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Then 

C / J  = 

The desired result (6.26) is obtained by using Theorem 4.1 for 
H 

Corollary 6.1: Let all conditions in Theorem 6.1 hold. Then 
5 GI +J l o ,  m,  *; H (6.16) T*.  

we obtain The desired result (4.6) is obtained from Lemma 6.3 and the as- 
sumption hN = H / N .  This completes the proof of Theorem 4.1. 

Second, we provide the proof of Corollary 4.2 in Section IV. 
Proof: From (4.9) the total amount of calculation of the split- 

ting-shooting method is: 

Last, let us consider the transformation T* (5.7). Denoting the 
corresponding errors E; for T* when using the splitting-shooting 
method in Section 11, we then have the following. 

Theorem 6.1: Let (5.7) and all conditions in Theorem 4.1 hold. 
Then there exist bounds 

(6.15) (F-1 ( T * ) - ’  

where 0: - fi,, an: t- 86,. 
Consequently, the desired result (6.13) is obtained from Lemmas 
6.1, 6.2, and 1J*I = ( Y 2 ) J I ,  E; = a2€o. (6.27) 

Proof: By Of (5.7)7 we have 

Below let us prove Theorem 4.1 by using the above lemmas. 
We have from (4.5) 1G1 = O ( ( Y / N ) .  (6.28) 

when is large, there 

It then follows 

(6.18) 1 
EO 

h i  5 - Area(S,,,kl). 

We obtain 

h i  
Casesl&II 

hi 
CasesII&III 
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changes to BLACK those WHITE pixels within a specified distance of 
any BLACK node in the image. The algorithm yields a significant im- 
provement over previous approaches by 1) reducing the number of 
BLACK nodes that must be considered for expansion, and 2) reducing 
the number of nodes that must be inserted as a result of the expansion. 
This is achieved by the introduction of the concepts of a merging clus- 
ter and a vertex set. Empirical tests show that the execution time of 
this algorithm generally decreases as the radius of expansion increases, 
whereas for previous approaches the execution time generally in- 
creases with the radius of expansion. 

Index Terms-Cartography, computer-aided design, computer 
graphics, geographic information systems, hierarchical data struc- 
tures, image dilation, polygon expansion, quadtrees, region expansion. 

I. INTRODUCTION 

This correspondence addresses the efficient computation of the 
region expansion operation (also known as image dilation). It is 
useful in computer-aided design (CAD) when we want to find all 
objects near a cursor or  near a particular set of objects. It can also 
be used to simplify the process of planning a collision-free path for 
a robot in a two-dimensional environment consisting of obstacles. 
In this case, a finite-width robot is treated as a point and the obsta- 
cles are expanded by an amount of equal to the size of the robot. 
It is also very useful in computer cartography applications where 
it is desirable to provide graphic answers to queries such as “find 
all wheatfields within five miles of the floodplain.” Such an answer 
is computed by expanding the floodplain region in the image and 
intersecting the result with another image that represents the wheat- 
fields. 

In this correspondence we refer to the region expansion task as 
the WITHIN function. Given a binary image I ,  WITHIN generates 
a new image which is BLACK at all pixels within a specified radius 
of expansion R of the BLACK regions of I. The distance is com- 
puted by using the chessboard distance metric which defines the 
distance between points ( x , ,  y l )  and ( x z ,  y2) as MAX( 1x1 - ~ 2 1 ,  

In order to simplify the presentation, we assume that the image 
is binary and is represented by a region quadtree [SI, [8], [9]. The 
region quadtree decomposes an image into homogeneous blocks. 
If the image is all one color, it is represented by a single block. If 
not, then the image is decomposed into quadrants, subquadrants, 
. . .  , until each block is homogeneous. 

When a quadtree is constructed with pointers, it is referred to as 
a pointer-based quadtree. Often the volume of data is so high that 
it is preferable to store the quadtree in disk files. In such a case, a 
pointer-based representation may require many disk pages to be 
accessed. Thus alternative representations such as the linear quad- 
tree [3], [ I ]  are used. The linear quadtree represents an image as a 
collection of the leaf nodes that comprise it. Each leaf node is rep- 
resented by its locational code which corresponds to a sequence of 
directional codes that locate the leaf along a path from the root of 
the tree. Assuming that the origin of the coordinate system of the 
image is located at its upper left corner, then the locational code 
of a node is the same as the result of interleaving the bits that com- 
prise the x ,  y coordinates of the upper left comer of the node. In 
addition, the depth of the node relative to the root must also be 
recorded. The collection of nodes making up the linear quadtree is 
usually stored as a list sorted in increasing order of the locational 
codes. Such an ordering is useful because it is the order in which 
the leaf nodes of the quadtree are visited by a depth-first traversal 
of the quadtree. This representation is employed in the QUILT sys- 
tem [12] which was used to test the algorithms described in this 
correspondence. 

Section I1 briefly describes three alternative prior implementa- 
tions of the WITHIN function, and outlines their strengths and 
weaknesses. Section I11 presents a new algorithm that overcomes 
the shortcomings of the methods described in Section 11. Section 
IV analyzes the execution time of the new algorithm. Section V 
contains some concluding remarks. 

I Y I  - Y 2 0 .  

11. THREE POLYGON EXPANSION ALGORITHMS 
The simplest region expansion algorithm, termed WITHIN1 [lo], 

visits each node of the quadtree. Each BLACK node, say B, is 
expanded by R units and the new square (of width WIDTH ( B )  + 
2 . R)  is decomposed into quadtree blocks and inserted into the 
output quadtree. The execution time of WITHIN1 increases di- 
rectly with R since the number of blocks in a quadtree is propor- 
tional to the total perimeter of the regions that comprise it [4]. 
Many of the regions expanded from the black nodes overlap each 
other. As a result, WITHIN1 requires many duplicate insertions 
and subsequent mergings of BLACK nodes. This algorithm is the 
quadtree analog of the traditional method used in most image pro- 
cessing applications [7]. 

A second algorithm, termed WITHIN2 [ l l ] ,  works on the 
WHITE nodes. The BLACK nodes are simply copied into the out- 
put tree. WHITE nodes of width less than or equal to (R + 1 ) /2 ,  
as well as their brothers, are inserted into the output quadtree as 
BLACK nodes. For WHITE nodes of width greater than (R  + 
1 ) / 2 ,  WITHIN2 has to search through all the neighboring nodes 
to determine which portions of these large WHITE nodes that lie 
within radius R of a nearby BLACK node can be output as BLACK 
nodes. The problem with this approach is that many nodes of the 
input quadtree will be visited more than once in search for the 
nearby BLACK nodes. In addition, there are many redundant node 
insertions. 

A third algorithm, termed WITHIN3 [ 6 ] ,  makes two passes over 
the nodes in the linear quadtree’s node list to avoid making redun- 
dant insertions. The first pass processes the node list in increasing 
order of locational codes. For each WHITE node, say W, it con- 
verts to BLACK all portions of W that are within a distance R of a 
BLACK node that has been encountered at a prior position in the 
list. The second pass is analogous except that the list is processed 
in reverse order. A substantial amount of computation is required 
to determine and maintain the appropriate information about pre- 
viously encountered BLACK nodes, and to split the WHITE nodes. 
Its execution time increases directly with the radius of expansion 
since the number of previously encountered BLACK nodes that 
must be examined increases. 

111. THE NEW REGION EXPANSION ALGORITHM 
Our new algorithm, termed WITHIN4, traverses the input quad- 

tree in preorder and writes the result of the expansion to an output 
quadtree. It takes no action for large WHITE nodes. All large 
BLACK nodes are expanded using WITHIN1 . The algorithm treats 
clusters of small nodes as one unit termed a merging cluster (ex- 
plained below). For each merging cluster, the algorithm computes 
the vertex set (explained below) and performs a node expansion 
only when enough information has been collected. 

The keys to our new algorithm are the concepts of a merging 
cluster and a vertex se t .  These concepts allow us to consider a col- 
lection of BLACK nodes for expansion instead of expanding each 
BLACK node individually. As a result, WITHIN4 is able to reduce 
the number of input BLACK nodes that must be considered for 
expansion, and to reduce the number of BLACK nodes to be out- 
put. These reductions yield an algorithm whose execution time is 
asymptotically unaffected by the magnitude of the radius of expan- 
sion (see [2]). 

A .  Merging Cluster 
Given an input quadtree, and a radius of expansion R let us ex- 

amine a subtree rooted at an internal node M which represents the 
largest block whose width is less than or equal to R + 1. Each 
WHITE leaf node, say W ,  in this subtree is within R pixels of a 
BLACK leaf node in this subtree and therefore W will be changed 
to BLACK after expansion. Of course, M becomes a BLACK node 
as a result of the expansion. 

Define w ( R )  to be the largest integer that is a power of 2 and is 
l e s s t h a n o r e q u a l t o R +  l , i . e . , ~ ( R ) = 2 ~ ~  R +  1 < 2 ‘ + l f o r  
r 1 0. If M is a nonleaf node whose corresponding block is of 
width w (R) ,  then M is a merging cluster of width w (R) .  Merging 
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cluster M consists of the set of leaf nodes in the subtree rooted at 
M .  In the rest of this correspondence, whenever we speak of the 
width of a node, we mean the width of the node's corresponding 
block. 

Fig. 1 is an example of a merging cluster with 13 leaf nodes 
when R = 3. In this case, w(R) is 4 .  In Fig. 1 ,  A, B, C ,  and D 
are the BLACK nodes in the merging cluster. The comers of their 
blocks, termed vertices, are designated by using the corresponding 
lower case letter with a subscript that designates the vertex. For 
example, asw is the SW vertex of node A. 

B.  Computing the Vertex Set 
Consider the expansion of the merging cluster in Fig. 1 by 3 

pixels. The result is given in Fig. 2 from which we make the fol- 
lowing observations: 

1) The node corresponding to the root of the merging cluster is 
now a BLACK node. 

2) The area expanded beyond the boundary of the merging clus- 
ter in the vertical and horizontal directions always forms a rectan- 
gle. The size of each rectangle is determined by the distance be- 
tween the boundary and the nearest BLACK node within the 
merging cluster. 

3) The area of expansion of the merging cluster in a diagonal 
direction always forms a staircase-like region. The extreme points 
of the staircase are those points which can be obtained by the trans- 
lation of the vertices of some of the BLACK nodes in the merging 
cluster. 

From this example, we discover that the expansion from the 
merging cluster is totally determined by VS = { aNw, bNW, cNW. 
csw, dSE, dNE, aNE}.  The set VS is termed the vertex set of the 
merging cluster. The purpose of using the vertex set is to minimize 
the number of BLACK elements of the 'merging cluster requiring 
expansion. 

Let d be in { NW, NE, SW, SE } .  Let OPQUAD ( d )  denote the 
vertex direction opposite to d (e.g., OPQUAD( NW) = SE). The 
vertex set ( V S )  of a merging cluster M is defined to be the union 
of four vertex subsets VS,. Given BLACK node P in M ,  vertex U 
of P is in VS, if v is the d vertex of P and v is not in the closed 
OPQUAD ( d )  quadrant of any vertex of another BLACK node in 
M. 

From the definition, it is clear that the four vertex subsets are 
disjoint. This means that they can be constructed independently or 
even in parallel. Table I shows the changes to each vertex subset 
when the BLACK nodes of the merging cluster in Fig. 1 are pro- 
cessed in the order A, B, C ,  D. 

It is easy to see that no two vertices in VS,, and Vsd2 can have 
the same x coordinate value where d, and d2 are NW and NE, or 
SW and SE. As a result, we have: 

Corollary: The size of the union of any two horizontally (or 
vertically) adjacent vertex subsets VSd, and Vsd2 is less than or 
equal to w (R) + 1 ,  and this bound is attainable. 0 

Within a merging cluster, if there is only one black node P ,  then 
P contributes four vertices to the vertex set. Otherwise, at most 
two black nodes can contribute three vertices apiece to the vertex 
set. All other black nodes cannot contribute more than two vertices 
to the vertex set. Therefore, the number of the vertices in a vertex 
set is bounded by 2 plus twice the number of BLACK nodes in M .  
Thus we have proved the following theorem. 

Theorem: The size of the vertex set of meging cluster M is 
bounded by the minimum of 2 . w(R) + 2 and 2 + twice the 
number of BLACK nodes in M .  The bound is attainable. 0 
C .  Merging Cluster Expansion 

The expansion of a merging cluster M in the eight directions can 
be decomposed into two groups, namely those that deal with di- 
rections { NW, NE, SW, SE}  and those that deal with directions 
{ N, W, S,  E} .  We shall describe one expansion from each group. 

To expand in the NW direction from a merging cluster, only the 
elements of VSNw need to be considered. The result of the expan- 

'NW  NE 

csw 
Fig. 1 .  Example of a merging cluster. 

Fig. 2 .  Result of expanding the merging cluster in Fig. 1 by 3 pixels. 

TABLE I 
BUILDING VERTEX SUBSETS FOR FIG 1 

node I VS,, 1 vs, I VS,," I vs,, 

sion is a staircase-shaped region formed in the NW direction with 
the steps of the staircase marked by the vertices in VSNw which 
have been translated by ( -R, -R); i .e. ,  they are obtained by sub- 
tracting R from the coordinates of each vertex in VSNw.  To insert 
all the nodes that are components of the staircase, we find the 
smallest quadtree block that covers the staircase and begin the reg- 
ular decomposition. Blocks which are completely within (or out- 
side) the staircae are inserted as BLACK (or WHITE). Blocks 
which partially overlap the staircase are decomposed into four 
equal-sized blocks which are processed recursively. 

To  expand in the W direction, we use the vertex v in VSNw (or 
VS,,) which is closest to the westem boundary of the merging clus- 
ter. The result of the expansion is a rectangle T with height w(R) 
and width R - d, where dw where dw is the distance from U to 
the W edge of M .  

A further reduction in processing time can be achieved by taking 
advantage of the interactions between the blocks of neighboring 
merging clusters. If the d neighbor of the merging cluster is a big 
black node or a merging cluster where d is one of the eight direc- 
tions, then the expansion towards the d direction need not be per- 
formed. 

IV. ANALYSIS 
The four WITHIN algorithms were tested on three 512 X 512 

images named Center, Acc, and Pebble, shown in Fig. 3(a), (b), 
and (c), respectively. These figures also show the result of ex- 
panding them by 4 pixels. The natural logarithm of their execution 
times is plotted in Figs. 4(a), (b), and (c) as a function of the radius 
of expansion (i.e., R). Notice that the execution times for even 
values of R are generally smaller than those for values of R - 1 
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(C) 
Fig. 3 .  Three images: (a) center, (b) acc, (c) pebble. All regions are ex- 

panded by 4 pixels. 

WITHIN3 

WlTHlNl 

WITHIN2 

WITHIN4 

10 20 30 4 0  

Radius [in pixels] 

(a) 

WITHIN3 

5 -  WlTHlNl 

WITHIN2 
4 -  

3 -  

WITHIN4 

Radius [in pixels] 

(b) 

WlTHlNl 
WITHIN3 

7 -  

6 -  

5 -  WITHIN2 

4 - .  , . I .  I .  I 
WITHIN4 

0 1 0  20 30 4 0  

Radius [in pixels] 

(C) 
Fig. 4. Execution times for expanding the three images: (a) center, (b) 

acc, (c) pebble. 

and R + 1 (which are odd) due to the effects of node aggregation, 
which means that fewer blocks need to be inserted into the output 
quadtree. 

As Fig. 4 demonstrates, the execution time of WITHIN4 gen- 
erally increases at a much slower rate than the other algorithms. In 
fact, it decreases as R gets sufficiently large. It can be shown that 
the execution time of WITHIN4 is asymptotically independent of 
R [2]. This can be seen by observing that as R increases the merg- 
ing clusters get bigger and there are fewer of them. On the other 
hand, the complexity of the vertex set usually increases as the size 
of the merging cluster increases. These two effects tend to cancel 
each other out; hence accounting for the relative indpendence of R. 

.- 
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Nevertheless, the radius of expansion does have an effect on the 
execution time. As R increases from 2‘ - 2 to 2‘ - 1, w ( R )  is 
doubled, thereby reducing the number of merging clusters. In par- 
ticular, this means that at most four merging clusters of size 2‘- i 

are merged into one merging cluster of size 2‘, or equivalently, four 
node insertions are being replaced by one. Considering the four 
merging clusters together, at most eight expansions in the direc- 
tions of a comer can be avoided depending on whether the sur- 
rounding nodes are WHITE or not. All of these savings lead to a 
reduction in the execution time. 

When R is between 2‘ - 1 and 2‘+ - 2, w ( R )  is constant (i.e., 
2‘) and the execution time increases slowly as R increases since 
more nodes will be inserted. The execution times for odd values of 
R show a cyclical behavior which is characterized by a slow in- 
crease as R increases from 2‘-’ to 2“’ - 2, followed by a drop 
back to nearly the lowest execution time for 2“’ - 1. The behav- 
ior for even values of R follows the same pattern. 

V.  CONCLUDING REMARKS 
In this correspondence we have described and compared four 

region expansion algorithms (i.e., WITHINl,  WITHIN2, 
WITHIN3, and WITHIN4). The execution times of WITHIN1 and 
WITHIN3 increase as R increases and hence they are less attrac- 
tive. WITHIN4 is more efficient than WITHIN2 for the following 
reasons: 

1) Every BLACK node in a merging cluster is individually in- 
serted by WITHIN2, whereas only one insertion is needed for 
WITHIN4. 

2) A node can be inserted by WITHIN4 at most eight times since 
there are at most eight neighboring merging clusters, whereas for 
WITHINZ, the number of repeated insertions of a node increases 
as R increases. 

Although WITHIN4 outperforms the other three WITHIN al- 
gorithms, it still makes many redundant insertions. By using a more 
efficient algorithm to compute the vertex sets, as well as to expand 
from them, the performance of WITHIN4 can be further improved. 

At this point, we must still ask if all this effort is really worth 
the trouble. A good yardstick for measuring the performance of our 
algorithm is to compare it with an approach that would convert the 
quadtree to an array, perform the array WITHIN algorithm, and 
then rebuild the quadtree. Using the QUILT system building the 
quadtrees for the center and pebble images took 16 and 110 sec- 
onds, respectively [ 1 I]. Of course, we must still perform the region 
expansion operation. For each of these images, using WITHIN4 
was faster whereas WITHIN1, WITHIN2, and WITHIN3 were all 
considerably slower, Thus we see that WITHIN4 is indeed worth 
the trouble. 
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A Spatial Sampling Criterion for Sonar Obstacle 
Detection 

ROMAN KUC 

Abstract-This correspondence describes a spatial sampling crite- 
rion for sonar systems that allows all obstacles within a given radius 
from the sensor to be detected. The environment considered is a two- 
dimensional floor plan that is extended into the third dimension, in 
which the scanning is performed in the horizontal plane. In this envi- 
ronment, edge-like reflectors, such as edges of doors or doorways, and 
oblique surfaces are the most difficult to detect. By considering the 
physics of sound propagation, we determine the sonar scanning density 
required to detect these objects. An experimental verification is in- 
cluded. The limitations of detecting objects with sonar in a more gen- 
eral environment are discussed. These results can used to determine 
the necessary spacing in a transducer ring array and the maximum step 
size that a mobile robot can translate without danger of collision. 

Zndex Terms-Acoustics, intelligent sensors, map building, obstacle 
avoidance, robot navigation, sensors, signal processing, sonar, time- 
of-flight ranging. 

I. INTRODUCTION 
Acoustic sensors provide an inexpensive means for determining 

the proximity of objects and have shown utility for implementing 
sonar systems for robot navigation [1]-[3]. One of the most popular 
is the rime-of-flight (TOF) system implemented by Polaroid [4]. 
However, problems arise in the straightforward, but naive, inter- 
pretation of TOF readings: objects that are present are not always 
detected and range readings produced by the TOF system do not 
always correspond to objects at that range [5]-171. Because of these 
problems, many researchers abandon sonar-only navigation sys- 
tems and include additional sensing systems, such as collision de- 
tectors [8], [9] and vision systems [9]-[l l]. For some applications, 
we feel that adequate understanding of sonar echo production will 
allow obstacle avoidance schemes to be accomplished with sonar 
only. 

This correspondence describes a spatial sampling criterion that 
indicates the proper procedure to interrogate the environment to 
detect any obstacles within the vicinity of the sensor. The environ- 
ment to be considered is a general two-dimensional floor plan that 
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