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1 INTRODUCTION
Perhaps the greatest contribution of the computer to education is the ability to give immediate feedback

to a learner about the state of their knowledge. This feedback often comes in the form of automated

assessment for practice problems. Assessment systems with automated feedback provide more practice

for students with less grading time for instructors. Self-assessment can increase learners motivation,

promote students’ ability to guide their own learning, and help them internalize factors used when judg-

ing performance (Andrade and Valtcheva, 2009; McMillan and Hearn, 2008). Other forms of feedback

include “gamification” elements where students are informed about progress through the material, and

they might be given “rewards” for progress in an effort to provide motivation. Instructors interested in

experimenting with new pedagogical approaches (blended learning, “flipped” classroom, etc.) might

find that the path to implementing these pedagogies is easier due to the affordances provided by new

learning technology.

Online educational systems can also provide feedback to system developers and instructors about

the performance of their students. The most obvious type of feedback to instructors is level and time of

completion for individual students. Another type of feedback is student analytics data in the form of

logs to record keystrokes, mouse clicks, and timestamps, as well as higher-order information such as

performance on practice problems. Such information is sometimes referred to as learning analytics

(Ferguson, 2012; Siemens and Baker, 2012). With such information, developers can hope to first

deduce patterns of student behavior, then correlate the different behavior patterns to successful

outcomes, and finally improve the system so as to enhance student performance in various ways.

In this chapter, we discuss all of these aspects of feedback given by online courseware to students,

instructors, and system developers. We provide a number of case studies. The context for our case stud-

ies is the OpenDSA eTextbook system (Fouh et al., 2014b). OpenDSA is an open-source project with

international collaboration that seeks to create an infrastructure and a body of materials appropriate for

use in a range of computer science courses. The bulk of the content relates to data structures and

algorithms (DSA). This particular topic area lends itself to an eTextbook treatment for two reasons.
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First, a significant fraction of the content relates to understanding the dynamic process of computer

algorithms. This means that visualizations of the behavior of the algorithms (referred to as algorithm

visualizations or AVs) can be especially useful to learners. Second, as with many disciplines, students

are traditionally unable to get sufficient practice exercises due to limitations on the part of instructors’

abilities to give feedback through grading of the students’ work. With OpenDSA, we are able to give

students a rich collection of practice questions and exercises.

The basic instructional unit for OpenDSAmaterials is the module, which represents a single topic

or part of a typical lecture, such as a single sorting algorithm. Each module is a complete unit of

instruction and typically contains AVs, interactive assessment activities with automated feedback,

and textbook quality text. Modules can be grouped together into chapters, such as might be found

in traditional paper books. OpenDSA content is built using HTML5 and JavaScript, making it device

and browser independent. AVs are built using the JavaScript algorithm visualization (JSAV) library

(Karavirta and Shaffer, 2013). OpenDSA includes extensive support for collecting learning

analytics data.

Many OpenDSA exercises are “algorithm simulations.” These require that the student manipulate

a data structure to show the changes that an algorithm would make to it, such as clicking to swap

elements in an array or clicking on appropriate nodes in a tree or graph. The AVs and algorithm sim-

ulation exercises are specifically designed to be manipulated either through mouse and pointer

interactions or touch interactions when using touchscreen devices. We generally refer to algorithm

simulation exercises, as “proficiency exercises.” This type of exercise was inspired by the

TRAKLA2 system (Korhonen et al., 2003), and many of OpenDSA’s proficiency exercises were cre-

ated in collaboration with the team that created TRAKLA2. We make use of the Khan Academy

framework (http://github.com/Khan/khan-exercises) to provide support for multiple choice, T/F,

and custom interactive exercises that we call “mini-proficiency” exercises. We will refer to these

collectively as KA exercises. All exercises are automatically graded and provide immediate feedback

to the user. Students can repeat exercises as many times as they want until they get credit, or repeat

them as a study aid for an exam.

Several experiments have shown the pedagogical effectiveness of TRAKLA2’s proficiency

exercises. Laakso et al. (2005, 2009) reported on the use of TRAKLA2 exercises in data structures

and algorithms courses at two universities in Finland. TRAKLA2 exercises were incorporated as

classroom (closed lab) exercises, and supplemented lecture hours and classroom sessions.

TRAKLA2 exercises were also incorporated into the final exam (one out of five questions) and mid-

term (they replaced half of a question with a TRAKLA2 exercise in a total of five questions). A year

after the introduction of TRAKLA2 in the curriculum, the activity of students increased in all aspects

of the course, not only the part involving TRAKLA2 exercises. The average performance in class-

room exercises rose from 54.5% to 60.3% (as percentage of exercises completed). A study (Karavirta

et al., 2013) of several TRAKLA proficiency exercises translated to OpenDSA demonstrated that

they remain equally effective. Student opinions of TRAKLA2 were collected through an online sur-

vey. Eighty percent of the students reported having a good opinion of TRAKLA2. After a year of

using TRAKLA2, the opinion of students on its suitability for instruction rose significantly.

Ninety-four percent of students agreed that TRAKLA2 exercises helped in their learning process.

Their opinion did not change regarding their preference on the medium used to access and perform

the exercises: they preferred a mixed (online and traditional classroom) experience.

http://github.com/Khan/khan-exercises)
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2 MONITORING THE STUDENT LEARNING PROCESS: WHAT WE LEARN
FROM SURVEYS AND LEARNING ANALYTICS
Online courseware systems provide the opportunity to automatically log massive amounts of user

interaction data in fine detail, to the level of individual mouse events. This wealth of information might

be used in a number of ways to improve the pedagogical value of online materials. Developers can hope

to learn from interactive log data simple things like, which exercises are taking an unreasonable amount

of time or which ones appear too easy because students never get them wrong. But careful analysis of

log data can hope to deduce more complex behavior.

For example, by examining the times of various interactions, we should be able to determine

whether students are reading the materials before attempting the associated exercises. We can hope

to tell whether students are viewing all of the slides in a visualization, or are skipping through them.

We should be able to tell whether students are going back to the materials to use them to study for a test

by the fact that they look at them a day or two before the test, even if they had previously received credit

for completing them.

Based on this feedback, we can then try to better engineer the courseware, for example, to make sure

that students do not solve problems by guessing, or skip over key material. Intelligent tutoring systems

(Corbett et al., 1997; Roll et al., 2011; Feng et al., 2014) can be built to react to the behavior of an

individual student, attempting to identify and directly address the underlying misconception that leads

to providing an incorrect answer to an exercise. Instructors can be given better feedback on student

performance. For all of these reasons, learning analytics and techniques for analyzing the data are

poised to become a major focus of CS education research (and, more generally, CS contribution to

education research in all disciplines).

OpenDSA collects log data for all user interactions occurring on an OpenDSA web page. Since

Spring 2013, we have been able to collect detailed interaction data for hundreds of students per year

who are using the system, amounting to millions of individual interaction events. Interaction log data

plays the central role in all of the feedback mechanisms that we discuss in this paper. The act of col-

lecting the data itself typically does not directly impact students (though more sophisticated intelligent

tutoring systems can use this information for better adaptive feedback (Roll et al., 2011)). But it is this

log data that allows us to deduce most of the results presented in the following sections about how

students are using the system. This allows us to understand the role that feedback to the students is

actually having on student learning. This in turn can allow us to actively improve the system in ways

that will lead to better learning outcomes.

In this section, we first present several use cases for using interaction log data to understand student

behavior with the OpenDSA system. We then present data that we have collected related to student

perceptions regarding the value of OpenDSA, and their preferences for how the system should be used

in courses.

Throughout this paper, our case studies and our discussions of student surveys and log data will

refer to various classes. The vast majority of classes that have used OpenDSA so far can be categorized

as one of two types. We use the term “CS2” to refer to a second semester programming course in

computer science. This course is typical for most CS departments, and includes some combination

of basic software engineering and introductory data structures (linear structures, some simple sorting

algorithms, and some introductory material on binary trees). We use the term “CS3” to mean a course
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that comes after the typical CS2 course, primarily focused on more advanced data structures. This

typically includes algorithm analysis, advanced sorting algorithms, advanced tree structures, hashing,

and perhaps an introduction to file structures.
2.1 MONITORING LEVELS OF STUDENT ENGAGEMENT
Instructors have always recognized that students have difficulty with certain topics. In at least some

instances that we have studied, we find that one source of this difficulty relates to a consistent lack

of engagement of students with the learning materials on that particular topic. In other cases, we find

that difficulty arises from insufficient time spent by students engaging with the material due to lack of

necessary practice activities. We illustrate both of these situations in our case studies. Further details

can be found in Fouh et al. (2014a).

2.1.1 Case study: Recursion
Recursion is known to be a hard topic at both the CS2 and CS3 levels. Surveys from 15 instructors for

CS2 courses indicate that these instructors believe students should spend an average of 10 h studying

and practicing recursion outside of class. Surveys of 54 students in a CS2 course indicate that students

were spending an average of only 4 h in out-of-class study and practice of recursion. The instructors

unanimously felt that students were not spending enough time, even before having this confirmed by

the survey data. Students come out of the typical instructional experience with a below-average feeling

of confidence (2.6 out of 5 on a Likert scale for the students that we surveyed).

This information provides guidance for the design of a new tutorial on recursion. We see that goals

for an online tutorial should include a significant body of practice exercises, and that reading tutorial

content and working through the exercises should be calibrated to encourage students to spend about

10 h on the topic.

We created an online tutorial on recursion, presented as a chapter in OpenDSA. Students using this

material during Spring 2015 reported spending an average of 7.3 h out of class, a marked increase over

the prior semester’s average of 4 h. From analyzing log data, we find that the median time spent on the

recursion tutorial exercises is approximately 5 h. This does not include time spent reviewing the tutorial

content (reading material and viewing the slideshows). Measuring reading times is much more difficult

since our only logged interactions comewhen the page is opened and then when it is closed or passed on

to another page. This means that actual measurements for “reading” material could include time spent

away from the computer. However, it appears that our log data confirms the student estimates of 7 h or

so. This is a significant finding in itself, since it supports a claim that we can trust data collected from

either one of these sources (interaction log data or survey data where students estimate time spent on an

activity).

2.1.2 Case study: Recursion exercises
The recursion tutorial discussed earlier includes a substantial number of programming exercises. A few

of these exercises are relatively difficult for many of the students. As a result, many students are

motivated to seek ways to get around doing the exercises.

The exercises are implemented based on the Khan Academy Exercise Framework. The fundamental

approach is that a given programming “exercise” contains several specific programming problems. Of

these individual problems, students are supposed to do a random subset, say two or three randomly
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selected out of five. Unfortunately, students can view the problem instance that comes up, then reload

the page without penalty to get another problem at random. As a result many students will do one

problem, then keep reloading the page until that problem repeats, then do it again. Through analysis

of student responses to the programming exercises, we have found the following:

1. 52% of students who attempt the programming exercises do — on at least one instance — exhibit

this behavior of reloading the page to get the same problem that they have just solved

correctly, then resolve it to get a second credit instead of solving another one. We will name

those students “Proficiency Seekers.”

2. 93% of the “Proficiency Seekers” have exhibited this behavior in the exercises the students

consider as hard. According to the student surveys, the students consider the exercises that ask them

to write a full function or complete a nonsimple recursive function that has more than one

recursive call or base case as hard. We have not found that students exhibit this behavior for simple

code completion or the tracing exercises.

3. 42% of “Proficiency Seekers” have repeated this behavior for all three recursive function writing

exercise sets.

This case study illustrates several points:

1. Log data allows us to deduce this behavior.

2. The details of exercise framework implementation have a huge impact on student behavior.

As a result of this study, we are reengineering first the tutorial and then the framework infrastructure to

avoid the negative behavior.

2.1.3 Case study: Algorithm analysis
For a topic such as a particular sorting algorithm, an OpenDSA module (like a typical textbook pre-

sentation) contains both material on the dynamic behavior of the algorithm, and analytical material in

the form of a runtime analysis (that is, the “algorithm analysis”) of that algorithm. While dynamic

behavior is well presented in OpenDSA by use of AVs, the analytical material relies mainly on textual

discussion supported by static images. In other words, OpenDSA has historically presented algorithm

analysis topics in a manner indistinguishable from a standard textbook. As a whole, the AV develop-

ment community has a lot of experience with creating visualizations for the dynamic behavior of

algorithms, but almost none with presenting analytical material (Shaffer et al., 2010). We also know

from prior research into AVs in general that the level of student interaction with the material is a crucial

factor in learning (Hundhausen et al., 2002; Naps et al., 2002). Unfortunately, algorithm analysis is also

one of the most difficult topics in a typical CS2 course (Parker and Lewis, 2014). Thus we have the

situation that our least engaging content is on one of our most difficult topics.

In order to see whether the typical “textbook” approach to presenting algorithm analysis content is

effective for students, we analyzed student interaction logs from a CS3 course during Fall 2014. In

particular, we focused on student engagement with OpenDSA’s algorithm analysis material presented

in the sorting chapter. This chapter contains more than 40% of all algorithm analysis material in that

course. Unfortunately, OpenDSA’s data collection tools (Breakiron, 2013) don’t provide a direct

method that we can use to estimate the time spent by students reading the analysis material in each

module, because the main focus of these tools is to collect user interactions with the interactive content.

Accordingly, the OpenDSA authoring system was extended to support wrapping arbitrary module



140 CHAPTER 8 AUTOMATING LEARNER FEEDBACK IN AN eTEXTBOOK
sections behind a “show/hide” button as is done with other interactive content. When the student

first sees the module that presents a given sorting algorithm, the algorithm analysis material is initially

hidden, and a button is shown in its place. When the button is pressed, the analytical content is

displayed. The time is recorded, and can be used as an estimate of the time when the student started

reading the material. The time for finishing the material can be estimated from the time of the next user

interaction, such as loading the next exercise or leaving the module which is recorded by the data

collection tools.

We analyzed the interaction logs available for three OpenDSA book instances used at three differ-

ent universities (Virginia Tech, University of Texas El Paso, and University of Florida). Fig. 8.1

presents the distribution of the estimated reading time for three sorting modules (Insertionsort,

Mergesort, and Quicksort) for the Virginia Tech students. Similar results were found for students at

the other universities. Results are summarized in Table 8.1. As we see from the results, more than

74% of the students spent <1 min on the analysis material for each of the three modules. Based on

this result, we believe that most of the students are not reading the analysis material.

When the students were asked to provide suggestions for improving the presentation of the analysis

material in OpenDSA, we found that most of them are expecting a more interactive presentation in the

form of visualizations. Representative quotes from the survey include: “Visualizations definitely help,”

“I think making the click through pictures into actual animations would be nice,” “more animation, the

visualizations are great!,” “more visualizations is always good,” “Visualizations always help,” “visu-

alizations showing each step of analysis would help,” “an animation will make a much bigger

difference.”

Based on this information, we determined to make new presentations for this content that would

result in students spending more time using the material. This could happen in two ways. One is to

motivate students to spend more time through the use of a more appealing presentation, perhaps

visualization. The other is to force students to spend more time as a byproduct of completing specific

tasks that are required to get credit for completing the tutorial. This might be engineered through a

combination of requiring students to view slideshows (though these might be quickly skipped through),

answering questions, and working exercises.

As an initial step, we have taken the approach of providing a visual presentation of the material.

Inspired by the concept of visual proofs (Goodrich and Tamassia, 1998), a set of algorithm analysis

visualizations were implemented for OpenDSA sorting modules (Insertionsort, Bubblesort, Selection-

sort, Mergesort, Heapsort, Quicksort, Radixsort, and the lower bounds for sorting). Fig. 8.2 shows some

examples of the new visualizations.

We have collected preliminary data with two small classes using the sorting analysis visualizations.

Summary results for the two modules teaching Insertionsort and Quicksort appear in Table 8.2. We

performed Kruskal Wallis tests to see if there is any significant difference between the time spent

on text versus visualizations for these two modules. In each case, the difference in the means is sig-

nificant (p<0.00002), indicating that students spend more time on the material when presented as

visualizations.

2.1.4 Case study: Student use of exercises for study
We sought to determine if students would only use OpenDSA when required for homework credit, or if

they would use it voluntarily such as to review for exams. Participants included in this study were stu-

dents enrolled in a CS2 course and a CS3 course at Virginia Tech during Spring 2015. We used



0(A)

10

20

30

40

50

60

70

80

60

6

73

C
ou

nt

9

1
4 4

10

120 180 240 300 360 420 480

75

16

0(B) 60 120 180 240 300 360 420 480 540

10

20

30

40

50

C
ou

nt

60

70

80

1 1 1 1 0 1

FIGURE 8.1

Estimated time spent by Virginia Tech students reading the analysis material. (A) Insertionsort module,

(B) Mergesort module, and
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(C) Quicksort module.

Table 8.1 Results Summary

University Module N Mean (S) % <1 min

Virginia Tech Insertionsort 98 63.57 74.48

Mergesort 96 39.79 78.12

Quicksort 92 64.71 73.91

UTEP Insertionsort 26 49.84 80.76

Mergesort 22 41.45 77.27

Quicksort 16 16.18 93.75

Florida Insertionsort 53 40.39 84.90

Mergesort 44 18.63 95.45

Quicksort 39 26.12 92.30

All Insertionsort 177 54.6 78.52

Quicksort 147 49.2 80.94
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FIGURE 8.2

Visualizations illustrating the running time analysis of some sorting algorithms. (A) Build heap analysis,

(B) Insertionsort worst case analysis,
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FIGURE 8.2, CONT’D

(C) Mergesort analysis, and (D) Quicksort best case analysis.
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Table 8.2 Text vs. Visualization Times, Measured in Seconds

Text Slideshow

Module
Median
Time

Mean
Time

Standard
Deviation

Median
Time

Mean
Time

Standard
Deviation

Insertionsort 10 54.6 99.4 46 67.7 69.0

Quicksort 6 49.2 102.7 40.5 70.3 73.9

1452 MONITORING THE STUDENT LEARNING PROCESS
interaction log data to analyze student use of OpenDSA.We plotted the timelines of interactions within

OpenDSA and added class events (homework due date, exams date) to the graph.

Logs analysis showed that students used OpenDSA to review for exams, thus indicating the use-

fulness of OpenDSA as a study aid. Figs. 8.3–8.5 present timelines showing exercise completions.

Clusters of interactions appear at homework due dates as expected. But there are also spikes in the

number of interactions immediately prior to the exams.
FIGURE 8.3

Timeline of interactions: CS3 at Virginia Tech, Spring 2013 (sorting and hashing chapters).
2.2 STUDENT PERCEPTIONS OF OpenDSA
Some of the case studies from the previous section are rather negative, in that they paint a picture of

students avoiding reading content and skipping at least some exercise types whenever possible. How-

ever, students routinely offer positive feedback about the system and experience as a whole. Whenever

surveyed, students always give a positive value to OpenDSA. In this section, we report on some specific

survey feedback from students. We then provide one further case study of student behavior, related to

voluntary use of OpenDSA as a study aid and its relationship to grades.
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2.2.1 Student ranking of OpenDSA exercises
We investigated how students ranked OpenDSA exercises in terms of perceived learning benefits,

specifically as related to other course elements. Participants comprised 54 students enrolled in a

CS2 course at Virginia Tech. This is a programming-intensive class with 2 h of programming labs each

week. OpenDSA exercises were used as weekly mandatory homework assignments. At the end of the

semester, students answered survey questions to report about their experience using OpenDSA.

Students were asked: “This class included these elements: (1) lectures, (2) OpenDSA Exercises, (3)

textbook (paper), (4) programming labs, (5) reading quizzes, and (6) interacting with instructor. Please

rank these in order from the one that gave you the most learning gains to the one that gave you the

least.” Thus they ranked class items from 1 — most useful to 6 — least useful in regards to their

learning gains in the course.

Students on average ranked OpenDSA exercises second, with an average score of 2.48. Note that

OpenDSA materials were used for only part of the course. The main course textbook was a traditional

paper textbook. Programming labs were ranked first with an average score of 1.42, the course (paper)

textbook was ranked third (average score¼3.77). Lectures, interacting with instructor, and reading

quizzes were ranked fourth, fifth, and sixth with average scores 4.13, 4.19, and 4.57, respectively.

A Friedman test was run to identify if the difference between perceived leaning benefits was

statistically significant. Because the Friedman test is only applicable to complete block designs, we

discarded incomplete blocks (ie, data from students who did not rank all six class elements). Thus

11 incomplete evaluations were discarded resulting in 43 evaluations used in our analysis. The

Friedman test revealed a significant difference between the ranking of class items (X2(5)¼101.5,

p<0.01). A post hoc Wilcoxon test with Bonferroni correction identified three clusters of items.
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The highest-ranking cluster consisted of the programming labs. The second highest-ranking cluster

consisted of the OpenDSA exercises. The remaining, lowest-ranking cluster included all other items:

the paper textbook, lectures, instructor, and reading quizzes. Students attributed most of the learning

gains in the course to programming labs first, then to OpenDSA exercises. The other class items were

perceived to have a significantly lower impact in learning benefits.

2.2.2 Student self-efficacy regarding learning DSA material
OpenDSA’s assessment activities provide the learner with many mastery-based experiences, thus im-

proving students’ abilities to learn course material. We asked students to rate their ability to succeed in

the course under various scenarios of use for OpenDSA. This information came from a survey carried

out on two courses, a CS2 course during Spring 2014 at Virginia Tech, and a CS3 course during Fall

2014 also at Virginia Tech. In both groups, OpenDSA exercises were used as mandatory assignments.

OpenDSA was the sole class textbook in the CS3 course.

At the end of the semester, students answered survey questions asking them to rate their ability to

learn course material under several (hypothetical) scenarios. We asked students in the CS2 course

to use a Likert scale of 1 (low confidence) to 5 (high confidence) to rate their confidence in their ability

to learn the course materials under the following conditions:

• Scenario 1: I could succeed in learning the course material if the class was only taught using a

standard textbook with Moodle quizzes.

• Scenario 2: I could succeed in learning the course material using OpenDSA on my own if I was

required to do the OpenDSA exercises for a grade.

• Scenario 3: I could succeed in learning the course material using OpenDSA on my own with no

graded exercises.

• Scenario 4: I could succeed in learning the course material using OpenDSA if the instructor goes

over OpenDSA’s content during a lecture but I am NOT required to do the exercises for a grade.

• Scenario 5: I could succeed in learning the course material using OpenDSA if the instructor goes

over OpenDSA’s content during a lecture and I AM required to do the OpenDSA exercises for

a grade.

Students enrolled in the CS3 course were asked to answer the same questions, but Scenario 1 was re-

moved since OpenDSA was the textbook of the course and the course did not include Moodle quizzes.

Our analysis of student responses showed that students ranked scenarios involving using OpenDSA

during lecture and for graded assignment higher. In CS2, out of the 49 responses that we collected, 38%

gave Scenario 5 the highest score of 5, and 69% of the responders ranked their confidence in succeeding

in the class under Scenario 5 with a score of 4 or 5. Scenarios involving mandatory OpenDSA exercises

(for grading) received higher ability to learn course content scores, thus showing that students have a

preference for that type of use of OpenDSA. The above results also corroborate our hypothesis that the

mastery-based experience provided by OpenDSA exercises will help student ability to learn course

materials. We found similar results from the CS3 responses.

A Kruskal Wallis test revealed for scenarios of use a significant effect on predicted ability to learn

course materials for both CS2 (X2(4)¼51.9, p<0.01) and CS3 (X2(3)¼48.5, p<0.01). A post hoc test

usingWilcoxon tests with Bonferroni correction identified two clusters for CS2 data: Scenario 5 versus

the other four scenarios. In other words, Scenario 5 was significantly preferred over all other responses,

among which the ordering was not significant.
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A post hoc test using Wilcoxon tests with Bonferroni correction identified three clusters for CS3

data. Again, Scenario 5 was most preferred, and the difference was significant. Scenario 2 was the clear

second choice. Scenarios 3 and 4 were the least preferred, but their relative order was not significant.

To summarize, the results show that students believe that a class format with lecture content on

OpenDSA material, combined with mandatory assignments, will be most effective.
2.2.3 Effects of OpenDSA exercises on student performance
Given the holistic nature of many courses, it can be difficult to extract the effects of one aspect of a

course on performance outcomes. Students get information about course content from many sources.

We have searched for potential relationships between use of OpenDSA and student performance on

exams. Some preliminary results do show a relationship between OpenDSA exercises worked and

student performance. Unfortunately, so far we only have sufficient data to show correlation, not

causation.

We categorized OpenDSA exercises into three types. Multiple choice, T/F, and fill-in-the-blank

questions implemented using the Khan Academy framework are identified as “KA.” Algorithm pro-

ficiency exercises implemented using the Khan Academy framework are generally short and scored as

correct or incorrect; these are identified as “KAV.” Full algorithm proficiency exercises with multiple

steps are identified as “PE.” For each exercise type (KA, KAV, PE), we computed the mean number of

exercises completed by the subjects beforeMidterm 1 and beforeMidterm 2 in a CS3 course at Virginia

Tech during Fall 2013.

The book instance used in our analysis had a total of 95 required exercises, of which 36 were

KA simple questions sets (each with several multiple choice or T/F questions), 30 were KA

“mini-proficiency” exercises (KAV), 26 were full proficiency exercises (PE), and 3 were other in-

teractive activities. Before Midterm 1, students were required to solve a total of 15 KA simple ques-

tion sets, 12 KAV exercises, and 6 PE exercises. Between Midterm 1 and 2, they had to complete

19 KA simple question sets, 18 KAV exercises, and 20 PE exercises.

We wanted to see if there would be a difference between the students who correctly completed

many exercises “postproficiency” (that is, repeated exercises after receiving credit as a study aid)

and those who did not. We found a low correlation between the number of correct exercises (regardless

of the type) completed by the students and exam scores. A negative correlation observed between the

total number of KA simple questions attempted might be an indication that some students were just

using a trial-and-error strategy when solving those exercises, resulting in a lot of incorrect answer

submissions (and thus driving up the total number of attempts).

We computed the average number of correct exercises performed by students grouped by score

quartile as follows: q0 represents students who performed below the 25th percentile; q1 represents stu-
dents with a score between the 25th and the 50th percentile; q2 represents students with a score between
the 50th and the 75th percentile; and q3 represents students with a score above the 75th percentile. In

order to compare OpenDSA use across quartiles, we computed the mean number of completed exer-

cises for each quartile. Tables 8.3 and 8.4 show the statistics of the different groups. As shown in

Fig. 8.6, students with higher exam scores tend to complete more exercises correctly than those with
lower exam scores. Since nearly all students complete enough exercises correctly as needed to get full

credit for the OpenDSA assignments, what this means is that there is a correlation between repeating

more exercises (correctly) as a study aid, and getting a better score on the exam.



Table 8.3 Average Correct Exercises Completed, Grouped by Midterm 1 Score

Groups Correct.KA Correct.KAV Correct.PE

q0 (N¼35) 15.14 (SD¼8.04) 9.17 (SD¼4.85) 9.37 (SD¼7.36)

q1 (N¼37) 19.05 (SD¼9.82) 11.43 (SD¼4.11) 11.75 (SD¼8.36)

q2 (N¼32) 19.43 (SD¼5.89) 11.53 (SD¼3.91) 13.93 (SD¼14.43)

q3 (N¼31) 23.64 (SD¼9.15) 12.70 (SD¼5.71) 13.87 (SD¼12.18)

Table 8.4 Average Correct Exercises Completed, Table Grouped by Midterm 2 Score

Groups Correct.KA Correct.KAV Correct.PE

q0 (N¼38) 15.42 (SD¼5.91) 14.55 (SD¼6) 26.89 (SD¼12.76)

q1 (N¼31) 16.83 (SD¼10.11) 14.22 (SD¼6.57) 26.45 (SD¼13.08)

q2 (N¼33) 18.09 (SD¼7.27) 16.33 (SD¼4.55) 31.24 (SD¼14.93)

q3 (N¼33) 24.60 (SD¼12.09) 18.78 (SD¼5.75) 34.03 (SD¼11.85)
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The difference in the average number of correct exercises between student groups was significant at

the p<0.05 level for KA simple questions and KAV exercises for Midterm 1 and 2. However, the dif-

ference was not statistically significant for PE exercises. The difference was still not significant when

merging the number of correct KAV exercises with the number of correct PE exercises.

We can say that higher scores on written tests are correlated with a high number of correct exercises

(beyond the minimum level required to receive full homework credit). These findings can be used to

detect struggling students, since they are less likely to use an exercise for study purposes. In addition,

students with the lowest grades have the lowest “number of correct exercises to number of exercises

attempted” ratio. In other words, they appear to be using some suboptimal behavior such as guessing or

viewing hints in an attempt to build a catalog of correct answers, rather than actively using their knowl-

edge to correctly answer the question.
3 GAMIFICATION: HOW FEEDBACK MOTIVATES STUDENT BEHAVIOR
3.1 INTRODUCTION
There can be no doubt that many people are motivated by indications of progress and closure. For ex-

ample, witness the feeling of satisfaction that many people get from the simple act of crossing a task off

of a “to do” list. We have implemented several types of feedback to users regarding completion of an

exercise, and progress toward completion of modules and chapters. This feedback can be considered a

form of “gamification.” Gamification is the use of game design elements in nongame contexts

(Deterding et al., 2011).

Here we are interested in exploring how visual elements (indicators) and other techniques borrowed

from game design influence student behavior when using OpenDSA. In this section, we first enumerate

the gamification features within OpenDSA, and report on a survey of student opinions on these
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features. We then report on indications from our log data about how the presence of visual indicators

influences student interactions with OpenDSA. Further details on some aspects of this section can be

found in Fouh (2015).
3.2 RELATED WORK
One element of gamification is the use of motivational affordances in order to encourage particular

behaviors (Hamari et al., 2014). Zhang (2008) identified five main motivational sources and argued

that games and learning system design should be influenced by cognitive (achievements and

accomplishments) motivations and needs. Elements present in games that have been mainly used in

educational systems design include scores, leaderboards, achievements/badges, and level (Hamari

et al., 2014; Deterding et al., 2011). Some elements like scores have always been part of educational

systems, and seem to be motivating. On the other hand, there is little evidence in the literature to con-

clude that there is a positive impact from badges on student engagement or effectiveness (Falkner and

Falkner, 2014). Despite this, badges are increasingly being used in computer science education

systems. Haaranen et al. (2014) awarded badges to students for completing exercises in a data struc-

tures course, where badges were displayed within the learning management system. They reported a

mixed impact on student learning behavior. A leaderboard and badges were used in an introductory

media computation course, and are credited with contributing to positive experiences for students

and high overall engagement (Latulipe et al., 2015).
3.3 OpenDSA GAMIFICATION ELEMENTS
OpenDSA aims to provide students with visual indicators upon successful completion of an interactive

activity. Such indicators are used in conjunction with a traditional points system for homework assign-

ments. Points are earned when an exercise has been solved correctly. OpenDSA uses a mastery-based

approach, meaning that students can attempt an exercise as many times as desired until completion

credit has been given (and the exercise can continue to be used after that, perhaps as a study aid). While

some “exercises” are merely static multiple choice or T/F questions, many generate a new problem

instance each time, making them repeatable in a meaningful way for additional practice. OpenDSA

exercises are fundamentally implemented in two ways. Most exercises use the Khan Academy exer-

cises framework (KA exercises). Such exercises provide students with hints to help them answer a

question. Fig. 8.7 shows an example of a Khan Academy exercise in which the student can click on

the “I’d like a hint” button to get help. Once a hint is used, that problem instance is not graded.

Other exercises are referred to as “JSAV-Proficiency exercises” (PE exercises). These are always

algorithm simulations, where the student will manipulate a data structure such as an array or tree

through a series of steps to reproduce the behavior of some algorithm. The initial state of the data struc-

ture (such as the specific values in an array for a sorting algorithm, or the order of the inputs for in-

sertion into a tree) specifies a new problem instance. For each such instance, a visualization for a model

solution is automatically generated. Fig. 8.8 shows an example of a PE with the model solution visible.

Students can chose to see the model answer without (or before) solving the exercise. Once a model

answer has been displayed, that problem instance will not be graded. So to get credit for the exercise,

the student will need to request a new problem instance to work on.

Now we describe the visual indicators displayed when an interactive activity is completed.



FIGURE 8.7

Khan Academy exercise.

FIGURE 8.8

Proficiency exercise.
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3.3.1 Proficiency for embedded slideshows
OpenDSA visualizations often come in the form of embedded slideshows, which generally are rela-

tively short presentations of a specific example. Users are given an indication when the slideshow

has been completed (all slides viewed), shown by the appearance of a green check mark on the left

side of the slideshow container (see Fig. 8.9).
FIGURE 8.9

Insertionsort mini-slideshow with green (dark gray in the print versions) check mark.
3.3.2 Proficiency for embedded exercises
Completion of an exercise is indicated by the color of the button used to control whether the exercise is

to be shown or hidden. A red button indicates that the user is not yet given credit for being proficient, as

shown in Fig. 8.10. Green indicates that the user has received proficiency credit (see Fig. 8.11).
FIGURE 8.10

Tree preorder traversal exercise with red (dark gray in the print versions) show/hide button.



FIGURE 8.11

Module page with proficiency indicator for module and exercise.
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3.3.3 Proficiency for modules
Modules in OpenDSA cover a specific topic or part of a topic. Operationally, a module corresponds to a

single HTML page within a book instance. Each module typically includes one or more slideshows and

one or more interactive exercises. Module proficiency occurs when a user obtains proficiency for all the

required exercises and completes viewing all of the slideshows in a module. Proficiency is signaled to

the user by the words “Module Complete” that appear in green at the top of the module page (see

Fig. 8.11). A given book instance can optionally be configured to show “Module Complete” automat-

ically when the module is viewed, for modules with no exercises or visualizations. At this point, we

have not studied whether it is desirable or not to indicate “Module Complete” signals for such modules.

But anecdotal evidence suggests that students prefer this.
3.3.4 Table of contents indicators
A small green check mark appears next to a module title in the Table of Contents when that the module

has been completed (see Fig. 8.12).
3.3.5 OpenDSA gradebook
Perhaps the most important notification information that students receive comes through the gradebook
page. This page shows score status for all exercises and modules. Those for which the user is proficient

are highlighted in green. The gradebook is a hierarchical display that allows users to toggle between

showing or hiding portions of the gradebook. Fig. 8.13 shows a gradebook page with two modules

expanded, one down to the exercise level. Completed exercises within the expanded display for the

module are highlighted in green.



FIGURE 8.12

Section of table of content with module proficiency indicator.

FIGURE 8.13

Gradebook page.
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3.4 STUDENT PERCEPTIONS OF OpenDSA GAMIFICATION ELEMENTS
We conducted a survey of OpenDSA users in order to understand what they think of the gamification

elements. Participants were 143 students enrolled in a CS3 course at Virginia Tech during Fall 2014,

from whom we collected 83 survey responses. OpenDSA was used as the main textbook, and students

had until the end of the semester to complete all of the OpenDSA exercises. Completion of OpenDSA

exercises accounted for 20% of the course final grade.

The survey asked the following questions:

1. OpenDSA includes a number of features to help you track which exercises and modules you have

completed. These include green checkmarks by the slideshows, green text saying “Module

Complete” at the top of the page, green marks in the table of contents, and green bars in the student

gradebook. On a scale of 1–5, with 1 meaning not important and 5 meaning very important, how

important are these signals for completing material to you?

2. Does the existence of the green checkmarks and other signals of completion of material affect your

behavior in any way? If so, how?

We used a qualitative method of content analysis when examining student responses to Question 2. We

used interaction log data to analyze and understand how visual indicators influenced student use of

OpenDSA.

3.4.1 Student perceptions on visual feedback indicators
To the question “how important are these (OpenDSA visual) signals for completing material to you,”

respondents gave an average score of 4.01 on a five-point Likert scale. Fig. 8.14 shows the response

distribution. A majority of students (75%) indicated that visual indicators were important when using

OpenDSA to study course content.
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3.4.2 Effects of visual feedback indicators on student behavior
We used codes to label ideas expressed in each response to the question “Does the existence of the

green checkmarks and other signals of completion of material affect your behavior in any way? If

so, how?” The codes attempt to capture how the visual indicators affected students’ learning behavior.

We derived the codes from students’ responses, and grouped responses with the same code together.

Table 8.5 summarizes the results. In this table, we show the average score from the first question for the

students in each code group.

Out of 80 responses collected, 65% reported that visual elements had an effect on their behavior

while 35% reported no impact. Thirty-one percent reported using visual indicators to keep track their

progress. Similarly, 15% indicated using the visual elements to track work remaining (labeled as “Goal

tracking”). Students can easily track their progress (or work that remains) by looking at the greened

items in the gradebook or by the presence of green checkmarks in front of sections in the table of

contents. Three students acknowledged actively seeking the green checkmarks while working. One

student wrote “Yes (completion signals affected my behavior), I try to get checkmarks on everything.”

Among the students who reported using visual indicators to keep track of the goal (amount of work

left), 10 indicated that the visual indicatorsmotivated them to do more work. A student wrote “Yeah it’s

fun to see it all get completed makes me want to do it more,” while another one wrote “yes, made me

more willing to complete everything.”

Nine students reported that visual indicators reinforced their learning. They indicated liking them and

being happy to see them. Examples of comments in that category include “Yes, I think it’s rewarding and

make me feel better,” “They make me feel accomplished so I work harder,” and “I can be sure I have

completed the gradedmaterial.” Students in this category on average gave the highest importance score to

visual indicators (mean¼4.77).

Among the students who reported using visual indicators to track their accomplishments, eight

indicated that they stopped working on items as soon as they are marked as completed, until they
needed to study for a test. A student noted that “Usually after it’s checked I don’t go back unless I have

a test or need it for a project.” Another wrote “(I) don’t continue practicing them (checked items) until

test review time.” This trend needs to be taken into consideration when deciding a proficiency threshold

for an exercise. A low proficiency threshold might not provide the students with enough practice. Some

students reported that visual indicators are a better way to track progress than a points system. For

example, a student wrote “Kind of gave concrete evidence on completion as opposed to ‘What is

my grade now’.”
Table 8.5 Student Response Summary

Code Value Frequency Percentage Avg. Score Agg. Score

1 Accomplishment tracking 25 31 4.12 4.33

2 Goal tracking 12 15 4.08

3 Accomplishment/goal tracking 2 3 4.5

4 Verification grade saved on server 2 3 4

5 Reinforcement 9 11 4.77

6 Reinforcement/goal tracking 2 3 4.5

7 No impact 28 35 3.57 3.52

Total 80 100
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A Wilcoxon rank sum test revealed they ranked visual indicators as more important when they

reported that these indicators affected their behavior (W(79)¼995, p<0.01). This is to be expected,

but it also rules out a situation where people feel compelled to get all of the marks since they are there,

but would have preferred that they not be visible.

3.5 IMPACT OF PROFICIENCY INDICATORS ON STUDENT TIME SPENT
ON SLIDESHOWS
Visual proficiency indicators appear upon correct completion of an interactive element and remain vis-

ible thereafter. Therefore, it is unlikely that visual indicators will motivate students to complete the

same exercise or slideshow after they gain proficiency. Students receive points only for exercises.

However, the “Module Complete” message and the green checkmarks in the table of contents only

appear if they have gone through all the visualizations (on top of the exercises).

Previous studies (Breakiron, 2013; Fouh et al., 2014a) have shown that many students go straight to

the exercises upon loading a module and they rush through slideshows (during their first viewing). We

investigated the time spent by students on slideshows before proficiency (first viewing) and post

proficiency (second viewing) to see if students behavior changed once they got the green checkmark

for completing a slideshow.

The majority of students viewed most slideshows at least twice. Ninety-eight percent of the students

completed more than 50% of the slideshows at least twice, with 20 (out of 135) students completing all

the slideshows at least two times. Fig. 8.15 shows the distribution of students’ subsequent slideshow com-

pletion (reattempt ratio). The mean fraction of slideshows that were viewed multiple times was 80%.

Student’s behavior during their second viewing should not be influenced by the check mark (since the

visual status cannot change at this point). In Fig. 8.16, for each slideshow we have plotted the mean time
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Multiple viewings of slideshows. Each bar in the histogram shows the fraction of students who revisited that

fraction of slideshows.
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spent by students during the first and second viewings. (Therewere not enough third viewings to analyze.)

Students spent a mean of 36 s and a median of 24 s on each slideshow during their first viewing. They

spent a mean of 73 s and a median of 31 s on each slideshow on their second viewing. A Wilcoxon rank

sum test showed that the increase in time spent on each slideshow between the first and the second view-

ings was statistically significant (W(1125)¼995, p<0.01). Since rushing through slideshows is more

pronounced on the first viewing, it seems that preproficiency work is influenced by the green checkmark,

and postproficiency work is more influenced by learning, especially to review for exams.

3.6 STUDENTS USE OF THE GRADEBOOK
There were 171 HTML pages in the book instance used by students enrolled in the CS3 course offering

at Virginia Tech in Fall 2014. We examined which pages were most visited. The top four pages, in

order, were as follows:

1. The book’s Table of Contents page was the most visited (with 31,496 hits).

2. The second most visited page presented examples of hashing functions (with 12,838 hits).

3. The gradebook page was the third most visited page (with 9905 hits).

4. The page covering Quicksort was the fourth most visited page (with 6155 hits).

As shown in Fig. 8.18, students enrolled in the course visited the gradebook page on average 61 times

during the course of the semester (117 days). The median number of gradebook visits was 25. Eight

percent (11 out of 135) of the students enrolled in the course never looked at the gradebook. The

average OpenDSA exercise completion rate for student who never visited the gradebook was 91%

while the average completion rate for the rest of the class was 92%.
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FIGURE 8.18

Distribution for number of times a given student visited the gradebook during the semester. The right-most bin

includes all students who viewed the gradebook 400 times or more.
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There was a strong correlation (r¼0.9) between the overall daily total number of exercises attempted

and daily total gradebook page hits as shown in Fig. 8.19. This indicates that students used the gradebook

to check their progress while working on exercises. On any given day, only a mean of 40% (SD¼23%,

median¼35%) of the students who attempted an exercise viewed the gradebook that same day.
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We sought to investigate if there was a difference in the number of exercises attempted between

students who visited the gradebook a lot and students who did not. We ranked students by the number

of gradebook visits and grouped them into quartiles. There was no statistically significant difference in

the mean number of exercises attempted among quartiles for gradebook use. We concluded that the

presence of the gradebook has no impact on the amount of student interaction with OpenDSA exercises.
3.7 DISCUSSION
Our investigation of the impact of proficiency visual indicators revealed the following:

• Student responses indicated that the display of the green checkmarks (and other visual elements) is a

motivating factor. Visual indicators are used in this case for reinforcement. Students like them and

many students try to get closure from completion everywhere possible.

• Despite the fact that students like the gamification elements, we have so far found no evidence of

positive impact on students’ learning behavior due to them. Analysis of log data revealed that

students often do not engage in a meaningful way with slideshows on their first attempt. They

rush through slideshows, we assume to get the green checkmarks. However, they do spend more

time on the slideshows during subsequent attempts. OpenDSA slideshows aim to present

course material in a way that will encourage students to engage more deeply with the content.

The fact that students do not spend enough time on slideshows despite the presence of

reinforcements indicates that we should include other mechanisms that will better encourage

students to engage with them.

• Students regularly refer to the gradebook to check their progress (though there is no evidence that

this affects or is even correlated to their performance). Further study using data from courses in

which students are assigned frequent assignments needs to be done in order to have a complete

picture of student use of the gradebook. We found no relationship between gradebook page visits

and the amount of exercises attempted by students.

Given these findings, the next step is to use this information in order to improve student outcomes.

This can most likely be accomplished by modifications to the way that materials are presented. Such

modifications might include further use of gamification elements. In order for students to learn the

material better, it seems that the key goal needs to be to get them to engage more with the types of

content that they tend to avoid now. Here are a number of ideas that might be promising avenues for

future study:

• Increase the use of visualizations (slideshows) and interactive elements as much as possible, as this

is a proven technique to increase student attention.

• Create “progression” mechanisms that lock access to certain aspects of the content until minimum

requirements have been met. For examples, access to an exercise might be blocked until

students have viewed the corresponding visualization. Access to proficiency exercises might

require completion of simpler screening questions.

• Visualizations might themselves incorporate simple questions that must be passed in order to

continue. This might discourage skipping through the slideshows for completion checkmarks.

• Add (optional) challenges for students who want to do more work.
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• Add public “leaderboards” (perhaps using aliases) to let students see their performance in

comparison to others in the class.

These ideas need careful consideration and experimentation before deployment. Some of them carry

the risk of failing in various ways, in that they lead to unintended behavior. Or they might simply lead to

increased frustration on the part of the users.
4 CONCLUSION AND FUTURE WORK
Visual interactive content, rich interactive exercises, automated assessment, detailed student analytics,

and adaptive tutoring techniques can be combined in many ways to give students rich courseware that

goes well beyond the capabilities previously available. However, we find that with any new courseware

techniques, it is important to carefully monitor how it affects student learning. Often the results are not

entirely as expected. Prior research, such as the rich body of work around cognitive theory of multi-

media presentations (Mayer, 2008), provides us with a practical basis for developing multimedia con-

tent. However, the research community has only scratched the surface with respect to understanding the

effects of student analytics, gamification, and interactive exercises with automated assessment. We are

hopeful that the education research community can over time develop best practice principles to guide

future course content and online educational systems.
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