
Dynamic Data Structures for a Direct
Search Algorithm

JIAN HE

Department of Computer Science, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA

LAYNE T. WATSON

Departments of Computer Science and Mathematics, Virginia Polytechnic Institute and State University, Blacks-

burg, VA 24061, USA

NAREN RAMAKRISHNAN

Department of Computer Science, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA

CLIFFORD A. SHAFFER

Department of Computer Science, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA

ALEX VERSTAK

Department of Computer Science, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA

JING JIANG

Bradley Department of Electrical and Computer Engineering, Virginia Polytechnic Institute and State University,

Blacksburg, VA 24061, USA

KYUNG BAE

Bradley Department of Electrical and Computer Engineering, Virginia Polytechnic Institute and State University,

Blacksburg, VA 24061, USA

WILLIAM H. TRANTER

Bradley Department of Electrical and Computer Engineering, Virginia Polytechnic Institute and State University,

Blacksburg, VA 24061, USA

Abstract. The DIRECT (DIviding RECTangles) algorithm of Jones, Perttunen, and Stuckman (1993), a variant

of Lipschitzian methods for bound constrained global optimization, has proved effective even in higher dimensions.
However, the performance of a DIRECT implementation in real applications depends on the characteristics of the
objective function, the problem dimension, and the desired solution accuracy. Implementations with static data

structures often fail in practice, since it is difficult to predict memory resource requirements in advance. This is
especially critical in multidisciplinary engineering design applications, where the DIRECT optimization is just one
small component of a much larger computation, and any component failure aborts the entire design process. To

make the DIRECT global optimization algorithm efficient and robust on large-scale, multidisciplinary engineering
problems, a set of dynamic data structures is proposed here to balance the memory requirements with execution time,
while simultaneously adapting to arbitrary problem size. The focus of this paper is on design issues of the dynamic

data structures, and related memory management strategies. Numerical computing techniques and modifications of
Jones’ original DIRECT algorithm in terms of stopping rules and box selection rules are also explored. Performance
studies are done for synthetic test problems with multiple local optima. Results for application to a site-specific

system simulator for wireless communications systems (S4W) are also presented to demonstrate the effectiveness of
the proposed dynamic data structures for an implementation of DIRECT.

Keywords: Global optimization, DIRECT algorithm, direct search, dynamic data structures

1

1. Introduction

The DIRECT (DIviding Rectangles) algorithm by Jones et al. [8] was proposed as an effective

approach to solve global optimization problems (GOP) subject to simple constraints. The general

problem statement is [11]

min
x∈D

f0(x) (1.1)

D = {x ∈ D0 | fj(x) ≤ 0, j = 1, . . . , J},
where D0 =

{
x ∈ En | ` ≤ x ≤ u

}
is a simple box constraint set. The objective function and

constraints fj , j = 0, . . . , J, must be Lipschitz-continuous on D0, satisfying

|fj(x1)− fj(x2)| ≤ Lj‖x1 − x2‖, ∀x1, x2 ∈ D0. (1.2)

This assumption means that the rates-of-change of the objective function f0 and constraints

f1, . . . , fJ are bounded.

Traditionally, this class of problems was solved by the Lipschitz optimization method, which

had been considered as a practical and deterministic approach to many science and engineering

problems for several decades. Unlike some other methods (e.g., concave minimization), the Lips-

chitz global optimization method requires only a few parameters. This is the major reason why it is

an ideal system model for “black box” or “oracle” systems, which can only generate corresponding

function values for a given collection of arguments, but can not provide any more analytical infor-

mation on the system [11]. Furthermore, the convergence of Lipschitz-based global optimization

algorithms can be easily proved by assuming the knowledge of a Lipschitz constant [8]. However,

as a coin has two faces, this assumption of a Lipschitz constant carries disadvantages. First of all,

the Lipschitz constant of a particular function is usually unknown or hard to estimate in practice.

Although an overestimated Lipschitz constant is still valid for the application of Lipschitz global

optimization (LGOP) methods, it results in slow convergence and complicates computation in

higher dimensions. These practical problems motivated Jones et al. [8] to develop a new Lipschitz-

based optimization algorithm—DIRECT—that is guaranteed to converge to the global optimum

without the knowledge of the Lipschitz constant.

Jones et al. [8] named the new algorithm after one of its key steps—dividing rectangles.

DIRECT is a pattern search method, which is categorized as a direct search technique by Lewis et

al. [10]. Generally speaking, “pattern search methods are characterized by a series of exploratory

moves that consider the behavior of the objective function at a pattern of points,” [10], which

are chosen as the centers of rectangles in the DIRECT algorithm. This center-sampling strategy

reduces the computational complexity, especially for higher dimensional problems, and hence out-

performs some other earlier attempts at improving LGOP methods, such as Shubert’s or Piyavskii’s

methods (a detailed comparison of DIRECT and Shubert’s method in one dimension can be found

in [8]). Moreover, DIRECT adopts a strategy of balancing local and global search by selecting

potentially optimal rectangles to be further explored. This strategy gives rise to fast convergence

with reasonably broad space coverage.

So far, DIRECT has been used with fair success for modern large-scale, multidisciplinary

engineering problems [1]. Nevertheless, it does have limitations as pointed out by Jones [9]. Some

applicability concerns include: (1) the space-partitioning strategy in practice limits the algorithm

to low-dimensional problems (≤ 20), although Baker et al. [1] have solved realistic 29-dimensional

problems, and (2) the stopping criterion—a limit on function evaluations is not convincing. The

2

difficulty of implementing space partitioning in high dimensions lies in the efficiency of maintaining

partitioning information. To address this efficiency issue, this paper proposes a data structure to

store such information in a way that balances efficient access with memory requirements. Moreover,

alternate choices for the stopping criterion are offered, which provide more freedom for a wide

variety of applications.

Unpredictable memory demand is a practical problem due to different characteristics of the

objective functions, problem dimensions, and desired solution accuracy. Many implementations

of DIRECT (e.g., [2], [4], and [7]) rely on allocating large static arrays to store the current state

of the space partitioning. This can lead to failure of the code if the array is insufficient to hold

the necessary information due to exceeding one or the other of the dimensions. To overcome this

problem, some implementations will reallocate the array to be larger if necessary. Even with this

modification there remains a significant amount of overhead in both execution time and space

required. The problem is that a few columns of the array will require an unusually large amount

of space. Thus, some form of dynamic data structure is required for at least these relatively

few columns. To reduce the execution overhead and adapt to varying memory requirements, a

set of dynamic data structures are proposed here. They are extensible and flexible in dealing

with information generated by the space partitioning process in high dimensions. The dynamic

memory implementation proposed here is implemented for a single processor, but it should provide

considerable flexibility for future parallelization of the DIRECT algorithm.

The paper is organized as follows. Section 2 begins with an overview of the DIRECT algo-

rithm followed by the proposed modifications. Section 3 details the design aspects of the dynamic

data structures and related memory management strategies. Important implementation considera-

tions involved in numerical computing and computational geometry are also discussed. In Section

4, numerical results and performance analyses for four sample objective functions are presented.

Section 5 addresses issues related to an optimization problem for wireless communications, and

presents experimental results for S4W (a Site-Specific System Simulator for Wireless communica-

tion). Finally, Section 6 summarizes some key contributions of this implementation and considers

several future tasks such as a dynamic memory MPI-based parallel version.

2. DIRECT algorithm overview and modifications

DIRECT evolved from the one-dimensional Piyavskii-Shubert algorithm and was further extended

from one dimension to multiple dimensions by adopting a center-sampling strategy. Its correspond-

ing 1-D description contrasted with Piyavskii-Shubert’s algorithm can be found in [8]. Here, only

the multidimensional DIRECT algorithm, which is of more interest for large-scale applications, is

described. Also, constraints other than bound constraints are not considered here. Thus henceforth

assume D = D0.

DIRECT’s behavior in multiple dimensions can be viewed as taking steps in potentially opti-

mal directions within the entire design space. The potentially optimal directions are determined

through evaluating the objective function at center points of the subdivided boxes. The multivari-

ate DIRECT algorithm can be described by the following six steps [8].

Given an objective function f and the design space D = D0:

Step 1. Normalize the design space D to be the unit hypercube. Sample the center point ci of

this hypercube and evaluate f(ci). Initialize fmin = f(ci), evaluation counter m = 1, and

iteration counter t = 0.

3

f*

represents a potentially optimal box

B
ox

 C
en

te
r

F
un

ct
io

n
V

al
ue

s

Box Diameters

fmin

Figure 2.1. Illustration of potentially optimal boxes on convex hull with ε test from [9].

Note that f∗ = fmin − ε|fmin|. Potentially optimal boxes are on the lower-right convex

hull.

Step 2. Identify the set S of potentially optimal boxes.
Step 3. Select any box j ∈ S.
Step 4. Divide the box j as follows:

(1) Identify the set I of dimensions with the maximum side length. Let δ equal one-third of
this maximum side length.

(2) Sample the function at the points c ± δei for all i ∈ I , where c is the center of the box
and ei is the ith unit vector.

(3) Divide the box j containing c into thirds along the dimensions in I, starting with the
dimension with the lowest value of wi = min{f(c+ δei), f(c− δei)}, and continuing to
the dimension with the highest wi. Update fmin and m.

Step 5. Set S = S − {j}. If S 6= ∅ go to Step 3.
Step 6. Set t = t+ 1. If iteration limit or evaluation limit has been reached, stop. Otherwise, go

to Step 2.

[8] provides a good step-by-step example visualizing how DIRECT accomplishes the task of
locating a global optimum. Steps 2 to 6 form a processing loop controlled by two stopping criteria—
limits on iterations and function evaluations. Starting from the center of the initial hypercube,
DIRECT makes exploratory moves across the design space by probing the potentially optimal
subspaces. “Potentially optimal” is an important concept defined next [8].

Definition 2.1. Suppose that the unit hypercube has been partitioned into m (hyper) boxes. Let
ci denote the center point of the ith box, and let di denote the distance from the center point to
the vertices. Let ε > 0 be a positive constant. A box j is said to be potentially optimal if there

exists some K̃ > 0 such that for all i = 1, . . . , m,

f(cj)− K̃dj ≤ f(ci)− K̃di, (2.1)

f(cj)− K̃dj ≤ fmin − ε|fmin|. (2.2)

4

Figure 2.1 represents the set of boxes as points in a plane. The first inequality (2.1) screens

out the boxes that are not on the lower right of the convex hull of the plotted points, as shown in

Figure 2.1. Note that K̃ plays the role of the (unknown) Lipschitz constant. The second inequality

(2.2) prevents the search from becoming too local and ensures that a nontrivial improvement will

(potentially) be found based on the current best solution. In Figure 2.1, fmin is the current best

solution, but its associated box is screened out of the potentially optimal box set due to the second

inequality (2.2). This is illustrated by the dotted line in Figure 2.1.

As a comparatively young method, DIRECT is being enhanced with novel ideas and concepts.

Jones has made a couple of modifications to the original DIRECT in a recent paper [9]. In

Step 4, the modified version only trisects in one dimension with the longest side length instead

of in all identified dimensions in set I as above. The dimension to choose depends upon a tie

breaking mechanism (e.g., random selection or priority by age). Baker [2] proposes an “aggressive

DIRECT”, which discards the convex hull idea of identifying potentially optimal boxes. Instead,

it subdivides all the boxes with the smallest objective function values for different box sizes. The

change results in more subdivision tasks generated at every iteration, which helps to balance

the workload in a parallel computing environment. Gablonsky et al. [6] studied the behavior of

DIRECT in low dimensions and developed an alternative version for biasing the search more toward

local improvement by forcing ε = 0.

The implementation of DIRECT considered here is mostly based on the original version.

Some modifications with respect to the stopping rules and box selection rules are proposed here

to offer more choices for different types of intended applications. Two new stopping criteria are

(1) minimum diameter (terminate when the best potentially optimal box’s diameter is less than

this minimum diameter) and (2) objective function convergence tolerance (exit when the objective

function does not decrease sufficiently between iterations). The minimum diameter of a hyperbox

represents the degree of space partition, and therefore is a reasonable criterion for applications

requiring only some depth of design space exploration, such as conceptual aircraft design [14]. The

objective function convergence tolerance was inspired by some experimental observations in the

later stages of running the DIRECT algorithm, when the objective function convergence tolerance

test avoids wasting a great number of expensive function evaluations in pursuit of very small

improvements. In terms of box selection rules, two modifications are proposed. First, an optional

“aggressive switch” is proposed to turn on/off convex hull processing as first used in [2]. Secondly,

ε is taken as zero by default, but also can be assigned a value on input tailored to the application.

Comparisons of DIRECT performance with the “aggressive” switch on/off, and with ε tuning will

be presented in Section 4.

A final observation here is that Jones’ original description of DIRECT used the word “rectan-

gle” rather than the more commonly accepted terms “box” or “hyperbox.” In the following, the

step of identifying potentially optimal boxes is often referred to as convex hull processing.

3. Implementation

Recall that the motivation for this implementation is to handle efficiently the unpredictable amount

of storage and information required by the space partition. The main problem to be solved is how

to store the large collection of boxes, typically viewed as a set of separate columns making up the

points shown in Figure 2.1. The key operations are to find the element in a column with least value,

5

to remove this least-valued element, and to add new elements to a column. Thus each column can

be viewed abstractly as a priority queue.

Typical implementations for DIRECT simply allocate a large two-dimensional array to store

the boxes as organized in Figure 2.1. Each column of the array corresponds to the set of boxes

with a given diameter. This approach has the advantage of being simple, and matching well with

the memory access patterns that work efficiently in parallel implementations. However, the actual

performance for this implementation is poor for two reasons. First, there can be a large number

of distinct box diameters at various times during the execution of the algorithm. This translates

to a potential (but changing) need for many columns. Second, specific columns can get unusually

large numbers of boxes at various times, translating into a potential (but changing) need for many

rows. These behaviors are both transient and unpredictable. Thus, a dynamic data structure is

needed.

In practice, only a few of the columns become large at any given time. The large memory

requirements of the computations involved (of which the box processing is only a small part) argue

against careless use of dynamic memory allocation, since, for example, a list implementation that

spreads the contents of a column widely through virtual memory will result in poor use of the

memory cache.

The proposed implementation is a simple modification to the columns to provide flexibility

in their length. Initially a two-dimensional array of fairly large size (depending on the dimension

of the problem) is allocated in the usual way. Depending on the size and nature of the problem,

this array might hold all boxes in the partitioning. Certainly, for most columns all elements in the

column will remain in the array. However, the array is dynamic in that it can grow in either of

two ways. First, if the array provides insufficient columns, new blocks of columns will be allocated

as needed. Second, should a given column outgrow the space available in the array, a new chunk

of space is allocated to that column.

Within a column, the points are maintained in sorted order, removing the top (lowest) value

as needed, and adding new values when needed. As necessary, a chunk of additional space is

added or removed from the column. One alternative implementation would be to store the column

points in a standard heap data structure rather than in sorted order, but the sorted list and heap

implementations have not been compared.

Functionally, the Fortran 90 derived data type dynamic structures can be classified into two

groups: box structures and linked list structures. The box structures (BoxMatrix, BoxLink, and

HyperBox) are responsible for holding boxes. The linked lists (setInd, setDia, and setFcol) are

built out of linked vectors (real vector and int vector), and manage the allocated memory for

the box structures. Their use is illustrated by Figures 3.1 and 3.3.

The row dimension of the initial BoxMatrix is

nr =

{
max{10, 2n}, if n ≤ 10;
17 + dlog2 ne , otherwise;

and the column dimension is nc = 35n, where n is the problem dimension. These formulas are

based on empirical observations of box sequence lengths and the number of distinct diameters

extant during runs of many different test problems with n from 2 to 50. An attempt was made to

balance memory utilization within the initial BoxMatrix with the need to minimize the number

of new BoxLinks and BoxMatrixs allocated. This balance is extremely problem dependent, but

typically the above formulas result in all but a few very long box sequences fitting in the initial

6

1

m

1

m

1

m

BoxMatrix

BoxLink

BoxLink

In
cr

ea
si

ng
 f

un
ct

io
n

va
lu

es

M M

next prev

sibling

child

sibling

1 2 n n+1 2n

Figure 3.1. Box structures comprised of HyperBoxes.

BoxMatrix, and only occasionally are additional BoxMatrixs required, depending on the problem

and stopping criteria.

3.1. Box structures

Figure 3.1 shows the two dimensional chain structure of the box structures group. It consists of

three derived data types: BoxMatrix, BoxLink, and HyperBox. HyperBox is the basic unit for

constructing BoxMatrix and BoxLink. It contains all the necessary information about a hyperbox,

namely, the objective function value at the box center, the coordinates of the center point, the

side lengths in all dimensions, and the box size (diameter squared). Without further organizing

the information listed above, some well-known methods for finding the convex hull can be applied.

In [8], Graham’s scan method is recommended because it is one of the most efficient algorithms,

finding the convex hull of a set of m arbitrary points in time O(m log2 m). In the present imple-

mentation, a different approach is taken to shrink the initial set with m points to a much smaller

set of vertices exclusively around the low edge of the convex hull as depicted in Figure 3.2.

As already described, all hyperboxes of a given diameter are sorted according to the center

points’ function values. The actual sorted list is made up of a column from a BoxMatrix, perhaps

followed by some number of BoxLinks as shown in Figure 3.1. When a column in the initial

BoxMatrix named M is full, a BoxLink is allocated and connected at the end of the column as

a sibling link, which holds a one-dimensional array of HyperBoxes with the same number of

HyperBoxes as a column in M. A BoxLink is extended in the same fashion when it becomes full. All

7

in "convex hull processing"

Box Diameters

A box sequence

B
ox

 C
en

te
r

F
un

ct
io

n
V

al
ue

s

represents a box to be processed later

Figure 3.2. Scatter plot pattern.

boxes of the same size find their places in this box sequence, consisting of a column of M followed

by an unlimited number of box links. Figure 3.1 illustrates the use of these box structures during

execution of the DIRECT algorithm, when column one in M of the first BoxMatrix has become full,

thereafter having been linked with two more BoxLinks, which are associated with each other by

referencing their next and prev pointers. Notice that M has the same number of hyperboxes in a

column as a BoxLink does, which unifies the procedures for box insertion both in M and BoxLink.

Inserting a new box into a box sequence requires three steps. First, locate the segment of the

sequence that the box’s function value falls within, either the column in M or one of the sibling

box links. Second, apply a binary search to the function values in the located segment to find the

appropriate position at which to insert the new box. Third, shift the remaining elements in the

column down by one position, possibly causing an additional BoxLink to be allocated.

While caching performance encourages maintaining adjacent elements of a column in adjacent

memory locations, the same is not true of adjacent columns of the array. Further, during processing

it may happen that a given column becomes empty (that is, all boxes of a given diameter may be

split) and another column may need to be created (as boxes of new diameters are created by the

splitting process). Because it would be costly to sort box sequences with respect to box sizes by

rearranging the columns of M, columns are not kept sorted by box size. However, it is necessary

to find the column (if any) that stores the boxes of a given size. A linked list structure (described

in more detail in the next section) is used to maintain the box sizes in logical decreasing order.

Physically, the columns in M are treated as independent cells that can be popped up for any boxes

with a new size. In some sense, M acts as a memory pool of recyclable cells. When cells are used

up, a new BoxMatrix is allocated and connected as the child link at the end of the chain of

BoxMatrices, so that the memory pool can be filled up again using new cells from M in the newly

allocated BoxMatrix. As an instance, Figure 3.1 shows a chain of two BoxMatrices. In this specific

8

example, a BoxMatrix allocates M with m rows and n columns of Hyperboxes. The column indices

of the second BoxMatrix begin with n+ 1 to be distinguished from indices in the first BoxMatrix.

Cell recycling is handled by the linked list data structures, discussed below.

With all the hyperboxes linked logically in the scatter plot pattern as in Figure 3.2, Jarvis’s

march (or gift wrapping) method is applied starting from the box sequence with the biggest size,

and eventually identifies all the potentially optimal boxes to be further subdivided for the next

iteration. Pseudo code for finding the convex hull follows. Let the first box in column j have radius

dj and center value fj . (Recall that box sequences are indexed by decreasing box diameters).

i := index of first (largest diameter) box column

k := index of second box column

while i has not reached the column with fmin do

begin

s̄ := −∞
while k has not reached the column with fmin do

begin

s :=
fi − fk
di − dk

if s > s̄ then

s̄ := s

t := k

end if

move k to the next box column index

end

screen out the columns between i and t

if ε 6= 0 then

if s̄ <
fi − (fmin − ε|fmin|)

di
then

screen out the columns from t through the column with fmin

break

end if

end if

move i to t and move k to the column index next to i

end

3.2 Linked list structures

The linked list data structures play an important role in maintaining the logical scatter plot pattern

and recycling memory cells. They are doubly linked lists constructed with two derived data types.

setInd and setFcol are of the type int vector, which contains a one-dimensional array of integer

elements and two pointers—next and prev—for tracing back and forth. setDia differs only in

containing real elements defined in real vector. Each linked list starts out with only one link

initialized corresponding to the first BoxMatrix. The number of elements in the one-dimensional

array is equal to the number of columns n in M of a BoxMatrix. Except for the first column used

by the normalized hyperbox at Step 1 of the DIRECT algorithm, the other column indices are

pushed into setFcol for later usage. When a new BoxMatrix is added at the end of the existing

BoxMatrix chain, each of the three linked lists is also expanded with a newly allocated link for

9

17

next

prev

next

prev

1 2 n

1 2 n

n+1 2n

n+1 2n

setInd

setDia

1 2 n n+1 2nnext

prev
setFcol

stack top

insertion position

Decreasing box sizes

3 17 1 *

0.9 0.8 0.7 *

* * * * *

Figure 3.3. Linked list structures. Insertion of a new box size (0.8) has four steps: (a)

request a free column index (17) from the stack top of setFcol by popping the stack,

(b) locate the insertion position (2) in setDia and insert the new diameter (setDia is

shown after the insertion), (c) add the column index to setInd at the insertion position

(shown), and (d) add the box at the beginning of the requested column (17) in M.

manipulating the new BoxMatrix. For example, in Figure 3.3, each linked list data structure has

two links corresponding to the two BoxMatrices in Figure 3.1.

From the viewpoint of memory management, these three linked lists collaborate with each

other recycling the memory cells allocated for BoxMatrix structures. Every time a new box size

is produced from box subdividing, the box with this size requests a free column index from the

(stack) top of setFcol. Similar to locating the position at which to insert a new box into a box

sequence (illustrated in pseudo code in Section 3.1), an appropriate position will be found for this

new box size in setDia, which is kept in descending order of box sizes. Finally, the requested

column index is added in setInd at the corresponding position. The process is reversed when a

box size no longer exists after the last box with this size has been subdivided. As a result, the

released column index is pushed back to the stack—setFcol. Figure 3.3 illustrates insertion of a

new size.

For faster execution, sorting is not involved in the strategy for maintaining a logical scatter

plot pattern of hyperboxes. Instead, binary search is used in locating the insertion positions in

sorted sequences, in both the cases of inserting boxes and box sizes. Some shifting operations are

needed for inserting/deleting boxes in a particular column of boxes in M and its box links, if any,

while shifting boxes among columns is avoided by keeping column indices sorted (by decreasing

box sizes) in setInd.

The last important implementation issue is related to floating point comparisons involved in

box insertion. For portability, the module REAL PRECISION from HOMPACK90 ([15]) is used

to define 64-bit real arithmetic. All equality tests between two real values are done in the following

manner: given two real values r1 and r2, r1 and r2 are considered equal if they satisfy

|r1 − r2|
|r2|

≤ 4nu, (3.1)

10

-40 -20 20 40 60

2

4

6

8 -2 -1 1 2

-20

-15

-10

-5

Figure 4.1. One-dimensional Griewank function with parameter d = 500 (left), and

one-dimensional noisy quartic function (right).

where 4nu is the estimated round-off error based on the problem dimension n. This is very
important when comparing sizes of boxes in high dimensions after a number of iterations, since

round off error will make mathematically equal diameters slightly different. The same principle is
followed when comparing objective function values for inserting a box to a box sequence.

4. Test cases and performance studies

The DIRECT algorithm as described here has been applied to several standard test functions.
Among them, the Griewank function and quartic function [3] are chosen here to study the behavior

of the DIRECT algorithm and evaluate the performance of this implementation.
The n-dimensional Griewank function [3]

f(x) = 1 +
n∑

i=1

xi
2

d
−

n∏

i=1

cos

(
xi√
i

)
, (4.1)

where d > 0 is a constant to adjust the noise, has a unique global minimum at x = 0, and numerous

local minima (see Figure 4.1). The larger the value of d, the deeper the minima values are. The
numerical results here are for an initial box [−40, 60]n and d = 500.

The second test function is an n-dimensional quartic function with a random noise variable
defined by [3]

f(x) =
n∑

i=1

[2.2(xi + ei)
2 − (xi + ei)

4], (4.2)

where ei is a uniformly distributed random variable in the range [0.2, 0.4]. Such a random function
tests the algorithm’s ability to locate the global optimum in the presence of noise. Figure 4.1 shows

a one-dimensional plot of one instance of the quartic function. The quartic function is considered
in the box [−2, 2]n, n ≥ 2; the global minimum occurs at a vertex of this box.

With respect to the proposed modifications of the DIRECT algorithm, four groups of experi-
ments were conducted.

I. ε test

The ε test was designed to explore the sensitivity of DIRECT to the parameter ε [8]. Eight different
ε values have been tested for evaluating the performance of DIRECT as shown in Table 4.1. For

11

each test function, the stopping rule of a limit on the number of evaluations was set to ensure

comparability between test cases in terms of the amount of work. 2000 and 300 evaluations were

used for the Griewank function and the quartic function, respectively. Due to characteristics of

the two functions, different performance measures were chosen. Table 4.1 shows that |fmin| is used

for the Griewank function, which has its unique global minimum f̃ = 0 at x̃ = 0. Obviously, the

closer fmin gets to f̃ , the better the DIRECT algorithm performs. As for the quartic function,

the random noise variable ei makes it hard to find the true global optimum near the boundary.

However, the global minimum falls around the vector x̃ = (2, . . . , 2) at the boundary. Therefore,

an alternative measure for convergence is taken as

δx̃ =
||xmin − x̃||
||x̃|| , (4.3)

where xmin is the computed optimal vector.

From the experimental results shown in Table 4.1, the DIRECT algorithm’s behavior is dif-

ferent for the two test functions. For the Griewank function, a smaller ε gives a closer |fmin|, while

a larger ε seems to work better for the quartic function in terms of the smallest δx̃. [6] conducted

similar experiments and observed that the choice of the ε value depends on the characteristics of

objective functions, such as the dimension of the problem n and the number of local and global

minima.

Table 4.1. ε test results for stopping rule of a limit on the number of function evaluations

(2000 for the Griewank function and 300 for the quartic function) for n = 2.

Griewank Function Quartic Function
ε value evaluations |fmin| evaluations δx̃

0.01 2007 1.75E-006 301 7.38E-03
0.001 2013 1.75E-006 303 9.20E-03
0.0001 2001 2.16E-008 301 4.95E-02
0.00001 2031 2.16E-008 305 1.23E-02
0.000001 2043 2.66E-010 301 1.64E-02
0.0000001 2027 2.66E-010 305 2.77E-02
0.00000001 2023 3.29E-012 303 2.76E-02
0.0 2071 0.00 307 2.05E-02

II. “Aggressive switch” test

This test was intended for observing the effect of the “aggressive switch”, which was first imple-

mented in [2] to adapt to a parallel computing environment. Basically, the “aggressive” switch

determines whether DIRECT performs the convex hull processing or not. With the switch on, it

bypasses the procedure of finding the boxes on the lower right convex hull. Instead, it subdivides

all boxes with the lowest function values in box sequences. Figure 4.2 compares the natural loga-

rithms of the number of evaluations with the switch on and off for both functions as the problem

dimension N increases from 2 to 28. The stopping rule is the limit on the number of iterations. As

the problem dimension N grows, the number of evaluations is increasing with the switch either on

(dotted) or off (solid). With the aggressive switch on, many more evaluation tasks are generated

in each iteration. In a serial computing environment, aggressive switch off is preferred in order

12

0 5 10 15 20 25
N

7

8

9

10

11

12

logeNevl

Griewank Function

0 5 10 15 20 25
N

6

7

8

9

10

11

12

logeNevl

Quartic Function

Figure 4.2. Dimension N vs. loge(Nevl) with aggressive switch off (solid) and on

(dotted). Nevl is the number of function evaluations.

0 50 100 150 200
Iteration

0

0.5

1

1.5

2

fmin

Griewank Function

0 20 40 60 80
Iteration

-175

-150

-125

-100

-75

-50

-25

0

fmin

Quartic Function

Figure 4.3. Change in computed fmin as DIRECT progresses for the Griewank function

and the quartic function with objective function tolerance = 0 (dotted) and 0.0001 (solid),

for n = 20, ε = 0.

to reduce the workload of space partitioning. However, the switch is desired to be on to balance

the workload for massively parallel multiprocessors. In that context, the switch on also speeds up

locating the global optimum. Detailed experimental results and analyses can be found in [2].

III. Performance tests

Efficiency is one of the critical performance issues that the present implementation tends to empha-

size. It involves several aspects, including the speed in locating the global minimum, the storage

required, and the algorithm performance in the presence of noise.

Figure 4.3 shows the history of fmin for the 20-dimensional Griewank function and the quartic

function. Both of them stop when the box holding the current fmin has reached the allowed

minimum diameter, which is estimated to be at the round off level within the bounded design
space. The similar trend, sharply decreasing at the beginning and leveling off at the end, motivates

the implementation of the new stopping rule—objective function convergence tolerance—

τf =
f̃min − fmin

1.0 + f̃min

, (4.4)

where f̃min represents the previous computed minimum. The algorithm stops when τf becomes

less than a user specified value. It avoids wasting function evaluations for small improvements,

13

0 50 100 150 200
Iteration

0

100

200

300

400

500

Nd

Griewank Function

0 20 40 60 80
Iteration

0

100

200

300

400

500

600

Nd

Quartic Function

Figure 4.4. Change in number of distinct diameters Nd as DIRECT progresses for

n = 20, ε = 0.

0 50 100 150 200
Iteration

0

20

40

60

80

100

120

Nd

Griewank Function

0 20 40 60 80
Iteration

0

25

50

75

100

125

150

Nd

Quartic Function

Figure 4.5. Change in number of distinct diameters Nd as DIRECT progresses for

n = 20, ε = 0.0001.

which are plotted as dotted tails in Figure 4.3. The definition of objective function convergence

tolerance (4.4) differs from the percent error in [8], which is based on the knowledge of the true

global optimum of the objective function, while τf measures the convergence with the current best

estimate of the optimum. This is a reasonable stopping criterion for large-scale engineering design

problems. Note that the stopping criterion (4.4) results in premature termination if τf ≈ 0 early

in the iterations. Such a failure is easily recognized, though, by the size of the final box containing

the minimizing point.

The required storage is directly related to two factors—the number of distinct diameters Nd

and the length of box sequences Lb, which determine the memory occupied by the box structures

BoxMatrices and BoxLinks. An interesting observation here is that ε plays a role in reducing

the number of distinct diameters Nd. Figures 4.4 and 4.5 show the change in Nd with ε = 0 and

ε = 0.0001. The case with ε = 0 produces more distinct diameters since it always subdivides the

box with fmin, which also is the smallest one among all boxes on the lower right convex hull. In

contrast, ε = 0.0001 skips the leftmost part of the lower right convex hull as illustrated in Figure

2.1, thereby reducing the chances of generating new distinct diameters.

The changes in the maximum and average lengths of box sequences were tracked as DIRECT

progressed. Figure 4.6 shows that the maximum box sequence length increases dramatically com-

pared with the average one. Only a few box sequences are very long. This is the reason for using

14

0 50 100 150 200
Iteration

0

500

1000

1500

2000

2500

3000

Lb

Griewank Function

0 20 40 60 80
Iteration

0

250

500

750

1000

1250

1500

Lb

Quartic Function

Figure 4.6. History of maximum (solid) and average (dotted) box sequence lengths for

n = 20, ε = 0.

0 50 100 150 200
Iteration

0

30000

60000

90000

120000

150000

Nbox

Griewank Function

0 20 40 60 80
Iteration

0

5000

10000

15000

20000

25000

30000

Nbox

Quartic Function

Figure 4.7. The number Nbox of hyperboxes allocated (dotted) compared to the number

of hyperboxes actually used (solid), as the iteration progresses, for n = 20, ε = 0.

0 50 100 150 200
Iteration

0

20000

40000

60000

80000

Nbox

Griewank Function

0 20 40 60 80
Iteration

0

5000

10000

15000

20000

25000

30000

Nbox

Quartic Function

Figure 4.8. The number Nbox of hyperboxes allocated (dotted) compared to the number

of hyperboxes actually used (solid), as the iteration progresses, for n = 20, ε = 0.0001.

BoxLinks to extend the box sequences instead of only allocating BoxMatrices with a great number

of rows, which would waste memory for short box sequences.

The extent to which the allocated memory is used depends on the problem, ε, and the stopping

criteria. Figures 4.7 and 4.8 show the allocated and used memory, and how the relationship varies.

For small numbers of iterations, much of the allocated memory can remain unused, but for large

numbers of iterations (1000s), almost all the allocated memory can be used.

15

0 500 1000 1500 2000
Parameter d

0

0.005

0.01

0.015

0.02

0.025

0.03

fmin

Griewank Function

0 0.02 0.04 0.06 0.08 0.1
Noise level Α

0

0.02

0.04

0.06

∆x�

Quartic Function

Figure 4.9. Test results for varying parameter values (parameter d for Griewank function

and noise level α for the quartic function (ei ∈ [0.3− α, 0.3 + α])) for stopping rule of a

limit on number of the function evaluations (2000 for the Griewank function and 300 for

the quartic function) with n = 2, ε = 0.

The next experiment tests the performance of DIRECT in the presence of different noise levels.

In the sense of [3], the Griewank function is a quadratic function with noise added by including a

cosine function. The noise level can be controlled by the parameter d. In Figure 4.9, the global

minimum f̃ = 0 of the Griewank function can be located within 2000 evaluations until d becomes

greater than 1200. More function evaluations would be needed for higher noise levels. The δx̃
of the quartic function has increasing fluctuations as the noise level α increases, reflecting the

impossibility of locating the minimum with small signal to noise ratios.

IV. Comparison with static allocation programs

Table 4.2 compares two static data structure implementations of the DIRECT algorithm, [2] and

[7], with the dynamic data structure implementation proposed here. The test problems are the same

two used throughout this section. Execution time is reported in milliseconds, and the memory usage

reported is the maximum working set size in pages (1 page = 512 bytes). This number precisely

reflects the virtual memory required by the program during execution. Not surprisingly, static

implementations can execute much faster, until paging of the large static structures dominates the

time. As Table 4.2 shows, the difference in memory requirements can be substantial. Of course, if

a DIRECT code is being used inside a larger scientific computation, there is no contest in terms of

robustness. The dynamic code described here will always return with something useful, whereas

a statically allocated code will simply fail when it exhausts its memory allocation. The results

in Table 4.2 used BoxMatrix column dimension nc = 2n, which produced better results than the

earlier mentioned value of nc = 35n derived from a large ensemble of experiments. An asterisk in

the table indicates that the code failed with an execution exception.

5. S4W design optimization

S4W (Site-Specific System Simulator for Wireless system design) is an integrated wireless com-

munication system design software tool being developed jointly by the Mobile & Portable Radio

Research Group (MPRG) and the problem solving environment (PSE) research group at Virginia

Polytechnic Institute & State University. It proposes a built-in optimization loop to maximize

the efficiency of channel models and surrogate functions to reduce the cost of propagation model

16

Table 4.2. Comparison of static and dynamic implementations with BoxMatrix column

dimension nc = 2n, problem dimension n, L iterations, ε = 0.

Baker [2] Gablonsky [7] dynamic structures
Problem n L time memory time memory time memory

Griewank 2 50 172 10264 34 2224 85 1040
Griewank 5 50 199 11504 34 2352 73 1024
Griewank 10 50 310 15424 51 2648 110 1616
Griewank 15 50 639 18280 88 3232 192 2744
Griewank 20 50 * * 170 4464 397 6080
Griewank 50 70 * * * * 6161 82664
Quartic 2 50 108 10240 26 2176 25 520
Quartic 5 50 151 11488 31 2240 27 528
Quartic 10 50 441 15432 36 2472 58 1160
Quartic 15 50 1260 18336 54 2992 125 2176
Quartic 20 50 * * 82 3872 240 4560
Quartic 50 90 * * * * 6572 86656

simulations. An example S4W system model consisting of a propagation model, a channel model,

and an optimizer is illustrated in [13]. There are a wide variety of optimization problems inherent

in this project. As a typical “black box” engineering design problem, the application of DIRECT

to base station placement is presented here.

Generally, base station placement optimization is aimed at covering a geographical area of

interest (indoor and outdoor environments are modeled differently), to a specified minimum power

level (threshold) at a minimum cost [5]. The system considered here is an indoor system, located

on the fourth floor of a building on campus. In such a building, performance of wireless networks

(e.g., wireless LAN) is affected by signal attenuation, reflection, interference, and multipath propa-

gation. Given transceiver frequency/power, a threshold power level, a signal-to-noise ratio, and the

number of base stations, the optimization variables are the coordinates of the base stations. Such

location problems are known to typically have multiple local minima [5], requiring an algorithm like

DIRECT. Consider the placement of a single base station, with three variables x, y, and z. Based

on the chosen design variables, an appropriate objective function is needed to determine the best

system configuration. In [5], “coverage” (ratio of the number of grid points with received power

above the threshold to the total number of grid points) is taken as the objective function for the

Nelder-Mead simplex method, another type of multidirectional search method [12]. However, this

ratio is discontinuous, so the objective function here is constructed as the (Lipschitz continuous)

function

f(x, y, z) =
M∑

i=1

(T − Pi(x, y, z))2
+, (5.1)

where T is the given power level threshold, Pi is the power received at the ith receiver with the

single base station located at (x, y, z), and M is the total number of receivers. A lower value of f

indicates a better “coverage”. Mathematically, the continuity of Pi(x, y, z) derives from the wave

(electromagnetic radiation) propagation model; computationally, Pi is noisy because it is computed

from ray tracing with a finite number of rays.

The function evaluation was done using a MPI-based parallel ray tracer running on an 80 node

Athlon 650 Beowulf cluster of workstations [13]. The environment is approximated by triangular

17

0 50 100 150 200 250 300
Ray Tracing Iteration

5.5´10-8

5.6´10-8

5.7´10-8

5.8´10-8

5.9´10-8

fmin

Figure 5.1 Change in evaluated fmin by the ray tracing simulation for the function (5.1).

Power level threshold = −55dB.

facets, multipath reflections are modeled but not transmission through solid objects or diffraction

around sharp edges, a very efficient octree data structure is used, and rays are uniformly distributed

in the solid angle covering the system domain. An omnidirectional antenna pattern is assumed to

produce the power delay profile (PDP) used in calculating the received power at each point on a

grid laying at an arbitrary height in the specified environment. The information exchanged between

the ray tracer and the optimizer consists of the coordinates of the base station and the objective

function value. Figure 5.1 shows the simulation results of 315 objective function evaluations. fmin

has the same fast drop at the beginning as the ones shown in Figure 4.3. It takes about 60

evaluations to reduce the objective function by 7.88% (from 5.96E-08 to 5.49E-08), and another

255 evaluations to improve it by only 0.18% (from 5.49E-08 to 5.48E-08). This supports the earlier

claim that objective function convergence tolerance (4.4) is a reasonable stopping criterion for the

DIRECT algorithm in practice.

6. Conclusions and future work

The main contribution of the present implementation of DIRECT is the design of the dynamic data

structures. They not only address efficiently the problem of unpredictable memory requirements

in large-scale engineering optimization, but also simplify key steps of the DIRECT algorithm for

identifying potentially optimal boxes. In addition, the proposed modifications in stopping criteria

and box selection rules have shown great value in adapting DIRECT to varying types of objective

functions and design goals. Future work includes a MPI-based parallel version using the dynamic

data structures (or suitable variants of them) proposed here. Both a master-slave version (for

moderately parallel system or low dimensional problems) and a distributed control version (for

massively parallel systems and higher dimensional (n > 30) problems) are likely to find practical

applications. Incorporating nonlinear constraints has been attempted by several authors (Jones

[9], Torczon), but the issue is by no means satisfactorily resolved.

18

Acknowledgment

This work was supported in part by NASA Grant NAG-2-1180, NSF Grant DMI-9979711, and

NSF Grant EIA-9974956.

References

1. C. A. Baker, L. T. Watson, B. Grossman, R. T. Haftka, and W. H. Mason, “Parallel global aircraft configuration
design space exploration”, in Proc. High Performance Computing Symposium 2000, A. Tentner (Ed.), Soc.
for Computer Simulation Internat, San Diego, CA, 2000, pp. 101–106.

2. C. A. Baker, “Parallel global aircraft configuration design space exploration”, Technical Report MAD 2000-
06-28, Virginia Polytechnic Institute and State University, Blacksburg, VA, 2000.

3. S. E. Cox, R. T. Haftka, C. Baker, B. Grossman, W. H. Mason, L. T. Watson, “Global multidisciplinary
optimization of a high speed civil transport”, in Proc. Aerospace Numerical Simulation Symposium ’99,
Tokyo, Japan, June, 1999, pp. 23–28.

4. S. Cox, R.T. Haftka, C. Baker, B. Grossman, W. Mason and L. T. Watson, “A comparison of optimization
methods for the design of a high speed civil transport”, Journal of Global Optimization, 2001. To appear.

5. S. J. Fortune, D. M. Gay, B. W. Kernighan, O. Landron, R. A. Valenzuela, and M. H. Wright (AT&T Bell
Laboratories), “WISE design of indoor wireless systems: practical computation and optimization”, IEEE
Computational Science & Engineering, vol. 2, no. 1, pp. 58–68, Spring, 1995.

6. J. M. Gablonsky and C. T. Kelley, “A locally-biased form of the DIRECT algorithm”, Technical Report
CRSC-TR00-31, Center for Research in Scientific Computation, North Carolina State University, Raleigh, NC,
2001.

7. J. M. Gablonsky, “An implementation of the DIRECT algorithm”, Technical Report CRSC-TR98-29, Center
for Research in Scientific Computation, North Carolina State University, Raleigh, NC, 1998.

8. D. R. Jones, C. D. Perttunen, and B. E. Stuckman, “Lipschitzian optimization without the Lipschitz constant”,
Journal of Optimization Theory and Applications, vol. 79, no. 1, pp. 157–181, 1993.

9. D. R. Jones, “The DIRECT global optimization algorithm”, in Encyclopedia of Optimization, vol. 1, Kluwer
Academic Publishers, Boston, 2001, pp. 431–440.

10. R. M. Lewis, V. Torczon, and M. W. Trosset, “Direct search methods: then and now”, Journal of Computa-
tional and Applied Mathematics, vol. 124, pp. 191–207, 2000.

11. J. D. Pinter, Global Optimization In Action, Kluwer Academic Publishers:Boston, 1996.
12. V. Torczon, “On the convergence of the multidirectional search algorithm”, SIAM Journal on Optimization,

vol. 1, no. 1, pp. 123–145, 1991.
13. A. Verstak, M. Vass, N. Ramakrishnan, C. Shaffer, L. T. Watson, K. K. Bae, J. Jiang, W. H. Tranter, and T.

S. Rappaport, “Lightweight data management for compositional modeling in problem solving environments”,
in Proc. High Performance Computing Symposium 2001, A. Tentner (ed.), Soc. for Modeling and Simulation
Internat., San Diego, CA, 2001, pp. 148–153.

14. L. T. Watson and C. A. Baker, “A fully-distributed parallel global search algorithm”, Engineering Computa-
tions, vol. 18, no. 1/2, pp. 155–169, 2001.

15. L. T. Watson, M. Sosonkina, R. C. Melville, A. P. Morgan, and H. F. Walker, “Algorithm 777: HOMPACK90:
A suite of FORTRAN 90 codes for globally convergent homotopy algorithms”, ACM Transactions on Mathe-
matical Software, vol. 23, pp. 514–549, 1997.

19

