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ABSTRACT

Biological pathway modelers attempt to describe cellul
processes and regulatory networks with continuous a
discrete models of the cell cycle. Previous practice h
been to develop these models largely by hand, and then
validate models primarily by comparing time series plo
versus the observed experimental results. This paper rep
our experiences in designing and building a modeling supp
environment (MSE) for cell cycle models. We describ
improvements to the development process for cell cyc
models by (a) identifying the key elements of the existin
modeling process, (b) applying simulation methodology
construct a revised modeling process, and (c) building a
testing software that supports the revised modeling proce

1 INTRODUCTION

Biological pathway models attempt to reproduce observ
phenomenon in cellular processes such as the concen
tions of proteins, and gross behavior of cells such as m
at division or phase of death in the cell cycle. The hope
that creating such models will lead to a higher-level unde
standing of the biological processes involved. The comm
form of such models is (at some point in the process) sy
tems of differential equations with discrete switching. Man
groups have been developing tools to support aspects of
modeling process (for example, Sauro 2000, Mendes 19
Loew and Schaff 2001). BioSPICE (BioSPICE 2003)
a major effort by DARPA to provide a new generation o
interoperable modeling and simulation tools. It seeks
improve the quality of pathway modeling by providing th
community with common languages for expressing mo
els (Hucka et al. 2003) and interoperability between vario
model description editors, simulators, and analysis tools
o
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The recent state of pathway modeling has been larg
ad hoc and labor intensive as most modelers have not t
existing tools, or those tools have proved inadequate
their needs. Many modelers still work by hand-sketchi
their ideas (see the discussion of wiring diagrams belo
and then manually convert those sketches to differen
equations. Analysis often involves visually comparing tim
series plots and experimentally collected results.

This paper describes how introducing appropriate m
eling tools can improve the speed and accuracy of the
velopment process (which directly permits the creation
larger, more complex models), and also can lead to a m
disciplined approach to the model lifecycle. The origin
modeling process observed in a portion of the community
described in Section 2. Section 3 describes how the con
methodology (Nance 1994) relates to the observed mode
process, and can be used to improve the modeling lifecy
Section 4 briefly describes the JigCell modeling supp
environment (MSE) developed for cell cycle modeling a
related problems. Section 5 presents our conclusions.

2 ORIGINAL MODELING PROCESS

Figure 1 shows the modeling process observed in theVirg
Tech laboratory of John Tyson, a well-known member of t
pathway modeling community. This process, while not usi
the most advanced modeling tools available, has permi
them to develop some of the most sophisticated pathw
models in the current literature (Tyson and Novak 200
The process evolved over more than 10 years of develop
models. It is not based on formalisms nor document
New modelers learn the process through demonstration
mentoring. The tools are primarily off-the-shelf componen
and not specialized for pathway modeling.
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Figure 1: Original Modeling Process

Before a model can be developed, there must be
problem that the model intends to solve. Problem fo
mulation includes analysis of requirements, identificatio
of a solution method, and specification of modeling ob
jectives (Balci 1998). Without a formulated problem, th
modeler risks inadequately solving the problem or solv
ing the wrong problem. A notable feature of the origina
modeling process is that it deals solely with model deve
opment and does not contain problem formulation. Ov
the past two years of our observation, this particular grou
of modelers has not formulated a completely new proble
(in the sense of wishing to develop a model for a ne
organism, or apply new solution techniques to a previous
developed model). Instead, they expand existing models
attempting to match additional experimental observation
Is this infrequent reformulation an inherent property of th
problems these modelers are attempting to solve or a s
effect of the current modeling process?

The original modeling process has four primary stage
design, translate, evaluate, and accept. Models are crea
and refined in the design and translate stages. Testing occ
during the evaluate stage. The accept stage produce
presentable model from the information the modeler h
recorded. In this paper, a stage labeled “x” in a diagra
will be denoted byx−→, and such symbols are used to mar
the paragraph where those stages are discussed.

design−−−→ The design stage begins with creating a wirin
diagram from an idea of how a biological process is carrie
out. The wiring diagram is a graph that captures the chemic
species (also known as products and reactants) at the no
and represents interactions that create, destroy, and con
these species at the arcs. Additionally, the wiring diagra
may show the kinetics for a reaction, describing how an
at what rate the reaction takes place. Figure 2 is a wirin
diagram based on the model of Marlovits et al. (1998).
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Figure 2: Wiring Diagram

The notation for wiring diagrams is not currently stan
dardized. Modelers often invent ad hoc notation to expre
abstractions, replication, and unusual processes. Kinetic
formation is frequently presented separately from the wiri
diagram or must be inferred from figures. Without full in
formation about the rate laws and constants, the model
be structurally analyzed but not simulated.

Since the wiring diagram often lacks full details o
the kinetics, our modelers rewrite the model as a series
chemical reaction equations, along with appropriate kine
functions to describe the reaction.

translate−−−−−→The translate stage is the process of converti
the reaction equations to systems of ordinary different
equations. For each species in the system, the mod
creates a differential equation. Reactions that involve
species determine the right hand side of the different
equation. Parameters for the differential equations are
according to the kinetic information for the reaction. Fr
quently, exact values for these parameters are not kno
In this case, estimates are made for the parameter va
and updated as the model is developed.

In some cases, a protein is never created nor destroy
but is converted between different forms. When this occu
the quantity is said to be conserved, and one of the d
ferential equations is replaced with an algebraic express
called a conservation relation. In addition to the continuo
differential equation model, there is also a discrete ev
model. Certain cellular processes, such as cell divisi
are modeled by discrete events that set species values,
rate laws or constants, or switch between sets of differen
equations driving the continuous model.

evaluate−−−−−→ The evaluate stage begins by generating tim
series plots of important species concentrations from
model. These plots correspond to experimental observati
of the process in the lab. The modeler compares the ti
series plots with the experimental observations and jud
whether the model adequately represents the biological p
cess. In addition to determining if a time series match
observed concentrations, the modeler might also seek
determine if gross physical behavior has been reproduc
such as mass at division or phase of death in the cell cy
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accept−−−→ The accept stage is an assertion that the mod
adequately represents the biological process and consists
preparations for archiving and disseminating the model.

The remaining stages in the original modeling proces
are error recovery stages. Errors are detected because
informal testing from the time series plots. The modele
must infer the nature and location of the error from expe
rience looking at plots. Because the systems are typica
underspecified, the modeler cannot always accurately ide
tify the cause of an error without laboratory testing (which
is expensive).

redesign−−−−−→The redesign stage corrects errors in the wirin
diagram. Reactions are added and deleted based on
modeler’s developing intuition about the mechanisms th
must be included in the model to adequately reproduce t
desired experimental behavior.

repair−−−→The repair stage corrects errors made in the tran
lation between wiring diagram and differential equations
Manually creating differential equations is a time-consumin
and error-prone task. Tedious checking between the wirin
diagram and differential equations is required to detect an
correct errors in translation.

ref it−−−→ The refit stage corrects errors made in the assig
ment of differential equation parameters. New estimates a
made for the kinetic rate constants based on comparison w
known experimental results. The modeler typically change
only a small number of rate constants at each iteration d
to their potential interactions.

restart−−−−→The restart stage is the termination of a particula
model and marks the start of the next idea of how a biologic
process is carried out.

3 APPLYING A METHODOLOGY

The original modeling process has successfully develop
models that define the current state of the art. However, t
modeling community recognizes that they are at the lim
of the complexity their current methodology can suppor
which is driving many new efforts in tool development such
as BioSPICE. One purpose of methodologies is to ass
understanding the model development process and indic
requirements for supporting that process (Balci et al. 1990
Formal methodological approaches provide well-defined an
tested techniques for the model development process.

Based on our experience with the original modelin
process, we enumerate capabilities that this modeling co
munity needs from a methodology. Modelers have th
goal of producing models that are validated and accepte
Demonstrating that their models are valid and should b
accepted requires performing verification, validation, an
testing (VV&T). Modelers should employ VV&T frequently
to minimize wasted effort on bad models. Models deve
oped by the original modeling process have proved extreme
long-lived and are repeatedly adapted to meet changes
l
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specification. We expect this to continue, and require
modeling process that is capable of introducing change
any stage without undue cost. Computational technolo
is also expected to change significantly during the lifetim
of a model; models and the modeling process need to
insensitive to the runtime host and adaptable to the h
performance computing techniques of the next 10 yea
Using the terminology of Nance and Arthur (1988), ou
modeling process must primarily support correctness a
testability, secondarily support adaptability, maintainabilit
and portability, and permit testing throughout the mod
lifecycle.

We select the conical methodology (Nance 1994)
a methodology supportive of our requirements and with
sufficient adaptability to capture our original and desire
modeling processes. Balci (1998) describes a model l
cycle compatible with the conical methodology; we wi
use similar terminology to describe our modeling proce
The primary objectives of the conical methodology a
correctness, testability, adaptability, reusability, and ma
tainability (Nance and Arthur 1988). This is a good matc
with our primary and secondary requirements. The coni
methodology prescribes a top-down model definition pha
followed by a bottom-up model specification phase. A
we are creating a domain-specific MSE, we significan
reduce the amount of work required in the definition pha
by predefining domain-specific constructs in our tools.

3.1 Goals for Improving the Process

After we documented the original process, examin
methodological frameworks, and listened to the concerns
modelers, we identified four areas for which the modeli
process needs improvement: documentation, testing, s
dardization, and automation. These four areas are impor
for developing models quickly and accurately. Independe
verification and validation are testing activities performe
by someone other than the model developer with the g
of improving the quality of the model (Arthur and Nanc
2000). Independent testing reduces potential modeler b
in evaluation, promotes earlier error detection, reduces
ror cost, and enhances operational correctness. We wan
introduce independence into the modeling process at e
iterative cycle with the goal of supporting independen
for all testing activities. This level of support requires sig
nificant advances in the four outlined areas. We belie
that making these improvements will ultimately lead to a
increased rate of model accreditation and acceptance.

The goal of documentation is to record critical info
mation about the modeling process. Model documentat
is needed at every stage of the modeling process an
critical for future planning of modeling tasks. We wan
to record the model itself each time the description of t
model is transformed. We want to record the procedu
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used for testing to support automated testing and review
VV&T methods. We want to record the results from testin
for presentation and for comparison against future tests

Comparison with experimental data is the main tes
ing technique for validating these models. However, t
quantity and quality of experimental data available for a pa
ticular system may be limited. Conducting new laborato
experiments for further testing or expansion of the mode
a major expense; modeler time is cheap in comparison.
emphasize verification during model construction to preve
the introduction of errors that strain our testing resourc
The goal of testing is to introduce VV&T activities as soo
as possible into the modeling process and to continuou
monitor for introduced errors. We wish to codify indica
tors of model credibility (Balci 1986) as automated tes
to be performed continuously during model developme
When working with the wiring diagram, we want to verify
that the graph structure of the diagram corresponds to
modeler’s understanding of the structure. We want to v
ify that the names of species, rate laws, and constants
used consistently across the diagram. When building
executable model, we want to verify that the simulator c
properly execute our model and that all required inform
tion is available. We want to perform the primary testin
activities from a recorded plan that can be defined by
agent independent of the design or specification teams

The goal of standardization is to adopt uniform not
tions and processes that reduce burdens on communica
and development. For our modelers, a wiring diagram is t
initial abstract representation for the model. Unfortunate
no standards exist for the graphical language of wiring d
grams though the representation of Kohn (1999) is becom
increasingly popular. The pathway modeling communi
is currently involved in standardizing the Systems Biolog
Markup Language (SBML), an XML-based representatio
of models at the chemical reaction level (Hucka et al. 200
While it is hoped that SBML will apply to wiring diagrams
in the sense that model editing tools should be able to conv
between SBML and wiring diagram representations, SBM
files are not meant to be directly edited by modelers. SBML
main purpose is facilitating model exchange between mo
eling groups, who will then load the models into ad ho
editing tools. Biological models can have subcompone
duplicated within a model and incorporate subcompone
developed as part of other models. Sufficient support
interchanging model fragments would allow replacing bo
with well-tested black-box subcomponents.

We can also employ standardization at each stage
the modeling process by using domain-specific informati
to construct uniform sequences of tasks. A uniform proce
reduces the developmental tasks required of modelers
can prevent some errors in planning.

Most of the existing modeling process consists of wo
that is performed repeatedly. The goal of automation is
f

e

n

t

f

d

have the computer perform some of these repetitive ta
and speed up other tasks substantially. VV&T activities
ist as automatable tasks throughout the modeling proc
Supporting these activities with automated tools can sig
icantly reduce the time and effort for model testing (Ba
et al. 2002). Modelers repeatedly modify parameter a
initial condition sets, at each modification comparing t
revision against experimental data. We want to perform
gression testing as frequently as possible and repeat te
activities from previous iterative cycles to ensure that mo
quality is maintained after each model transformation. O
testing activities should be numerous and specific so
when an error is introduced, we can identify at what sta
the error was introduced and in what component of
model the error is located. When the user is modifying
model, testing should be automatically conducted to g
feedback on the relative performance of the modificatio

3.2 Revised Modeling Process

The revised modeling process, Figure 3, begins with
already defined problem. This problem definition includ
an analysis of requirements and an identification of mode
objectives. We must make an assumption here that
modeling tools are adaptable to the solution technique cho
as part of the problem definition. Domain specificity allow
us to make this assumption: the tools were develo
specifically to meet the needs of biological modelers w
have a large class of problems of interest.

From the problem description, modelers begin to d
velop model ideas that they believe will satisfy the proble
requirements. The process of realizing and testing th
ideas is extended from the original modeling process.

design−−−→Starting with a conceptual model for a biologic
process, the modeler must first produce a model that
be understood by others. In addition to the wiring diagr
or reaction equations, a complete model requires rate la
constants, and the discrete event model that will con
switches in the differential equation model. Models at t
stage can be structurally tested and checked for complete
and consistency of kinetic information.

translate−−−−−→ The model must then be translated from
human-understandable form to an executable form. For
domain of biological modeling, we possess a signific
amount of information about this transformation proce
A sufficiently described model translates by a mechan
process. The modeler only needs to tweak the con
parameters for the evaluation process. However, the m
must still be verified to ensure that the model was sufficien
described before translation, is self-consistent, and is tole
of the numerical errors to which the chosen simulat
process is susceptible.

evaluate−−−−−→After a model is simulatable, the modeler tes
it against the requirements and objectives in the prob
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Figure 3: Revised Modeling Process

definition. VV&T activities in the evaluate stage likely
account for a significant portion of the model developmen
time and should have computer assistance to automate
testing process (Balci et al. 2002). Entering the problem
definition only once and automating the testing process fro
previous iterative cycles of the modeling process are impo
tant for reducing the model development time. Additionally
there should be provisions for independent execution of th
evaluate stage to prevent modeler bias in testing.

check−−−→ A model that meets the requirements and objec
tives stated in the problem might still be rejected. In the
biological domain, two reasons this occurs are that the mod
is insufficiently based on established biological processe
or that the model is not significantly better than an existing
simpler model. The check stage addresses these issu
Comparing the proposed model against accepted mode
representing similar processes can test the first (Wright an
Bauer 1997). Performing a statistical analysis between th
proposed model and a collection of models for the sam
system can test the second.

accept−−−→ and reject−−−→ The accept stage is relatively un-
changed from the original modeling process. We formaliz
the preparations in the original accept stage as the process
creating documentation and presentations to show that t
model is sufficiently accurate for its intended purpose (Balc
1998). Additionally, we introduce the reject stage for mod
els that pass all of our tests but are rejected by decisio
makers.

The testing phases of the modeling process have be
considerably augmented from the original process. Mode
t
the
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are tested at every stage that creates or transforms a reco
model description. Additionally, the results of model testin
more specifically point to causes of errors and direct t
modeler to an appropriate stage for correcting the error

test−−→ Test stages represent VV&T activities that tak
place in real time during model development. Continuo
verification is especially important when the amount o
quality of experimental data is limited. A test stage operat
concurrently with tool use and indicates errors found
model information entered in the tool. Errors found an
corrected in a test stage do not propagate to other stage
the modeling process. This reduces the amount of time
correct the error and reduces unnecessary switching betw
tools.

redesign−−−−−→ and repair−−−→ We have condensed the error re
covery stages to redesign and repair, which correspond
activities that correct errors detected by validation and ve
ification, respectively. When describing the software th
implements this revised modeling process, we will onc
again enumerate specific types of error recovery activiti

4 JIGCELL

JigCell is a domain-specific MSE for biological pathwa
modeling, intended ultimately to become a problem solvin
environment (PSE) in the sense of Ramakrishnan et
(2002) and Watson et al. (2002). JigCell’s user workflow
Figure 4, corresponds closely with the modeling proce
we have identified. Table 1 lists support for the modelin
goals of Section 3.1 in this MSE.

We have constructed JigCell as a tailored environme
rather than basing it on an existing, general-purpose MS
JigCell made extensive use of participatory design interact
with John Tyson, the leader of the modeling group. W
intend to support experts in biology and related fields wh
do not have significant experience in formal modelin
We incorporate off-the-shelf components such as numeri
libraries, visualization tools, and communications protoco
where quality implementations exist and technical specifi
about the component can be hidden from the user. T
approach has not been a significant drawback: the majo
of development work relates to domain-specific suppo
rather than modeling infrastructure.

The Model Builder creates a model specification tha
incorporates structural information, kinetic information, an
the discrete event model. A spreadsheet interface organ
the structural and kinetic information as a collection o
chemical reaction equations. Chemical equations are a n
ural representation for many biological processes of inter
and are applicable to a wide variety of fields outside bi
logical modeling. Restrictions are placed on the class
discrete event models: events can only be triggered based
algebraic conditions of species values and can only mod
parameters, constants, and species values in the continu
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Figure 4: JigCell User Workflow

model. However, these discrete models are sufficient f
the biological systems we have studied and are easily a
directly created by domain experts without modeling exp
rience. The model builder both reads and writes its mode
in the form of SBML, which is the standard interchang
language for the modeling community.

Species names and kinetic information are check
continuously during model entry with color highlights indi-
cating portions of the model that are not correctly specifie
No mechanisms are included yet for testing overall mod
structure, and limited support is so far provided for rep
resenting stochastic and spatial models, which repres
specific sub-domains within the modeling community tha
we intend to support. Division of the modeled cell into
multiple topological compartments (volumes) is possible
but equations cannot contain spatial variables. Abstractio
are possible in the sense that rate laws can be defined
reused. Incorporation of black-box subcomponents is n
currently supported since the community (in terms of th
SBML standardization effort) has not yet defined mech
nisms for this.

The Run Manager translates a model specification
into an executable form. Differential equations and cod
to handle the discrete event model are automatically gen
ated from the specification. Modelers select the depende
variables of conservation relations, but the relations a
automatically detected and generated. Automatic mod
r
nd
-
ls

d

.
l

-
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t

,
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nd

ot
e
-

e
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nt
e
el

Table 1: Support for Modeling Goals
general record model artifacts Partial

record model testing procedure Full
record model testing results Full

design verify consistent naming Partial
VV&T model structure
abstract repeated operations Partial
abstract compound operations
identify rate laws and constants Full
standardize notation Full

translate generate differential equations Full
find conservation relations Full
verify execution requirements Full
verify well-formedness Partial

evaluate make VV&T repeatable Full
support independent VV&T Full
identify causes of errors Partial
standardize process Full

check make covalidation repeatable Partial
support independent covalidation
identify causes of errors Partial
standardize process Partial

translation insulates modelers from changes in simulation
techniques and the runtime environment. This automatio
step represents a major improvement for our immediate
modeling community, who previously converted reactions
by hand in an error-prone and laborious process. This shou
also reduce the amount of model conversion work require
of modelers to perform stochastic or spatial simulations in
the future.

The Comparator and Compare2 are tools for model
testing and evaluation. Tests in the Comparator are assertio
about a model or comparisons between model performanc
and experimental data. A test evaluates either operation
accuracy or the accuracy in transforming the model. Per
formance on each test is scored according to a user-define
objective function. Objective functions associate model per
formance with a degree of accuracy rather than a binar
result. The modeler chooses criteria for the objective func
tions based on the requirements and purpose of the mode
Integrated editors support defining assertions, experiment
data, procedures for transforming model results, and ob
jective functions. The modeler can automatically rerun a
defined testing procedure in the Comparator.

Tests in Compare2 compare performance between the
currently proposed model and a collection of other models
Models come from past revisions of the current model,
independent models of the same system, and models wi
subsystems in common with the current model. Compare2

performs ranking and selection among these models base
on the same criteria defined in the Comparator. A drawbac
of Compare2 is that obtaining meaningful results requires
building a significant collection of models. We hope to in-
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corporate other automated model analyses that could red
the startup costs of this tool.

By automating the comparison process, we make
additional task possible: parameter estimation. Some r
constants used in the continuous model are not experim
tally determined or have a significant range of possib
values. Without automated fitting, the modelers must ma
ually search for valid and optimal regions of the paramet
space. This activity has consumed a major part of the mo
development time in the past. It should not be perform
by humans at all.

Although the stages involving parameter estimatio
shown in Figure 4 are a subset of the evaluate and
pair stages, we separate them because of their impact
the model development process.

score−−−→ and report−−−→ The score stage defines an algorithm
that determines whether one set of parameters produ
a more acceptable model than another set. The scor
algorithm requires experimental data, an executable mode
definition of the parameter space, and a metric for evaluat
model quality. The report stage injects the fitted paramet
back into the modeling process for study and testing.

The Parameter Estimator finds unknown rate con-
stants by fitting the model to experimental data. The da
are typically not a solution to a differential equation, bu
rather a complicated, nonlinear functional of the differenti
equation solution. Furthermore, both the dependent and
dependent variables involved in these functionals are subj
to experimental error. The Parameter Estimator perform
both global and local searches during optimization.

The global optimizer, DIRECT (He et al. 2002), is
a variant of Lipschitzian methods for constrained glob
optimization. Unlike some other methods, the Lipschi
method requires only a few parameters and does not r
on derivatives or other more analytical information abo
a system. However, the Lipschitz constant of a particul
function is often unknown and difficult to estimate. Th
DIRECT method is guaranteed to converge to the global o
timum without knowledge of the Lipschitz constant (Jone
Perttunen, and Stuckman 1993). DIRECT can operate
an exploratory mode, which emphasizes searching untes
regions of parameter space, or in an exploitation mod
which emphasizes searching regions with better object
function values. DIRECT is relatively inefficient for finding
an accurate value of the minimum. Rather, we would expe
to run it in the exploration mode, and use the local optimiz
to find the minimum from a collection of candidate points

The local optimizer uses ODRPACK (Boggs et al. 1989
as the underlying mathematical software. ODRPACK do
not assume that the measurement errors are all in the dep
dent variables. It instead seeks to minimize the weight
sum of orthogonal distances between the model and the d
The weighting factors scale the residuals and express
modeler’s confidence in the reliability of particular observa
e
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tions. ODRPACK uses a trust region Levenberg-Marquard
method. The Levenberg-Marquardt method starts with th
steepest descent method and smoothly changes to Ne
ton’s method when approaching the solution. The outpu
of ODRPACK gives a locally optimal parameter vector and
a measure of the goodness-of-fit of the parameter vecto
We can then compare the locally optimal solutions for the
starting points picked by the global optimizer.

4.1 Evaluating JigCell

Several levels of evaluation are possible for MSEs. Micro
level studies employ formal usability testing (Hix and Hart-
son 1993), which benchmarks performance for completin
a task. Requirements of the modelers, frequency of us
within the domain, and criticality of need determine the
chosen tasks. An example of a critical task in the Mode
Builder is entering the kinetic information for a chemical
reaction. The Model Builder could not function without
supporting this task. Success or failure is determined b
comparing results against a performance benchmark.

A micro-level study determined JigCell’s effect on error
rates converting the wiring diagram to a set of differentia
equations (Vass and Schoenhoff 2002). For a collection o
models, participants either constructed differential equation
manually or using the software. The number of errors in th
generated sets of differential equations was then measure
The results indicate a six-fold reduction in errors over the
manual method of creating differential equations. Othe
tasks in JigCell can be studied similarly.

Macro-level studies incorporate benchmarking and as
sess how well the MSE meets the specified needs of use
MSEs such as JigCell attempt to make knowledgeable use
more productive, and help them produce creative product
Vass, Carroll, and Shaffer (2002) suggest a methodology fo
evaluating MSEs using flow. Flow is an automatic, effort-
less, and focused state of consciousness. Creativity is mo
likely to result from flow states (Csikszentmihalyi 1990).
Detection of flow would indicate support for creativity.

The following procedure evaluates flow in JigCell. We
classify support for problem solving and flow in JigCell by
specifying assistance for each workflow of Vass, Carroll, an
Shaffer (2002). Users receive an instrumented version o
JigCell that periodically prompts users to fill out a question
naire targeting the characteristics of flow (Webster, Trevino
and Ryan 1993). The collected data determines where flo
is occurring in the user’s work. If JigCell demonstrates
flow in all workflows and meets the formative evaluation
requirements, then JigCell indicates support for creativity

5 CONCLUSIONS

We have described our experiences documenting and im
proving the process of a group of biological modelers
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The revised modeling process is based on the obse
process, and incorporates a disciplined methodological
proach along with proven techniques for reducing the c
of errors, reducing development time, and making iteratio
of the modeling process more consistent. The JigCell M
we have built for this revised process meets many of
defined modeling goals and is testable for its effects on
modeling process. Unfulfilled modeling goals and the
sults of testing will give clear guidance for future modelin
process improvements.

Further progress in the field desperately needs s
improvements as described here. The BioSPICE commu
estimates that the size and complexity of existing mod
(which are about as large as the modeling process p
to BioSPICE could handle) must grow by two orders
magnitude to capture the control mechanisms of import
processes in mammalian cells. We hope that the to
currently envisioned by BioSPICE can supply one of t
two needed orders of magnitude. Supporting the additio
complexity required is an open question. However,
results of the currently planned improvements should per
modelers to greatly advance the state of their art.

ACKNOWLEDGMENTS

Thanks are due to John Tyson and members of his mode
laboratory for making themselves available for study a
reviewing our observations of their modeling process.

The work reported herein was partly sponsored by
Defense Advanced Research Projects Agency (DARPA)
Air Force Research Laboratory (AFRL), Air Force Materi
Command, USAF, under agreement number F30602-
0572. The U.S. Government is authorized to reprodu
and distribute reprints for Governmental purposes notw
standing any copyright annotation thereon. The views a
conclusions contained herein are those of the authors
should not be interpreted as necessarily representing th
ficial policies or endorsements, either expressed or impl
of DARPA, AFRL, or the U.S. Government.

REFERENCES

Arthur, J. D., and R. E. Nance. 2000. Verification and v
idation without independence: a recipe for failure.
Proceedings of the 32nd Conference on Winter Sim
lation, ed. J. A. Joines, R. R. Barton, K. Kang, an
P. A. Fishwick, 859–865. Piscataway, NJ: IEEE.

Balci, O. 1986. Credibility assessment of simulation resu
In Proceedings of the 18th Conference on Winter S
ulation, ed. J. Wilson, J. Henriksen, and S. Rober
38–44. Piscataway, NJ: IEEE.

Balci, O. 1998. Verification, validation, and accreditatio
In Proceedings of the 30th Conference on Winter S
d
-

r

l

-

d
f-
,

ulation, ed. D. J. Medeiros, E. F. Watson, J. S. Carson
and M. S. Manivannan, 41–48. Piscataway, NJ: IEEE

Balci, O., R. E. Nance, J. D. Arthur, and W. F. Ormsby
2002. Expanding our horizons in VV&A research and
practice. In Proceedings of the 34th Conference on
Winter Simulation, ed. E. Yucesan, C.-H. Chen, J. L.
Snowdon, and J. M. Charnes, 653–663. Piscatawa
NJ: IEEE.

Balci, O., R. E. Nance, E. J. Derrick, E. H. Page, and J. L
Bishop. 1990. Model generation issues in a simula
tion support environment. InProceedings of the 22nd
Conference on Winter Simulation, ed. O. Balci, R. P.
Sadowski, and R. E. Nance, 257–263. Piscataway, N
IEEE.

BioSPICE 2003. The BioSPICE development project. Avail
able online viahttp://www.biospice.org [ac-
cessed February 4, 2003].

Boggs, P. T., R. H. Byrd, J. R. Donaldson, and R. B. Schn
abel. 1989. Algorithm 676 - ODRPACK: Software for
weighted orthogonal distance regression.ACM Trans-
actions on Mathematical Software15 (4): 348–364.

Csikszentmihalyi, M. 1990.The psychology of optimal ex-
perience. New York, NY: Harper & Row.

He, J., L. T. Watson, N. Ramakrishnan, C. A. Shaffer
A. Verstak, J. Jiang, K. Bae, and W. H. Tranter. 2002
Dynamic data structures for a direct search algorithm
Computational Optimization and Applications23:5–25.

Hix, D., and H. R. Hartson. 1993.Developing user inter-
faces: Ensuring usability through product & process.
New York, NY: John Wiley & Sons, Inc.

Hucka, M., A. Finney, H. M. Sauro, H. Bolouri et al. 2003.
The Systems Biology Markup Language (SBML): A
medium for representation and exchange of biochemic
network models.Bioinformatics19 (4): 524–531.

Jones, D. R., C. D. Perttunen, and B. E. Stuckman. 1993. Li
schitzian optimization without the Lipschitz constant
Journal of Optimization Theory and Applications79
(1): 157–181.

Kohn, K. W. 1999. Molecular interaction map of the mam-
malian cell cycle control and DNA repair system.Molec-
ular Biology of the Cell10 (8): 2703–2734.

Loew, L. M., and J. C. Schaff. 2001. The Virtual Cell: A
software environment for computational cell biology.
Trends in Biotechnology19:401–406.

Marlovits, G., C. J. Tyson, B. Novak, and J. J. Tyson
1998. Modeling M-phase control in Xenopus oocyte
extracts: the surveillance mechanism for unreplicate
DNA. Biophysical Chemistry72:169–184.

Mendes, P. 1997. Biochemistry by numbers: Simulation o
biochemical pathways with Gepasi 3.Trends in Bio-
chemical Sciences22:361–363.

Nance, R. E. 1994. The conical methodology and the ev
lution of simulation model development.Annals of Op-
erations Research53:1–45.



Allen, Shaffer, Vass, Ramakrishnan and Watson

s
t.
-

,
s

y

-
,

-

rt
-

d
t.

-
-

cs

m
-
h
is

e

-
ta

y

s

ts

D.

ts
l-
d
-
h
i-

s

Nance, R. E., and J. D. Arthur. 1988. The methodology role
in the realization of a model development environmen
In Proceedings of the 20th Conference on Winter Sim
ulation, ed. M. Abrams, P. Haigh, and J. Comfort,
220–225. Piscataway, NJ: IEEE.

Ramakrishnan, N., L. T.Watson, D. G. Kafura, C. J. Ribbens
and C. A. Shaffer. 2002. Programming environment
for multidisciplinary grid communities.Concurrency:
Practice and Experience14:1241–1273.

Sauro, H. M. 2000. Jarnac: A system for interactive
metabolic analysis. InAnimating the Cellular Map:
Proceedings of the 9th International Meeting on Bio-
ThermoKinetics, ed. J.-H. S. Hofmeyr, J. M. Rohwer,
and J. L. Snoep, 221–228: Stellenbosch Universit
Press.

Tyson, J. J., and B. Novak. 2001. Regulation of the eu
karyotic cell cycle: Molecular antagonism, hysteresis
and irreversible transitions.Journal of Theoretical Bi-
ology 210 (2): 249–263.

Vass, M. T., J. M. Carroll, and C. A. Shaffer. 2002. Sup
porting creativity in problem solving environments. In
Proceedings of the Fourth Creativity & Cognition Con-
ference, ed. J. Mottram, L. Candy, and T. Kavanagh,
31–37. New York, NY: ACM Press.

Vass, M. T., and P. Schoenhoff. 2002. Error detection suppo
in a cellular modeling end-user programming environ
ment. InIEEE 2002 Symposia on Human Centric Lan-
guages and Environments, 104–106. Piscataway, NJ:
IEEE.

Watson, L. T., V. K. Lohani, D. F. Kibler, R. L. Dymond,
N. Ramakrishnan, and C. A. Shaffer. 2002. Integrate
computing environments for watershed managemen
Journal of Computational Civil Engineering16:259–
268.

Webster, J., L. Trevino, and L. Ryan. 1993. The dimension
ality and correlates of flow in human computer interac
tions.Computers in Human Behavior9 (4): 411–426.

Wright, S. A., and K. W. Bauer. 1997. Covalidation of dis-
similarly structured models. InProceedings of the 29th
Conference on Winter Simulation, ed. S. Andradottir,
K. J. Healy, D. H. Withers, and B. L. Nelson, 311–318.
Piscataway, NJ: IEEE.

AUTHOR BIOGRAPHIES

NICHOLAS A. ALLEN is a PhD candidate in the Depart-
ment of Computer Science at Virginia Tech (VPI&SU). He
received BS degrees (magna cum laude) in Mathemati
and Computer Science from Virginia Tech in 1999, and
MS degrees in Mathematics and Computer Science fro
Virginia Tech in 2001. His research interests include soft
ware architecture and design, distributed computing, grap
theory, and mathematical software. His email address
<nallen@acm.org> .
CLIFFORD A. SHAFFER is an associate professor in the
Department of Computer Science at Virginia Tech sinc
1987. He received his PhD from University of Maryland
in 1986. His current research interests include problem
solving environments, bioinformatics, component architec
tures, visualization, algorithm design and analysis, and da
structures. His email address is<shaffer@vt.edu> .

MARC T. VASS is a PhD candidate in the Department of
Computer Science at Virginia Tech. He received the BS
degree in Computer Science from Virginia Tech in 2000
and the MS degree in Computer Science from Virginia
Tech in 2001. His research interests include creativit
and cognition, problem solving environments, flow, and
theoretical human computer interaction. His email addres
is <mvass@vt.edu> .

NAREN RAMAKRISHNAN is an assistant professor of
computer science at Virginia Tech. His research interes
include problem solving environments, mining scientific
data, and personalization. Ramakrishnan received his Ph.
in computer sciences from Purdue University. Contact him
at <naren@cs.vt.edu> .

LAYNE T. WATSON is a professor of computer science
and mathematics at Virginia Tech. His research interes
include fluid dynamics, structural mechanics, homotopy a
gorithms, parallel computation, mathematical software, an
image processing. He has worked for USNAD Crane, San
dia National Laboratories, and General Motors Researc
Laboratories and has served on the faculties of the Un
versity of Michigan and Michigan State University, East
Lansing, before coming to Virginia Tech. He received his
BA (magna cum laude) in psychology and mathematic
from the University of Evansville, Ind., and his PhD in
mathematics from the University of Michigan, Ann Arbor.
His email address is<ltw@cs.vt.edu> .


	01: 782
	02: 783
	03: 784
	04: 785
	05: 786
	06: 787
	07: 788
	08: 789
	09: 790


