AUTOMATED GRADING TOOL
WITH
AN INTERACTIVE
ENVIRONMENT FOR LEARNING
PROGRAMMING

Ann Molly Paul

T

Overview

Need for Automated Grading

Time Management

o Assume 40 students - 2 assignments / week
- 10 minutes to grade an assignment.

m (40*2*10)/60 hours

o This amounts to 13 hours a week on grading
for an average person

Avoiding Inconsistency

N
o Inconsistency while grading different code for
the same test cases
o Varying styles of coding
o Different use of methods

o Different complexity of methods to do similar
operations

o Challenge for the grader to grade impartially

Opportunity for improvement

o Less time for grading—> more opportunity for
students to improve code.
o It is demanding for an instructor to grade even

one submission per student leaving aside option
for resubmission

o Allows students to improve code after an early
submission

Speedy Grading
R

o Makes it possible for students to know their
grades right away

o Students are happier
o Instructor is happier

Encourages more learning

T
0 Continuous Assessment

o Less difficulty in grading encourages instructors to
give more assignments

o Improves students programming skills while they
try solving different questions

Challenge students

R
o Makes it reasonable to assign more complex
problems

o Time taken to grade dominates the decision while
assigning questions(easy preferred over hard)

o Automatic grading makes it easier for profs to
grade complex problems more accurately

Test driven coding

T,
o Encourages students to code with test cases
IN mind
o Web-CAT allows students to write their own test
cases.
o Teaches students Test driven development(TDD)

o Gives them deeper understanding on the
assignment

ooz

Methodology

Approaches to Automate Grading

Method 1- Black box input/output testing
.

o Run the compiled program

o Feed it input -Test typical cases and boundary
cases

o Compare Program output to known Correct
output for those input cases

o Deal with problems like infinite loops and too
much output by running in special “containers”
with timers, 1/O limitations, and more.

0 USES: In Programming Contests to verify
results

Method 2: Measure changes in program

State
N

0 Set program state (precondition)

o Run student’s snippet of code/function/set of
functions

o Verify that program state changed correctly
(post condition/results)

o Unit testing Is done this way

Method 3: Static analysis (analyze non-
running code)
I

0 Features:

o Have programs verify program style, internal
documentation, etc.

o Relatively sophisticated free tools available
(especially for Java)

0 When students write their own unit tests, can
do coverage analysis

o Verify correct dynamically allocated memory
usage

oecions

Testing

Unit Testing
_—

o Definition: a method of testing that verifies the
Individual units of source code are working
properly

o Shows whether a unit (the smallest piece of
software that can be independently compiled or
assembled, loaded, and tested) satisfies its
functional specification

o Checks if its iImplemented structure matches the
iIntended design structure.

The xUnit Testing Approach

o This approach is modifies unit testing to test
code In different languages and has
environments specific to a single language.

o XUnit: JUnit, CppUnit, CxxUnit, NUnit, PyUnit,
XMLUnit, etc.

xUnit Architecture

o Test case — the base class
0 Test suite — a class for aggregating unit tests

o Test runner
o Reports test result details
o Simplifies the test

o Test fixture

o Test environment used by multiple tests

o Provides a shared environment (with setup, tear-down,
and common variables) for each test

o A set of assertion functions
o E.qg., assert(expression, “string to print if false”)

oecions

Prior Approaches to
Automate Code
Evaluation

Curator — Tool to grade programs

o Curator compiles the student program.

0 Runs a test data generator to create input for
grading.

o Uses a reference implementation as expected
output

o Grades by comparing against the reference
Implementation's output.

0 Student receives feedback

o It includes the input used, the student's output,
and the instructor's expected output for reference.

Limitations

o Focus on output correctness

Score of zero ->submissions that do not compile,
do not produce output, or do not terminate.

Don’t consider ->design, commenting,
appropriate use of abstraction, testing one's own
code, etc.)

o Students are not encouraged or rewarded for
performing testing on their own.

o Never perform serious testing of their own
programs

Toecions

Web-CAT — In detall

Web-CAT

o Stephen Edwards at Virginia Tech developed
Web-CAT

o Aim: To support automated grading of student
programs.

o Used to grade student-written tests
o Inculcates test driven development (TDD)

GRADING SCHEME

You decide the balance between Decide
Use plug- automated grading and manual inspection when and
ins for a }\ T~ h,f v; t
i students
variety of rading Schem Il Instances /
languages, can
or Write Submission Rules: | 1705 submission--Deliverable | JEI\ New | _SmeI_t’
your own! including
Automatially grade using these steps in sequence: earIy
n
Plug-in Time Limit (sec) Move Action gg d L;:?g
1 JavaTddPlugin 300 BEm =o penalties
Add| Add another step / —

o /
_~ R
Plug-in settings and submission policies Parameterized plug-ins further
can be reused over and over extend your options

DISPLAY OF RESULTS — INSTANT!

Students see results
in their web browser
within minutes

Assignment
Name

CS 1705(11689): Program 3: URLHarvester try #19
D (Partners)

03/25/07 05:07PM, 6 hrs, 47 mins early

88.3/100.0

Submitted
Total Score

E Gradi ng com plete? | Regrade Submission [View Other Submissions)

Design/Readability: 34.0

/400
20.0/200 |

Scoring overview is
backed up by

detailed line-by-line
results in each file

Add overall
comments, or
write detailed
info in-line in
source files

?Ief(:oding:
orrectness/Testing:

34.3/40.0 I

Final score: 88.3/100.0 E
sition in class: (" Show Graphs)

o =l README.TXT 0 0.0

9 = URLHarvester.java 2 -4.0

e /@ URLHarvesterTest.java 2 -2.0

100.05% [
100.05% [N

Bl Printable Report |

TA/Instructor Commenis
<pre>
Commenting,/Naming/Style Good 8/10
Reguired Behavior Good 8/10

Encapsulation Good 8/10
agn/Abstraction Excellent 10/10

hutomated Style Checks Excellent 20/20

Correctness/Testing Good 34.3/40

Total

88.3/100

GTA: Matthew Thornton
Good job.

Wiew Assignment Results

Back to 'WwWeb-CAT Home I

Submission Details

Possible points: 0.0 Froject name: 0l-CuadTrae
Deductons: -0 Submission Nno.: =
Early bonus; .0 File size: 14540
Late penalty: 0.0 Submission time: D01L20,03 01: 26PM
Fmal score: 3.0
Deadline 02/ 12,/03 10: 104K
Late daadline: D214,/ 03 10: 10ANM
Early bornus MIOree
Late penalty 20 points per 1 day late

Correctness RBasad on Your Tests

AoUE Pirogranm 939

Thoroughness of Your Testing

Your Test Cases Q2298

Score = (93% x 100% X ¥2%) < 50 = 43

Prograrm Correctness (Your Solution)

tddpgas.pl wili.2Z: Testing your Subsmssion using pltests. txt

case & FAILED: empty string on the Teft

Tests Fun: 42, Errors: O, Failures: 3 (92.5%)

Test Validity (Reference Solution)
tddgas.pl wl.Z: Testing reference impllementation wusing pltests, oxt

Tests Rwun: 42, Errors: @, Failures: O (100.0%)

[e &b <& 8 @E | Dome

Bl =7 of 40 tests passed

Q2% Ccoverage,
40 of 40 tests walid

COMMENTS AND REVIEW

Combine manual
Add Comments to This File code inspection with

PRSP S 1705(11689): Program 3: URLHarvester try 219 | | @UTON |ated g rad |ng
Name B el
results

LT 03/25/07 05:07PM, 6 hrs, 47 mins early
|G IRLSTEN 88.3/100.0

GIER GOl URLHarvester. java

HCR{STEN -4.0 points lost

Leverage industrial-
strength tools to run
tests, measure code
coverage, and check
style guidelines

f e o
Deductions TA Tools/Testing [Save & Continue

URLHarvester -4.0 0.0 -4.0 Save & Finish Later

others -2.0 -2.0 -4.0 Save & Mark Done |
Total -6.0 -5.7 -11.7 B88.3/100.0 (cancel)

Bé@ r!Se\er:tﬁ'cvrrrpre'vim.ns it F:—]'Ermr I—:JrToEveryorﬂ s/ B I U
102 0 outStream.println(” " 4 deep) A
103 r
104
105

106
107 while (initial != null)

0 Error [Matthew Thornton] : -2.0
A lot of the functionality of this loop could have been put into the previous control structure Ygifonly need one primary looping structure in this syl
method and then a loop within that loop. ™~

WYSIWYG

108 {
109 4 initial = getNextHrefURL(in); Com m e nt
110 4 if (initial l!= mull)
111 { g = -
112 2 outStream.println(initial); m ed Itl ng rlg ht
113 2 if (initial.substring(0, 4).equals("http"))
114 1 H
115 2 InputStream deepStream = new URL({initial).openStream(); I n you r
Scanner inDeepStream = new Scanner(deepStream);

browser

oecions

Contribution to
Learning Experience

Road Blocks to learn efficient
coding skills

o Student mostly use ‘trial and error’ technique to
write code.

0 Software testing requires experience at
orogramming- New students are not ready for It.

o Instructors just don’t have the to teach a new topic
Ike software testing

o Course staff already has its hands full assessing
program correctness

0 Students are concerned about the output and not
how to develop the solution

Benefits of Web-CAT

o Easier for students to understand and relate to
than more traditional testing approaches.

o Promotes incremental development
o Promotes early detection of errors in code

o Increases the student’s understanding of the
assignment requirements, by forcing them to
explore the gray areas in order to completely
test their own solution.

oecionr

Philosophy

3 Aspects
I

n\What cannot be done
oWhat can be done
oPedagogic issues

What Cannot Be Automated Graded

I
o The Halting Problem
o Given a description of a program and a finite input,

decide whether the program finishes running or will
run forever

o General algorithm to solve the halting problem for all
possible program-input pairs cannot exist.(Alan Turing)

Contd.

o Cannot have an automated system read the source
code for programs and determine whether they are
correct.

o Exception: Can do this for very small pieces of code,
but hard to do right

o Design cannot be graded- good/bad

What Can be Automatically Graded?
I T

o Pretty much anything not in the “Cannot be
graded automatically”

o Functionality
o Coding style
o Memory usage
o Documentation

o Anything for which you can find a tool that
measures it

Some Pedagogic Issues
I

o How many tests to write
o N test functions for N tests of one function
o One test function for all N tests
o Grade can be quite different

o What types of hints to issue
o Can go from very detailed, to no details

o Improving student behavior/habits

o Reduce feedback quantity/quality as approach submission
deadline

o Limit number of submissions?

o Teaching students TDD mindset, vs. just assessing
their code

Additional Resources

T
o Web-CAT: web-cat.cs.vt.edu/\WCWiki/

0 Code Lab®: www.turingscraft.com

http://web-cat.cs.vt.edu/WCWiki/
http://web-cat.cs.vt.edu/WCWiki/
http://web-cat.cs.vt.edu/WCWiki/
http://web-cat.cs.vt.edu/WCWiki/
http://web-cat.cs.vt.edu/WCWiki/
http://www.turingscraft.com

?

QUESTIONS OR
COMMENTS

