
WEB-CAT –

AUTOMATED GRADING TOOL

WITH

AN INTERACTIVE

ENVIRONMENT FOR LEARNING

PROGRAMMING

Ann Molly Paul

Overview

Section 1

Need for Automated Grading

Time Management

 Assume 40 students  2 assignments / week
10 minutes to grade an assignment.

 (40*2*10)/60 hours

 This amounts to 13 hours a week on grading
for an average person

Avoiding Inconsistency

 Inconsistency while grading different code for

the same test cases

 Varying styles of coding

Different use of methods

Different complexity of methods to do similar

operations

Challenge for the grader to grade impartially

Opportunity for improvement

 Less time for grading more opportunity for

students to improve code.

 It is demanding for an instructor to grade even

one submission per student leaving aside option

for resubmission

 Allows students to improve code after an early

submission

Speedy Grading

 Makes it possible for students to know their

grades right away

 Students are happier

 Instructor is happier

Encourages more learning

 Continuous Assessment

 Less difficulty in grading encourages instructors to

give more assignments

 Improves students programming skills while they

try solving different questions

Challenge students

 Makes it reasonable to assign more complex

problems

 Time taken to grade dominates the decision while

assigning questions(easy preferred over hard)

 Automatic grading makes it easier for profs to

grade complex problems more accurately

Test driven coding

 Encourages students to code with test cases

in mind

Web-CAT allows students to write their own test

cases.

 Teaches students Test driven development(TDD)

Gives them deeper understanding on the

assignment

Methodology

Section 2

Approaches to Automate Grading

Method 1- Black box input/output testing

 Run the compiled program

 Feed it input -Test typical cases and boundary
cases

 Compare Program output to known Correct
output for those input cases

 Deal with problems like infinite loops and too
much output by running in special “containers”
with timers, I/O limitations, and more.

 USES: In Programming Contests to verify
results

Method 2: Measure changes in program

state

 Set program state (precondition)

 Run student‟s snippet of code/function/set of

functions

 Verify that program state changed correctly

(post condition/results)

 Unit testing is done this way

Method 3: Static analysis (analyze non-
running code)

 Features:

Have programs verify program style, internal
documentation, etc.

Relatively sophisticated free tools available
(especially for Java)

 When students write their own unit tests, can
do coverage analysis

 Verify correct dynamically allocated memory
usage

Testing

Section 3

Unit Testing

 Definition: a method of testing that verifies the

individual units of source code are working

properly

 Shows whether a unit (the smallest piece of

software that can be independently compiled or

assembled, loaded, and tested) satisfies its

functional specification

 Checks if its implemented structure matches the

intended design structure.

The xUnit Testing Approach

 This approach is modifies unit testing to test

code in different languages and has

environments specific to a single language.

 xUnit: JUnit, CppUnit, CxxUnit, NUnit, PyUnit,

XMLUnit, etc.

xUnit Architecture

 Test case – the base class

 Test suite – a class for aggregating unit tests

 Test runner
 Reports test result details

 Simplifies the test

 Test fixture
 Test environment used by multiple tests

 Provides a shared environment (with setup, tear-down,
and common variables) for each test

 A set of assertion functions
 E.g., assert(expression, “string to print if false”)

Prior Approaches to

Automate Code

Evaluation

Section 4

Curator – Tool to grade programs

 Curator compiles the student program.

 Runs a test data generator to create input for
grading.

 Uses a reference implementation as expected
output

 Grades by comparing against the reference
implementation's output.

 Student receives feedback

 It includes the input used, the student's output,
and the instructor's expected output for reference.

Limitations

 Focus on output correctness

 Score of zero submissions that do not compile,
do not produce output, or do not terminate.

Don‟t consider design, commenting,
appropriate use of abstraction, testing one's own
code, etc.)

 Students are not encouraged or rewarded for
performing testing on their own.

 Never perform serious testing of their own
programs

Web-CAT – In detail

Section 5

Web-CAT

 Stephen Edwards at Virginia Tech developed
Web-CAT

 Aim: To support automated grading of student
programs.

 Used to grade student-written tests

 Inculcates test driven development (TDD)

GRADING SCHEME

Decide
when and
how
students
can
submit,
including
early
bonuses
and late
penalties

Use plug-
ins for a
variety of
languages,
or write
your own!

Parameterized plug-ins further
extend your options

Plug-in settings and submission policies
can be reused over and over

You decide the balance between
automated grading and manual inspection

DISPLAY OF RESULTS – INSTANT!

Scoring overview is
backed up by
detailed line-by-line
results in each file

Add overall
comments, or
write detailed
info in-line in
source files

Students see results
in their web browser
within minutes

COMMENTS AND REVIEW

Leverage industrial-
strength tools to run
tests, measure code
coverage, and check
style guidelines

WYSIWYG
comment
editing right
in your
browser

Combine manual
code inspection with
automated grading
results

Contribution to

Learning Experience

Section 6

Road Blocks to learn efficient

coding skills

 Student mostly use „trial and error‟ technique to
write code.

 Software testing requires experience at
programming- New students are not ready for it.

 Instructors just don‟t have the to teach a new topic
like software testing

 Course staff already has its hands full assessing
program correctness

 Students are concerned about the output and not
how to develop the solution

Benefits of Web-CAT

 Easier for students to understand and relate to

than more traditional testing approaches.

 Promotes incremental development

 Promotes early detection of errors in code

 Increases the student‟s understanding of the

assignment requirements, by forcing them to

explore the gray areas in order to completely

test their own solution.

Philosophy

Section 7

What cannot be done

What can be done

Pedagogic issues

3 Aspects

What Cannot Be Automated Graded

 The Halting Problem

 Given a description of a program and a finite input,
decide whether the program finishes running or will
run forever

 General algorithm to solve the halting problem for all
possible program-input pairs cannot exist.(Alan Turing)

Contd.

 Cannot have an automated system read the source
code for programs and determine whether they are
correct.

 Exception: Can do this for very small pieces of code,
but hard to do right

 Design cannot be graded- good/bad

What Can be Automatically Graded?

 Pretty much anything not in the “Cannot be
graded automatically”

Functionality

Coding style

Memory usage

Documentation

 Anything for which you can find a tool that
measures it

Some Pedagogic Issues

 How many tests to write
 N test functions for N tests of one function
 One test function for all N tests
 Grade can be quite different

 What types of hints to issue
 Can go from very detailed, to no details

 Improving student behavior/habits
 Reduce feedback quantity/quality as approach submission

deadline
 Limit number of submissions?

 Teaching students TDD mindset, vs. just assessing
their code

Additional Resources

 Web-CAT: web-cat.cs.vt.edu/WCWiki/

 Code Lab®: www.turingscraft.com

http://web-cat.cs.vt.edu/WCWiki/
http://web-cat.cs.vt.edu/WCWiki/
http://web-cat.cs.vt.edu/WCWiki/
http://web-cat.cs.vt.edu/WCWiki/
http://web-cat.cs.vt.edu/WCWiki/
http://www.turingscraft.com

?
QUESTIONS OR

COMMENTS

