then f1(n) + f2(n) is in
n)) and fa(n) is in O(g2(n)), then fi(n)f2(n) is in

O(max(g1(n), g2(n
4. If fi(n) is in O(g;
O(g1(n)g2(n))-

The first rule says that if some function g(n) is an upper bound for your cost
function, then any upper bound for g(n) is also an upper bound for your cost func-
tion. A similar property holds true for {2 notation: If g(n) is a lower bound for your

)
(
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cost function, then any lower bound for g(n) is also a lower bound for your cost
function. Likewise for © notation.

The significance of rule (2) is that you can ignore any multiplicative constants
in your equations when using big-Oh notation. This rule also holds true for €2 and
© notations.

Rule (3) says that given two parts of a program run in sequence (whether two
statements or two sections of code), you need consider only the more expensive
part. This rule applies to 2 and © notations as well: For both, you need consider
only the more expensive part.

Rule (4) is used to analyze simple loops in programs. If some action is repeated
some number of times, and each repetition has the same cost, then the total cost is
the cost of the action multiplied by the number of times that the action takes place.
This rule applies to €2 and © notations as well.

Taking the first three rules collectively, you can ignore all constants and all
lower-order terms to determine the asymptotic growth rate for any cost function.
The advantages and dangers of ignoring constants were discussed near the begin-
ning of this section. Ignoring lower-order terms is reasonable when performing an
asymptotic analysis. The higher-order terms soon swamp the lower-order terms in
their contribution to the total cost as n becomes larger. Thus, if T(n) = 3n* + 5n?,
then T(n) is in O(n*). The n? term contributes relatively little to the total cost for
large n.

Throughout the rest of this book, these simplifying rules are used when dis-
cussing the cost for a program or algorithm.

3.4.5 Classifying Functions

Given functions f(n) and g(n) whose growth rates are expressed as algebraic equa-
tions, we might like to determine if one grows faster than the other. The best way
to do this is to take the limit of the two functions as n grows towards infinity,

lim ()

n—o0 g(n)

If the limit goes to oo, then f(n) is in 2(g(n)) because f(n) grows faster. If the
limit goes to zero, then f(n) is in O(g(n)) because g(n) grows faster. If the limit
goes to some constant other than zero, then f(n) = ©(g(n)) because both grow at
the same rate.

Example 3.8 If f(n) = 2nlogn and g(n) = n?, is f(n) in O(g(n)),
Q(g(n)), or O(g(n))? Because

n2 n

2nlogn - 2logn’
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we easily see that

n2

im ————
n—oo 2n logn

because n grows faster than 2 log n. Thus, n? is in Q(2n logn).

3.5 Calculating the Running Time for a Program

This section presents the analysis for several simple code fragments.

Example 3.9 We begin with an analysis of a simple assignment to an
integer variable.

a = b;

Because the assignment statement takes constant time, it is ©(1).

Example 3.10 Consider a simple £or loop.
sum = 0;
for (i=1; i<=n; i++)

sum += n;

The first line is ©(1). The for loop is repeated n times. The third
line takes constant time so, by simplifying rule (4) of Section 3.4.4, the
total cost for executing the two lines making up the £or loop is ©(n). By
rule (3), the cost of the entire code fragment is also ©(n).

Example 3.11 We now analyze a code fragment with several for loops,
some of which are nested.

sum = 0;
for (i=1; i<=n; i++) // First for loop
for (j=1; j<=i; j++) // is a double loop
sum+t+;
for (k=0; k<n; k++) // Second for loop
A[k] = k;

This code fragment has three separate statements: the first assignment
statement and the two for loops. Again the assignment statement takes
constant time; call it ¢;. The second for loop is just like the one in Exam-
ple 3.10 and takes con = O(n) time.

The first £or loop is a double loop and requires a special technique. We
work from the inside of the loop outward. The expression sum++ requires
constant time; call it c3. Because the inner £or loop is executed ¢ times, by
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simplifying rule (4) it has cost c3i. The outer £or loop is executed n times,
but each time the cost of the inner loop is different because it costs c3z with
1 changing each time. You should see that for the first execution of the outer
loop, ¢ is 1. For the second execution of the outer loop, ¢ is 2. Each time
through the outer loop, ¢ becomes one greater, until the last time through
the loop when ¢ = n. Thus, the total cost of the loop is c3 times the sum of
the integers 1 through n. From Equation 2.1, we know that

zn:i ~ n(n+1)

= =5

i=1

which is ©(n?). By simplifying rule (3), ©(cy + can + c3n?) is simply
O(n?).

Example 3.12 Compare the asymptotic analysis for the following two
code fragments:

suml = 0;
for (i=1; i<=n; i++) // First double loop
for (j=1; j<=n; j++) // do n times
suml++;
sum2 = 0;
for (i=1l; i<=n; i++) // Second double loop
for (j=1; j<=i; j++) // do i times
sum2++;

In the first double loop, the inner f£or loop always executes n times.
Because the outer loop executes n times, it should be obvious that the state-
ment suml++ is executed precisely n? times. The second loop is similar
to the one analyzed in the previous example, with cost 2?21 7. This is ap-
proximately %nQ. Thus, both double loops cost ©(n?), though the second
requires about half the time of the first.

Example 3.13 Not all doubly nested £or loops are ©(n?). The follow-
ing pair of nested loops illustrates this fact.

suml = 0;

for (k=1; k<=n; kx=2) // Do log n times
for (j=1; j<=n; j++) // Do n times
suml++;
sum2 = 0;
for (k=1; k<=n; k*x=2) // Do log n times

for (j=1; j<=k; j++) // Do k times
sum2++;
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When analyzing these two code fragments, we will assume that n is
a power of two. The first code fragment has its outer f£or loop executed
logn + 1 times because on each iteration k£ is multiplied by two until it
reaches n. Because the inner loop always executes n times, the total cost for
the first code fragment can be expressed as Ziozgon n. Note that a variable
substitution takes place here to create the summation, with k& = 2°. From
Equation 2.3, the solution for this summation is ©(nlogn). In the second
code fragment, the outer loop is also executed logn + 1 times. The inner
loop has cost k, which doubles each time. The summation can be expressed
as Z;‘fon 2! where n is assumed to be a power of two and again k = 2°.

From Equation 2.8, we know that this summation is simply ©(n).

What about other control statements? While loops are analyzed in a manner
similar to for loops. The cost of an if statement in the worst case is the greater
of the costs for the then and else clauses. This is also true for the average case,
assuming that the size of n does not affect the probability of executing one of the
clauses (which is usually, but not necessarily, true). For switch statements, the
worst-case cost is that of the most expensive branch. For subroutine calls, simply
add the cost of executing the subroutine.

There are rare situations in which the probability for executing the various
branches of an if or switch statement are functions of the input size. For exam-
ple, for input of size n, the then clause of an i f statement might be executed with
probability 1/n. An example would be an if statement that executes the then
clause only for the smallest of n values. To perform an average-case analysis for
such programs, we cannot simply count the cost of the i f statement as being the
cost of the more expensive branch. In such situations, the technique of amortized
analysis (see Section 14.3) can come to the rescue.

Determining the execution time of a recursive subroutine can be difficult. The
running time for a recursive subroutine is typically best expressed by a recurrence
relation. For example, the recursive factorial function fact of Section 2.5 calls
itself with a value one less than its input value. The result of this recursive call is
then multiplied by the input value, which takes constant time. Thus, the cost of
the factorial function, if we wish to measure cost in terms of the number of multi-
plication operations, is one more than the number of multiplications made by the
recursive call on the smaller input. Because the base case does no multiplications,
its cost is zero. Thus, the running time for this function can be expressed as

T(n)=T(n—1)+1forn>1; T(1)=0.

We know from Examples 2.8 and 2.13 that the closed-form solution for this recur-
rence relation is ©(n).
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Positon 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Key |11]13]|21|26|29|36(40|41|45|51|54|56|65|72|77|83

+ T

Figure 3.4 An illustration of binary search on a sorted array of 16 positions.
Consider a search for the position with value K = 45. Binary search first checks
the value at position 7. Because 41 < K, the desired value cannot appear in any
position below 7 in the array. Next, binary search checks the value at position 11.
Because 56 > K, the desired value (if it exists) must be between positions 7
and 11. Position 9 is checked next. Again, its value is too great. The final search
is at position 8, which contains the desired value. Thus, function binary returns
position 8. Alternatively, if K were 44, then the same series of record accesses
would be made. After checking position 8, binary would return a value of n,
indicating that the search is unsuccessful.

The final example of algorithm analysis for this section will compare two algo-
rithms for performing search in an array. Earlier, we determined that the running
time for sequential search on an array where the search value K is equally likely
to appear in any location is ©(n) in both the average and worst cases. We would
like to compare this running time to that required to perform a binary search on
an array whose values are stored in order from lowest to highest.

Binary search begins by examining the value in the middle position of the ar-
ray; call this position mid and the corresponding value k,,;q. If kp,;q = K, then
processing can stop immediately. This is unlikely to be the case, however. Fortu-
nately, knowing the middle value provides useful information that can help guide
the search process. In particular, if k,,;4 > K, then you know that the value K
cannot appear in the array at any position greater than mid. Thus, you can elim-
inate future search in the upper half of the array. Conversely, if k,,,;4 < K, then
you know that you can ignore all positions in the array less than mid. Either way,
half of the positions are eliminated from further consideration. Binary search next
looks at the middle position in that part of the array where value K may exist. The
value at this position again allows us to eliminate half of the remaining positions
from consideration. This process repeats until either the desired value is found, or
there are no positions remaining in the array that might contain the value K. Fig-
ure 3.4 illustrates the binary search method. Figure 3.5 shows an implementation
for binary search.

To find the cost of this algorithm in the worst case, we can model the running
time as a recurrence and then find the closed-form solution. Each recursive call
to binary cuts the size of the array approximately in half, so we can model the
worst-case cost as follows, assuming for simplicity that n is a power of two.

T(n) =T(n/2)+1forn >1; T(1)=1.
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// Return the position of an element in sorted array "A" of
// size "n" with value "K". If "K" is not in "A", return
// the value "n"

int binary(int A[], int n, int K) {

int 1 = -1;
int r = n; // 1 and r are beyond array bounds
while (141 != r) { // Stop when 1 and r meet
int i = (1+r)/2; // Check middle of remaining subarray
if (K < A[i]) r = i; // In left half
if (K == A[i]) return i; // Found it
if (K > A[i]) 1 = i; // In right half
}
return n; // Search value not in A

Figure 3.5 Implementation for binary search.

If we expand the recurrence, we find that we can do so only log n times before
we reach the base case, and each expansion adds one to the cost. Thus, the closed-
form solution for the recurrence is T(n) = log n.

Function binary is designed to find the (single) occurrence of K and return
its position. A special value is returned if K does not appear in the array. This
algorithm can be modified to implement variations such as returning the position
of the first occurrence of K in the array if multiple occurrences are allowed, and
returning the position of the greatest value less than K when K is not in the array.

Comparing sequential search to binary search, we see that as n grows, the ©(n)
running time for sequential search in the average and worst cases quickly becomes
much greater than the ©(log n) running time for binary search. Taken in isolation,
binary search appears to be much more efficient than sequential search. This is
despite the fact that the constant factor for binary search is greater than that for
sequential search, because the calculation for the next search position in binary
search is more expensive than just incrementing the current position, as sequential
search does.

Note however that the running time for sequential search will be roughly the
same regardless of whether or not the array values are stored in order. In contrast,
binary search requires that the array values be ordered from lowest to highest. De-
pending on the context in which binary search is to be used, this requirement for a
sorted array could be detrimental to the running time of a complete program, be-
cause maintaining the values in sorted order requires to greater cost when inserting
new elements into the array. This is an example of a tradeoff between the advan-
tage of binary search during search and the disadvantage related to maintaining a
sorted array. Only in the context of the complete problem to be solved can we know
whether the advantage outweighs the disadvantage.
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3.6 Analyzing Problems

You most often use the techniques of “algorithm” analysis to analyze an algorithm,
or the instantiation of an algorithm as a program. You can also use these same
techniques to analyze the cost of a problem. It should make sense to you to say that
the upper bound for a problem cannot be worse than the upper bound for the best
algorithm that we know for that problem. But what does it mean to give a lower
bound for a problem?

Consider a graph of cost over all inputs of a given size n for some algorithm
for a given problem. Define A to be the collection of all algorithms that solve
the problem (theoretically, there are an infinite number of such algorithms). Now,
consider the collection of all the graphs for all of the (infinitely many) algorithms
in A. The worst case lower bound is the least of all the highest points on all the
graphs.

It is much easier to show that an algorithm (or program) is in Q(f(n)) than it
is to show that a problem is in Q(f(n)). For a problem to be in (f(n)) means
that every algorithm that solves the problem is in (f(n)), even algorithms that we
have not thought of!

So far all of our examples of algorithm analysis give “obvious” results, with
big-Oh always matching 2. To understand how big-Oh, €2, and © notations are
properly used to describe our understanding of a problem or an algorithm, it is best
to consider an example where you do not already know a lot about the problem.

Let us look ahead to analyzing the problem of sorting to see how this process
works. What is the least possible cost for any sorting algorithm in the worst case?
The algorithm must at least look at every element in the input, just to determine
that the input is truly sorted. Thus, any sorting algorithm must take at least cn time.
For many problems, this observation that each of the n inputs must be looked at
leads to an easy €2(n) lower bound.

In your previous study of computer science, you have probably seen an example
of a sorting algorithm whose running time is in O(n?) in the worst case. The simple
Bubble Sort and Insertion Sort algorithms typically given as examples in a first year
programming course have worst case running times in O(n?). Thus, the problem
of sorting can be said to have an upper bound in O(n?). How do we close the
gap between Q(n) and O(n?)? Can there be a better sorting algorithm? If you can
think of no algorithm whose worst-case growth rate is better than O(n?), and if you
have discovered no analysis technique to show that the least cost for the problem
of sorting in the worst case is greater than (n), then you cannot know for sure
whether or not there is a better algorithm.

Chapter 7 presents sorting algorithms whose running time is in O(nlogn) for
the worst case. This greatly narrows the gap. With this new knowledge, we now
have a lower bound in ©2(n) and an upper bound in O(nlogn). Should we search
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for a faster algorithm? Many have tried, without success. Fortunately (or perhaps
unfortunately?), Chapter 7 also includes a proof that any sorting algorithm must
have running time in Q(nlogn) in the worst case.? This proof is one of the most
important results in the field of algorithm analysis, and it means that no sorting
algorithm can possibly run faster than cn logn for the worst-case input of size n.
Thus, we can conclude that the problem of sorting is ©(nlog n) in the worst case,
because the upper and lower bounds have met.

Knowing the lower bound for a problem does not give you a good algorithm.
But it does help you to know when to stop looking. If the lower bound for the
problem matches the upper bound for the algorithm (within a constant factor), then
we know that we can find an algorithm that is better only by a constant factor.

3.7 Common Misunderstandings

Asymptotic analysis is one of the most intellectually difficult topics that undergrad-
uate computer science majors are confronted with. Most people find growth rates
and asymptotic analysis confusing and so develop misconceptions about either the
concepts or the terminology. It helps to know what the standard points of confusion
are, in hopes of avoiding them.

One problem with differentiating the concepts of upper and lower bounds is
that, for most algorithms that you will encounter, it is easy to recognize the true
growth rate for that algorithm. Given complete knowledge about a cost function,
the upper and lower bound for that cost function are always the same. Thus, the
distinction between an upper and a lower bound is only worthwhile when you have
incomplete knowledge about the thing being measured. If this distinction is still not
clear, reread Section 3.6. We use ©-notation to indicate that there is no meaningful
difference between what we know about the growth rates of the upper and lower
bound (which is usually the case for simple algorithms).

It is a common mistake to confuse the concepts of upper bound or lower bound
on the one hand, and worst case or best case on the other. The best, worst, or
average cases each give us a concrete input instance (or concrete set of instances)
that we can apply to an algorithm description to get a cost measure. The upper and
lower bounds describe our understanding of the growth rate for that cost measure.
So to define the growth rate for an algorithm or problem, we need to determine
what we are measuring (the best, worst, or average case) and also our description
for what we know about the growth rate of that cost measure (big-Oh, 2, or ©).

The upper bound for an algorithm is not the same as the worst case for that
algorithm for a given input of size n. What is being bounded is not the actual cost
(which you can determine for a given value of n), but rather the growth rate for the

*While it is fortunate to know the truth, it is unfortunate that sorting is ©(n logn) rather than
O(n)!
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cost. There cannot be a growth rate for a single point, such as a particular value
of n. The growth rate applies to the change in cost as a change in input size occurs.
Likewise, the lower bound is not the same as the best case for a given size n.

Another common misconception is thinking that the best case for an algorithm
occurs when the input size is as small as possible, or that the worst case occurs
when the input size is as large as possible. What is correct is that best- and worse-
case instances exist for each possible size of input. That is, for all inputs of a given
size, say ¢, one (or more) of the inputs of size ¢ is the best and one (or more) of the
inputs of size 7 is the worst. Often (but not always!), we can characterize the best
input case for an arbitrary size, and we can characterize the worst input case for an
arbitrary size. Ideally, we can determine the growth rate for the characterized best,
worst, and average cases as the input size grows.

Example 3.14 What is the growth rate of the best case for sequential
search? For any array of size n, the best case occurs when the value we
are looking for appears in the first position of the array. This is true regard-
less of the size of the array. Thus, the best case (for arbitrary size n) occurs
when the desired value is in the first of n positions, and its cost is 1. It is
not correct to say that the best case occurs when n = 1.

Example 3.15 Imagine drawing a graph to show the cost of finding the
maximum value among n values, as n grows. That is, the z axis would
be n, and the y value would be the cost. Of course, this is a diagonal line
going up to the right, as n increases (you might want to sketch this graph
for yourself before reading further).

Now, imagine the graph showing the cost for each instance of the prob-
lem of finding the maximum value among (say) 20 elements in an array.
The first position along the x axis of the graph might correspond to having
the maximum element in the first position of the array. The second position
along the x axis of the graph might correspond to having the maximum el-
ement in the second position of the array, and so on. Of course, the cost is
always 20. Therefore, the graph would be a horizontal line with value 20.
You should sketch this graph for yourself.

Now, let us switch to the problem of doing a sequential search for a
given value in an array. Think about the graph showing all the problem
instances of size 20. The first problem instance might be when the value
we search for is in the first position of the array. This has cost 1. The second
problem instance might be when the value we search for is in the second
position of the array. This has cost 2. And so on. If we arrange the problem
instances of size 20 from least expensive on the left to most expensive on
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the right, we see that the graph forms a diagonal line from lower left (with
value 0) to upper right (with value 20). Sketch this graph for yourself.

Finally, let us consider the cost for performing sequential search as the
size of the array n gets bigger. What will this graph look like? Unfortu-
nately, there’s not one simple answer, as there was for finding the maximum
value. The shape of this graph depends on whether we are considering the
best case cost (that would be a horizontal line with value 1), the worst case
cost (that would be a diagonal line with value ¢ at position ¢ along the =
axis), or the average cost (that would be a a diagonal line with value i/2 at
position 7 along the z axis). This is why we must always say that function
f(n)isin O(g(n)) in the best, average, or worst case! If we leave off which
class of inputs we are discussing, we cannot know which cost measure we
are referring to for most algorithms.

3.8 Multiple Parameters

Sometimes the proper analysis for an algorithm requires multiple parameters to de-
scribe the cost. To illustrate the concept, consider an algorithm to compute the rank
ordering for counts of all pixel values in a picture. Pictures are often represented by
a two-dimensional array, and a pixel is one cell in the array. The value of a pixel is
either the code value for the color, or a value for the intensity of the picture at that
pixel. Assume that each pixel can take any integer value in the range 0 to C' — 1.
The problem is to find the number of pixels of each color value and then sort the
color values with respect to the number of times each value appears in the picture.
Assume that the picture is a rectangle with P pixels. A pseudocode algorithm to
solve the problem follows.

for (i=0; i<C; i++) // Initialize count
count[i] = O;
for (i=0; i<P; i++) // Look at all of the pixels
count [value (i) ]++; // Increment a pixel value count
sort (count, C); // Sort pixel value counts

In this example, count is an array of size C' that stores the number of pixels for
each color value. Function value (i) returns the color value for pixel 7.

The time for the first for loop (which initializes count) is based on the num-
ber of colors, C'. The time for the second loop (which determines the number of
pixels with each color) is ©(P). The time for the final line, the call to sort, de-
pends on the cost of the sorting algorithm used. From the discussion of Section 3.6,
we can assume that the sorting algorithm has cost ©( P log P) if P items are sorted,
thus yielding ©(P log P) as the total algorithm cost.
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Is this a good representation for the cost of this algorithm? What is actu-
ally being sorted? It is not the pixels, but rather the colors. What if C' is much
smaller than P? Then the estimate of O(P log P) is pessimistic, because much
fewer than P items are being sorted. Instead, we should use P as our analysis vari-
able for steps that look at each pixel, and C' as our analysis variable for steps that
look at colors. Then we get ©(C) for the initialization loop, ©(P) for the pixel
count loop, and ©(C'log C) for the sorting operation. This yields a total cost of
O(P + ClogC).

Why can we not simply use the value of C' for input size and say that the cost
of the algorithm is ©(C'log C)? Because, C' is typically much less than P. For
example, a picture might have 1000 x 1000 pixels and a range of 256 possible
colors. So, P is one million, which is much larger than C'logC. But, if P is
smaller, or C' larger (even if it is still less than P), then C'log C' can become the
larger quantity. Thus, neither variable should be ignored.

3.9 Space Bounds

Besides time, space is the other computing resource that is commonly of concern
to programmers. Just as computers have become much faster over the years, they
have also received greater allotments of memory. Even so, the amount of available
disk space or main memory can be significant constraints for algorithm designers.

The analysis techniques used to measure space requirements are similar to those
used to measure time requirements. However, while time requirements are nor-
mally measured for an algorithm that manipulates a particular data structure, space
requirements are normally determined for the data structure itself. The concepts of
asymptotic analysis for growth rates on input size apply completely to measuring
space requirements.

Example 3.16 What are the space requirements for an array of n inte-
gers? If each integer requires c bytes, then the array requires cn bytes,
which is ©(n).

Example 3.17 Imagine that we want to keep track of friendships between
n people. We can do this with an array of size n x n. Each row of the array
represents the friends of an individual, with the columns indicating who has
that individual as a friend. For example, if person j is a friend of person
i, then we place a mark in column j of row ¢ in the array. Likewise, we
should also place a mark in column ¢ of row j if we assume that friendship
works both ways. For n people, the total size of the array is ©(n?).
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A data structure’s primary purpose is to store data in a way that allows efficient
access to those data. To provide efficient access, it may be necessary to store addi-
tional information about where the data are within the data structure. For example,
each node of a linked list must store a pointer to the next value on the list. All such
information stored in addition to the actual data values is referred to as overhead.
Ideally, overhead should be kept to a minimum while allowing maximum access.
The need to maintain a balance between these opposing goals is what makes the
study of data structures so interesting.

One important aspect of algorithm design is referred to as the space/time trade-
off principle. The space/time tradeoff principle says that one can often achieve a
reduction in time if one is willing to sacrifice space or vice versa. Many programs
can be modified to reduce storage requirements by “packing” or encoding informa-
tion. “Unpacking” or decoding the information requires additional time. Thus, the
resulting program uses less space but runs slower. Conversely, many programs can
be modified to pre-store results or reorganize information to allow faster running
time at the expense of greater storage requirements. Typically, such changes in time
and space are both by a constant factor.

A classic example of a space/time tradeoff is the lookup table. A lookup table
pre-stores the value of a function that would otherwise be computed each time it is
needed. For example, 12! is the greatest value for the factorial function that can be
stored in a 32-bit int variable. If you are writing a program that often computes
factorials, it is likely to be much more time efficient to simply pre-compute and
store the 12 values in a table. Whenever the program needs the value of n! it can
simply check the lookup table. (If n > 12, the value is too large to store as an int
variable anyway.) Compared to the time required to compute factorials, it may be
well worth the small amount of additional space needed to store the lookup table.

Lookup tables can also store approximations for an expensive function such as
sine or cosine. If you compute this function only for exact degrees or are willing
to approximate the answer with the value for the nearest degree, then a lookup
table storing the computation for exact degrees can be used instead of repeatedly
computing the sine function. Note that initially building the lookup table requires
a certain amount of time. Your application must use the lookup table often enough
to make this initialization worthwhile.

Another example of the space/time tradeoff is typical of what a programmer
might encounter when trying to optimize space. Here is a simple code fragment for
sorting an array of integers. We assume that this is a special case where there are n
integers whose values are a permutation of the integers from 0 to n — 1. This is an
example of a Binsort, which is discussed in Section 7.7. Binsort assigns each value
to an array position corresponding to its value.

for (i=0; i<n; i++)
B[A[i]] = A[i];
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This is efficient and requires ©(n) time. However, it also requires two arrays
of size n. Next is a code fragment that places the permutation in order but does so
within the same array (thus it is an example of an “in place” sort).
for (i=0; i<n; i++)

while (A[i] != i)
swap (A, i, A[i]);

Function swap (A, i, Jj) exchanges elements i and j in array A. It may
not be obvious that the second code fragment actually sorts the array. To see that
this does work, notice that each pass through the for loop will at least move the
integer with value ¢ to its correct position in the array, and that during this iteration,
the value of A[1] must be greater than or equal to 7. A total of at most n swap
operations take place, because an integer cannot be moved out of its correct position
once it has been placed there, and each swap operation places at least one integer in
its correct position. Thus, this code fragment has cost O(n). However, it requires
more time to run than the first code fragment. On my computer the second version
takes nearly twice as long to run as the first, but it only requires half the space.

A second principle for the relationship between a program’s space and time
requirements applies to programs that process information stored on disk, as dis-
cussed in Chapter 8 and thereafter. Strangely enough, the disk-based space/time
tradeoff principle is almost the reverse of the space/time tradeoff principle for pro-
grams using main memory.

The disk-based space/time tradeoff principle states that the smaller you can
make your disk storage requirements, the faster your program will run. This is be-
cause the time to read information from disk is enormous compared to computation
time, so almost any amount of additional computation needed to unpack the data is
going to be less than the disk-reading time saved by reducing the storage require-
ments. Naturally this principle does not hold true in all cases, but it is good to keep
in mind when designing programs that process information stored on disk.

3.10 Speeding Up Your Programs

In practice, there is not such a big difference in running time between an algorithm
with growth rate ©(n) and another with growth rate ©(n log n). There is, however,
an enormous difference in running time between algorithms with growth rates of
O(nlogn)and ©(n?). As you shall see during the course of your study of common
data structures and algorithmes, it is not unusual that a problem whose obvious solu-
tion requires ©(n?) time also has a solution requiring ©(nlogn) time. Examples
include sorting and searching, two of the most important computer problems.

Example 3.18 The following is a true story. A few years ago, one of
my graduate students had a big problem. His thesis work involved several
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intricate operations on a large database. He was now working on the final
step. “Dr. Shaffer,” he said, “I am running this program and it seems to
be taking a long time.” After examining the algorithm we realized that its
running time was ©(n?), and that it would likely take one to two weeks
to complete. Even if we could keep the computer running uninterrupted
for that long, he was hoping to complete his thesis and graduate before
then. Fortunately, we realized that there was a fairly easy way to convert
the algorithm so that its running time was O (nlogn). By the next day he
had modified the program. It ran in only a few hours, and he finished his
thesis on time.

While not nearly so important as changing an algorithm to reduce its growth
rate, “code tuning” can also lead to dramatic improvements in running time. Code
tuning is the art of hand-optimizing a program to run faster or require less storage.
For many programs, code tuning can reduce running time by a factor of ten, or
cut the storage requirements by a factor of two or more. I once tuned a critical
function in a program — without changing its basic algorithm — to achieve a factor
of 200 speedup. To get this speedup, however, I did make major changes in the
representation of the information, converting from a symbolic coding scheme to a
numeric coding scheme on which I was able to do direct computation.

Here are some suggestions for ways to speed up your programs by code tuning.
The most important thing to realize is that most statements in a program do not
have much effect on the running time of that program. There are normally just a
few key subroutines, possibly even key lines of code within the key subroutines,
that account for most of the running time. There is little point to cutting in half the
running time of a subroutine that accounts for only 1% of the total running time.
Focus your attention on those parts of the program that have the most impact.

When tuning code, it is important to gather good timing statistics. Many com-
pilers and operating systems include profilers and other special tools to help gather
information on both time and space use. These are invaluable when trying to make
a program more efficient, because they can tell you where to invest your effort.

A lot of code tuning is based on the principle of avoiding work rather than
speeding up work. A common situation occurs when we can test for a condition
that lets us skip some work. However, such a test is never completely free. Care
must be taken that the cost of the test does not exceed the amount of work saved.
While one test might be cheaper than the work potentially saved, the test must
always be made and the work can be avoided only some fraction of the time.

Example 3.19 A common operation in computer graphics applications is
to find which among a set of complex objects contains a given point in
space. Many useful data structures and algorithms have been developed to
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deal with variations of this problem. Most such implementations involve
the following tuning step. Directly testing whether a given complex ob-
ject contains the point in question is relatively expensive. Instead, we can
screen for whether the point is contained within a bounding box for the
object. The bounding box is simply the smallest 