
FUSING AND COMPOSING MACROMOLECULAR REGULATORY
NETWORK MODELS

Ranjit Randhawa∗, Clifford A. Shaffer∗, and John J. Tyson∗∗

Departments of Computer Science∗ and Biological Sciences∗∗
Virginia Tech

Blacksburg, VA 24061
rrandhawa|shaffer|tyson@vt.edub

Keywords: Computational Biology, Systems Biology
Markup Language (SBML), pathway models

Abstract
Today’s macromolecular regulatory network models are
small compared to the amount of information known about
the corresponding cellular pathways, in part because current
modeling languages and tools are unable to handle signifi-
cantly larger models. Most pathway models are small models
of individual pathways which are relatively easy to construct
and manage. The hope is someday to put these pieces together
to create a more complete picture of the underlying molecu-
lar machinery. While efforts to make large models can benefit
from reusing existing components, there currently exists little
tool or representational support for combining or composing
models. In this paper we present a tool for merging two or
more models (we call this process model fusion) and a con-
crete proposal for implementing composition in the context
of the Systems Biology Markup Language (SBML).

REGULATORY NETWORK MODELING
Macromolecular regulatory network models attempt to de-

duce physiological properties of a cell from wiring diagrams
of its control systems. An example is the set of reactions
controlling the activity of MPF (mitosis promoting factor) in
Xenopus oocyte extracts [16], which we refer to herein as the
frog egg model (see Figure 1). Such networks are often repre-
sented as graphs where vertices represent substrates and prod-
ucts (collectively referred to as species), and labeled directed
edges connecting vertices represent the reactions. Chemical
reactions cause the concentrations of the chemical species
(Ci) to change in time according to the equation

dCi

dt
=

R

∑
j=1

bi jv j, i = 1, . . . ,N

where R is the number of reactions, v j is the velocity of the
jth reaction in the network, and bi j is the stoichiometric coef-
ficient of species i in reaction j (bi j < 0 for substrates, bi j > 0
for products, bi j = 0 if species i takes no part in reaction j).

The full set of rate equations is a mathematical represen-
tation of the temporal behavior of the regulatory network. A

CycB Cdk1
MPF

CsomiCsoma

Cyclosome

1

2

3

Wee1

Cdc25P

Wee1P

Cdc25

Figure 1. Pathway diagram for the frog egg cell cycle. Cy-
clin B, synthesized in reaction 1, combines with Cdk1 (reac-
tion 3) to form active MPF. MPF is inactivated by phospho-
rylation of the Cdk1 subunit by Wee1. Cdc25P reverses the
phosphorylation step, converting inactive MPF back to active
MPF. Finally, a protein complex (called the cyclosome) de-
grades cyclin B protein (reaction 2).

realistic model of the budding yeast cell cycle consists of over
30 differential equations and 100 rate constants [3]. The pa-
rameters are estimated from the cell-cycle behavior of more
than 100 mutants defective in the regulatory network. Simu-
lating the entire set takes a few minutes on a desktop PC for
one choice of kinetic constants. To fit the model to the mutant
data by nonlinear regression requires thousands of repetitions
of the full calculations. A model of such complexity (10-100
equations) is approaching the limit of what a dedicated mod-
eler can produce and analyze with the tools available today.
Beyond this size, we begin to lose our ability even to mean-
ingfully display the wiring diagram that represents the model,
let alone comprehend the information it contains. To ade-
quately describe fundamental physiological processes (such
as the control of cell division) in mammalian cells will require
models of at least 100-1000 equations. Ongoing efforts such
as the DARPA BioSPICE initiative [4] and the DOE Genomes
to Life project [7] aspire to support models at least one order
of magnitude larger than are currently used.

BUILDING LARGE NETWORKS
There is a correlation between the size of a model and the

amount of biological information it represents. The ability to

SpringSim Vol. 1 337 ISBN 1-56555-313-6

mailto:rrandhawa@vt.edu,shaffer@vt.edu,tyson@vt.edu

construct large biological models provides the potential for
better insights into the workings of a cell under investiga-
tion, if only we can handle the complexity involved. Models
that exist today are small compared to the amount of infor-
mation known about the corresponding organism or cellular
pathway/process, on the order of 10s of species and/or reac-
tions. Modelers work on individual pieces (cellular processes
or certain pathways) that are easy to construct and manage.
Their ultimate goal is to put these pieces together, increasing
the size and complexity by an order of magnitude, to con-
struct a more complete picture of the underlying molecular
machinery of the organism. Merging the pieces together will
provide researchers with more complete and biologically ac-
curate models with which to perform simulations. Currently
this merging step is an error-prone process since it is done
manually. The level of complexity is difficult to deal with
as the number of models and their sizes increase. Efficiently
running simulations and parameter estimation for models be-
comes even more of a concern as model size and complexity
increase. Our work is intended to be a first step for scaling up
to larger problems. When making large models it is helpful to
start from existing models and reuse information, rather than
start from scratch. Using existing models also ensures that the
newly created model will be consistent with the experimental
data. One can assume that each of the submodels used in cre-
ating the larger model is in fact a validated model with experi-
mental data that fixes its parameters. The main motivation for
creating larger models is because there exists new data that
the current (sub)models cannot explain or describe. A simple
yet effective method to verify the biological accuracy of the
newly created model is to ensure that it is consistent with both
the older submodel data as well as the new data.

Modeling languages and tools help modelers construct
their models by providing a computational environment that
minimizes the amount of human error during the construc-
tion step. While modelers are currently able to construct small
to medium models by hand, the process is simplified by us-
ing computational tools which not only decrease the time
taken to input a model but also ensure that the modeler does
not make mistakes while inputting the model. In this paper
we describe techniques that are intended to enable modelers
to create larger models than previously possible. Our prior
work has identified a number of modeling processes related
to model composition [18]. In this paper we describe two dis-
tinct modeling processes whose purpose is to support the con-
struction of larger models: Fusion and Composition.

Model Fusion is a process that combines two or more mod-
els in an irreversible manner. In fusion, the identities of the in-
dividual models (called submodels) being combined are lost,
but the aggregated information remains the same. Fusion en-
ables modelers to incorporate information from one model
into another model, thereby creating larger models. Eventu-

ally, fused models will become too large to grasp and man-
age as single entities. Large models will ultimately need to be
made up of distinct components to infer any meaningful in-
sight into their underlying biology. Thus, while model fusion
as a useful tool for manipulating small to mid-sized models,
it is not a viable solution in the long run.

Model Composition provides a potential solution to our
limited ability to comprehend larger pathway models. With
composition, one can think of models not as monolithic en-
tities, but as collections of smaller components (submodels)
joined together. A composed model is built from two or more
submodels by describing their redundancies and interactions.
Composition is a reversible process, in that removing the
inter-model interaction description that holds the composed
model together recovers the individual submodels.

CONTEXT AND PRIOR WORK
The XML-based Systems Biology Markup Language

(SBML) [9, 12] has become widely supported within the
pathway modeling community. Thus, we choose to present
concrete implementations for the various modeling processes
through added SBML language constructs that express the
necessary glue that connects submodels together. It is not nec-
essary that our proposals be implemented in SBML, but doing
so provides clear reference implementations in the same way
as an algorithm expressed in a particular programming lan-
guage. Fusion is presented in terms of a tool to aid modelers
hand compose large models from smaller components.

A number of authors find that successful composition or
reuse requires components that were designed for the pur-
pose [5, 10, 13, 15, 19]. Bulatewicz, et al. [2] suggest using
a coupling interface for model coupling and provide a num-
ber of solutions, from a brute force technique to using frame-
works designed to support coupling. Liang and Paredis [14]
describe a port ontology for automated model composition.
While automating composition is outside the scope of our
work, the ontology for representing ports is useful in detailing
the different roles and functions port structures can take.

Proposals have been made within the SBML commu-
nity [8, 11, 17] that describe the mechanics of composition
through additional language features for SBML, as we will
do. However, we note that none of these proposals have been
published in the peer-reviewed literature, nor to our knowl-
edge have any been implemented. While some commercial
tools might have more or less support for various forms of
composition, we are unaware of any non-proprietary imple-
mentations for model composition in this application domain,
or any publications describing proprietary features in com-
mercial applications. Model composition for pathway models
remains very much an open problem.

ISBN 1-56555-313-6 338 SpringSim Vol. 1

MODEL FUSION
Model Fusion is an iterative process to make larger models

by merging two or more submodels together. Unlike com-
position (where submodels are referenced but not modified),
fusion takes the the submodels and actually makes changes to
them as part of the process of combining them together. The
goal of fusion is to combine submodels into a single unified
model containing all the information of the original collec-
tion, without any redundancies that might occur across sub-
models in the original collection. Our approach to fusion is
to provide tools that aid modelers attempting to perform the
fusion process.

Sample models
The chromosome cycle is divided into four phases (G1,

S, G2 and M), with two irreversible transitions (Start and
Finish). The two transitions are irreversible due to the cre-
ation and destruction of stable steady states of the molecu-
lar regulatory mechanism by dynamic bifurcations [1, 20]. A
network of molecular signals control events in the cell cycle
(cyclin-dependent protein kinases). The Start transition sep-
arates G1 from S; once the cell passes this transition it com-
mits itself to DNA synthesis. Start is triggered by the protein
kinase, Cdk (referred to using its cyclin partner CycB in the
sample models). At Start, cyclin synthesis is induced and cy-
clin degradation is inhibited. This causes a rise in Cdk activ-
ity which is needed for DNA synthesis. The Finish transition
separates M from G1, and occurs when DNA replication is
complete. Once the cell enters the Finish transition, it com-
mits itself to cell division. Finish is accomplished by activat-
ing a group of proteins that make up the anaphase-promoting
complex (APC; also known as the cyclosome), which labels
specific proteins for degradation. The APC contains two aux-
iliary proteins, Cdc20 and Cdh1, whose role (when active) is
to recognize cyclins and present them to the complex for la-
beling (and degradation), which allows the system to return
to G1. Cdc20 and Cdh1 are controlled differently by cyclin-
Cdk, which activates Cdc20 and inhibits Cdh1.

The two sample models in Figure 2 were obtained
from [20] and describe how the cell cycle engine is reg-
ulated in eukaryotic cells. Model1 describes the effects
of Cdh1/APC, Cdc20/APC and cyclin-Cdk on each other.
Model2 describes the effects of a cyclin-dependent kinase in-
hibitor (CKI) on CycB.

Consider the two sample models, Model1 and
Model2 which will be fused together to produce model
(FusedModel). The modeler does this by producing a
mapping table for the various SBML component types.
During this processing we must avoid dependencies across
components which might exist as some components are ref-
erenced in other components. For examples, we must resolve
the identities of compartments (which represent the bounded

Model 2

cell

CycB

Cdh1i Cdh1

TF TFi

SK

CKI

CKICycB

Model 1

cell

CycB

Cdh1i Cdh1

IEPi

IEP

Cdc20i

Cdc20a

SpeciesCompartmentModel

Key

+

Figure 2. Sample models

space in which species are located) before species, since each
species stores a reference to its containing compartment in
terms of a compartment identifier. Fortunately, the following
ordering for the eight SBML component types has no such
conflicting dependencies: (1) Compartments; (2) Species; (3)
Function Definitions; (4) Rules; (5) Events; (6) Units; (7)
Reactions; and (8) Parameters.

A column in a mapping table represents a model, and each
row represents an SBML component in that model. Duplicate
names within a model are not allowed. Therefore, a species
name will only occur once in any particular column. The first
column in the mapping table is reserved for the fused model
and is referred to as FusedModel). The two actions available
to the modeler during fusion are:

1. define two or more SBML components to be equivalent
2. remove the link/association between two or more SBML

components (which have previously been incorrectly
linked together) across the different submodels.

Fusion Prototype
The fusion prototype in Figure 3 follows a wizard inter-

face paradigm, where information is solicited from the user
in a step by step process. Fusion consists of two parts: setup
and resolution. During setup the modeler is guided through
various steps that initialize the application. The modeler first
assigns a name to the fused model, then selects the list of
models to fuse together from a file chooser. The next screen
allows the modeler to select a control option for the map-
ping tables: the system either (1) places components of the
same name on the same row or (2) places each component
on a different row. The auto-fill screen attempts to minimize
the amount of work needed by the modeler by filling up the
fused column on rows where there are no naming conflicts.
However the modeler may decide during resolution whether
to use these initial choices or change them.

Once the environment has been initialized, the modeler

SpringSim Vol. 1 339 ISBN 1-56555-313-6

Figure 3. Fusion wizard setup screens.

starts resolving the naming conflicts in the various submod-
els. Resolving names is vital to be able to unambiguously
identify all the distinct entities within a model and their re-
lationships with each other. The initial species mapping table
is shown in Figure 4.

Figure 4. Fusion application initial species mapping table.
Shared species names are on the same row.

A simple example helps to explain how the mapping ta-
bles are created. Two models, m1 and m2, each containing
two chemical species (A and B in m1, A and D in m2) will
be fused together to produce the fused model (m f). The ini-
tial species mapping table is shown in Table 1 (mapping ta-
bles for the other seven SBML components are constructed
using the same process). Each row in the species mapping ta-
ble corresponds to a distinct species in some submodel. The

Table 1. Initial Species Map.

m f m1 m2

1 A A A
2 B B
3 D D

Table 2. A completed mapping table for species.

m f m1 m2

1 A1 A
2 C B D
3 A2 A

modeler is able to change the name of a species in m f , but
is unable to change the name of species in any of the other
columns/models. Suppose species name A appears in both
models (m1 and m2). m f initially assumes these are the same
species in both models (Table 1, Row 1). This might or might
not be correct, and can be changed by the modeler if desired.
The name of the species in m f can also be changed. Species
B and D each appear in only one model.

When a modeler defines two species with different names
to be equivalent to each other, the two rows are combined.
The resulting empty row is automatically deleted, and the
modeler selects which name to give this species in the fused
model. In our example, the modeler defines a new species
name C for row 2 in the fused model, to replace B in m1 and
D in m2. If two species (say species A in m1 and species A
in m2) were incorrectly identified by the computer as being
equivalent to each other, the user can separate them into sep-
arate species, each with distinct names. The results of these
changes are shown in Table 2.

Once the SBML component mapping tables have been gen-
erated, the application uses this information to automatically
merge the submodels together. The fused model is now cre-
ated from the reaction networks of the submodels. Figure 5
shows how Model1 has been fused with Model2. Note that
there are no duplicated species or reactions.

MODEL COMPOSITION
Another approach to building larger models is to connect

submodels together to generate a hierarchy of models. We call
this a composed model. Larger models can be thought of as a
collage of smaller submodels. Within the context of SBML,
we add new language features to describe the relationships
between submodels. We refer to such constructs as “glue.”
The language additions for SBML described in this section
allow modelers to compose models from submodels, and in-
clude support for multiple instances of a given submodel. The
features both describe the hierarchy of the submodels, and
represent the interactions, relationships, links and reactions
between the submodels.

To illustrate model composition, consider a large model

ISBN 1-56555-313-6 340 SpringSim Vol. 1

CycB

Cdh1 Cdh1

Fused Model

cell

SpeciesCompartmentModel

Key

IEPi

IEP

Cdc20a

Cdc20i

CKI

CKICycB +

SK

TF TFi

Figure 5. The fused model

(called Global), composed of two submodels (A and B).
Model A contains the chemical species x and model B con-
tains the species y. It is now possible to make a new reaction
in Global that represents x → y, by referring to x and y in
A and B respectively. Global consists of a model with only
one reaction. The names of reactants and products for that
reaction refer to the corresponding species in the two sub-
models. It should be noted that adding a new reaction (or any
new component) is not performed in the fusion tool, instead
this action is accomplished in the model building environ-
ment used to create the (sub)models.

It turns out that there are significant similarities between
model fusion and model composition, as we discovered dur-
ing the process of developing the fusion tool. We had origi-
nally conceived of fusion and composition as fairly unrelated
processes. However, the fusion process described in the last
section defines a series of steps taken to merge two or more
models together. This series of steps is captured by our fu-
sion wizard tool, and can be viewed as an “audit trail” used in
generating the necessary mapping tables. Precisely this same
information can be used to describe the set of instructions
needed to connect/link the submodels for composition. Both
composition and fusion should produce the same results, as
the output of both fused and composed models should be
identical during simulation. While fusion combines submod-
els together in an irreversible way, composition simply ref-
erences submodel components by defining the “glue” that
holds the submodels together. A major difference is that in fu-
sion the explicit description of relationships between entities
within submodels is lost, while composition keeps a "record"
of how models were composed/connected together.

The first step in composition is to assign or select the global
model (the root node in the model tree hierarchy), which can
either be one of the submodels or a new model. This requires
extending the fusion wizard’s file chooser functionality to al-

Big

comp1

Little

comp2

Figure 6. Submodel example showing a link between two
compartments

low selecting which of the submodels will become the com-
posed model.

A composed model can contain one or more submod-
els within its structure. A submodel contains a valid SBML
model (an SBML <model> structure), with its own names-
pace and can be a composed model. Since there is no re-
striction on the number of submodels a model can contain,
a <model> structure is enclosed in a <listOfSubmodels>
structure. A simple example (Figure 6) shows how model Big
contains a submodel called Little, and both models contains
a single compartment (comp1 and comp2 respectively).

After the list of submodels have been declared in the
global model, the modeler needs to instantiate the submod-
els in order to use/access them using the <Instance> struc-
ture. Finally, different components (species, reactions, etc)
within either the submodels or the global model are con-
nected/accessed using <link> structures.

We adopt a naming convention to enable modelers to
uniquely identify an SBML component (e.g. species, param-
eters, etc) within a model (or submodel). Our format is:

<to object="ObjectIdentifier">
<subobject object="SubobjectIdentifier"/>

</to>

We also describe this using the syntax ObjectIdenti-
fier.SubobjectIdentifier. This convention makes it possible to
refer to SBML components with the same name in different
models without having to change their names.

Each <instance> (enclosed in a <listOfInstances> struc-
ture) refers to a particular <model>. An <instance> indi-
cates that a copy of a submodel is being instantiated within
the current model. Models can be composed of more than
one instance of a particular submodel. The instance struc-
ture uses the XML Linking Language (XLink) [6] to re-
fer to submodels, as it is a standard mechanism for link-
ing XML elements inside and outside a given SBML docu-
ment. XLinks describe links between XML documents. An
instance of submodel Little (called Submodel_Little) can be
made in model Big in order to use/access submodel Little in

SpringSim Vol. 1 341 ISBN 1-56555-313-6

model Big. The <instance> structure contains attributes id
(the unique identifier for the <instance>), the XLink’s type,
and the XLink’s hre f (an XPointer string that points to either
an SBML model document or a model element within the
current SBML document) The type attribute takes the values
simple and extended. A simple link is a link that associates
exactly two resources, one local and one remote. The direc-
tion of the link is from the former to the latter and thus is
always an outbound link. An extended link associates an ar-
bitrary number of resources. The participating resources may
each be local or remote. For our example we only need to link
together two objects (resources) and so the value of the type
field will be simple.

A <link> (enclosed in a <listOfLinks>) links two enti-
ties in separate submodels of a composed model. A <link>
should be able to link two <species>, <parameters>,
<reactions>, or <compartments> to each other. Linking
components in composition can be achieved by using the
mapping tables created during fusion. Components on the
same row in the mapping table will be linked together. Func-
tionality to describe the type of link must be added to the
current fusion mapping table to better represent the unidirec-
tional relationship between linked components. A <link> is
composed of two fields, <from> and <to>. The <to> field
references an object (the to object) whose attribute values will
be overridden by the object referenced by the <from> field
(the from object). The objects referenced by <from> and
<to> fields must be of the same type. Only those attribute
values that have been declared in the from object will be over-
ridden in the to object. This is somewhat analogous in C/C++
to treating the to object as a pointer, and the from object as
its target. However, a to object can have attribute values that
are retained if no overriding attribute value is declared in the
from object. Note that if we have two components inside a
(sub)model we are still able to link subobjects of the compo-
nents using our object/suboject naming convention. The fol-
lowing example shows how the two compartments in Big and
Little can be linked together (Figure 6).

<model id="Big">
<listOfCompartments>
<compartment id="comp1" volume="1"/>

</listOfCompartments>
<listOfSubmodels>
<model id="Little">
<listOfCompartments>
<compartment id="comp2" volume="1"/>

</listOfCompartments>
</model>

</listOfSubmodels>
<listOfInstances>
<instance
id="Submodel_Little"
xlink:type="simple"

xlink:href="#xpointer(/sbml/model/
listOfSubmodels/model[@id=Little])"/>

</listOfInstances>
<listOfLinks>
<link>
<from object="comp1"/>
<to object="Submodel_Little">
<subobject object="comp2"/>

</to>
</link>

</listOfLinks>
</model>

The above example shows an href attribute where the sub-
model Little occurs within the same SBML document. If the
submodel Little occurred in another SBML document named
temp.sbml in the current directory, the href attribute of the
<instance> structure would have temp.sbml prepended to it.

The <link> structure contains a merge attribute, whose
value can be either true (indicating a merge link) or false
(indicating a replacement link). To see the difference, con-
sider models R and T which each contain a chemical species
called S1 with different attributes. S1 in Model R has attribute
A = 1.0. S1 in Model T has attributes A = 2.0 and B = 3.0.
Linking S1 in R to S1 in T with a merge link uses S1’s at-
tributes from T .S1 that have not been declared in R.S1. Thus,
the result is that S1 has attributes A = 1.0 and B = 3.0 since
it keeps its old value for A and gains the definition for B. If
S1 in R is linked to S1 in T using a replacement link (i.e., the
merge attribute is false), then only R.S1’s attributes are used.
Thus, the result will be that S1 will have attribute A = 1.0.
Specifying the type of link for composition requires includ-
ing an additional field to the mapping table to specify the
merge/replacement attribute.

The <link> structure can link certain combinations of
differing SBML component types to each other, such as
species ↔ parameters and rules ↔ species/parameters. A
link can take a <species> structure as the from object and
a <parameter> structure as the to object, and vice versa.
An example of this type of link is found when composing
the two sample models sharing a degradation reaction CycB
(CycB →). In Model1 this reaction contains the modifier
Cdc20a, but in Model2, this species does not exist so the
reaction instead contains the parameter A. In the composed
model the species Cdc20a from Model1 will be linked to the
parameter A in Model2. The reason for this link is because
when Model2 was created, knowledge about Cdc20a was not
known so the modeler used the entity (parameter) A in their
model instead. When Model1 was created the modeler had
knowledge about the effects of Cdc20a on CycB degradation.
With this additional knowledge it is now desirable to replace
A with Cdc20a when composing (or fusing) the two models
together.

ISBN 1-56555-313-6 342 SpringSim Vol. 1

FUTURE PLANS
We will investigate two additional modeling processes

whose purpose is to support the construction of larger models.
Model Aggregation is a restricted form of composition. A col-
lection of model elements is represented as a single entity (a
“module”). A module contains a list of input and output ports
that link to internal species and parameters. These ports de-
fine the module’s interface, which provides restricted access
to the components in the module. The process of aggregation
(connecting modules via their interfaces) allows modelers to
create larger models in a controlled manner. It is possible that
model aggregation will prove to be more intuitive to modelers
who are constructing large models from scratch with compo-
nents designed to be aggregated, rather than composing exist-
ing models that have incompatibilities.

Model Flattening converts a composed or aggregated
model with some hierarchy or connections to one without
such connections. The result is equivalent to fusing the sub-
models. However, the relationship information provided by
the composition and/or aggregation process should be suffi-
cient to allow the flattening to take place without human in-
tervention (such intervention is needed in the fusion process
since this information is unknown to the fusion tool). The re-
lationships used to describe the interaction between the mod-
els and submodels are lost, as the composed or aggregated
model is converted into a single large (fused) model. Flat-
tening a model allows us to use existing tools that have no
support for composition or aggregation.

REFERENCES
[1] M.T. Borisuk and J.J. Tyson. Bifurcation analysis of a

model of mitotic control in frog eggs. Journal of Theo-
retical Biology, 195(1):69–85, 1998.

[2] T. Bulatewicz, J. Cuny, and M. Warman. The poten-
tial coupling interface: Metadata for model coupling. In
Proceedings of the 2004 Winter Simulation Conference,
pages 183–190, 2004.

[3] K.C. Chen, L. Calzone, A. Csikasz-Nagy, F.R. Cross,
B. Novak, and J.J. Tyson. Integrative analysis of cell
cycle control in budding yeast. Mol Biol Cell, 15:3841–
3862, 2004.

[4] DARPA. Darpa biospice website. Available at
community.biospice.org, 2005.

[5] P.K. Davis and R.H. Anderson. Improving the compos-
ability of DoD models and simulations. Journal of De-
fense Modeling and Simulation, 1(1):5–17, 2004.

[6] S. DeRose, E. Maler, and D. Orchard. Xml linking lan-
guage (xlink) version 1.0 w3c recommendation. Avail-
able at www.w3.org/TR/xlink, 2001.

[7] DOE. Us department of energy genomes to life website.
Available at doegenomestolife.org/, 2005.

[8] A. Finney. Systems biology markup language (sbml)
level 3 proposal: Model composition features. Avail-
able at www.sbml.org/forums/index.php?t=
tree&goto=171&rid=0, 2003.

[9] A. Finney, M. Hucka, and H. Bolouri. Systems biol-
ogy markup language (sbml) level 2: Structures and
facilities for model definitions. Available at sbml.
org/specifications/sbml-level-2/
version-1/html/sbml-level-2.html, 2002.

[10] D. Garlan, R. Allen, and J. Ockerbloom. Architectural
mismatch or why it’s hard to build systems out of ex-
isting parts. In International Conference on Software
Engineering, pages 179–185, 1995.

[11] M. Ginkel. Modular sbml proposal for an extension of
sbml towards level 2. In Proceedings of 5th Forum on
Software Platforms for Systems Biology, 2003.

[12] M. Hucka, A. Finney, H.M. Sauro, and 40 additional au-
thors. The systems biology markup language (SBML):
a medium for representation and exchange of biochem-
ical network models. Bioinformatics, 19(4):524–531,
2003.

[13] S. Kasputis and H.C. Ng. Model composability: for-
mulating a research thrust: composable simulations. In
Proceedings of the 2000 Winter Simulation Conference,
pages 1577–1584, 2000.

[14] V.C. Liang and C.J.J. Paredis. Foundations of multi-
paradigm modeling and simulation: a port ontology for
automated model composition. In Proceedings of the
2003 Winter Simulation Conference, pages 613–622,
2003.

[15] R.J. Malak and C.J.J. Paredis. Foundations of validat-
ing reusable behavioral models in engineering design
problems. In Proceedings of the 2004 Winter Simula-
tion Conference, pages 420–428, 2004.

[16] G. Marlovits, C.J. Tyson, B. Novak, and J.J. Tyson.
Modeling M-phase control in Xenopus oocyte extracts:
the surveillance mechanism for unreplicated DNA. Bio-
physical Chemistry, 72:169–184, 1998.

[17] D. Schroder and J. Weimar. Modularization of
sbml. Available at www.sbml.org/workshops/
ninth/VortragSBMLForum.pdf, 2003.

[18] C.A. Shaffer, R. Randhawa, and J.J. Tyson. The role of
composition and aggregation in modeling macromolec-
ular regulatory networks. In Proceedings of the 2006
Winter Simulation Conference, Dec. 2006.

SpringSim Vol. 1 343 ISBN 1-56555-313-6

[19] M. Spiegel, P.F. Reynolds, and D.C. Brogan. A case
study of model context for simulation composability
and reusability. In Proceedings of the 2005 Winter Sim-
ulation Conference, pages 437–444, 2005.

[20] J.J. Tyson and B. Novak. Regulation of the eukary-
otic cell cycle: Molecular antagonism, hysteresis, and
irreversible transitions. Journal of Theoretical Biology,
210:249–263, 2001.

AUTHOR BIOGRAPHIES
RANJIT RANDHAWA is a PhD candidate in the Depart-
ment of Computer Science at Virginia Tech. He received BS
degrees in Computer Science and Genetic Biology from Pur-
due University, and an MS degree in Computer Science from
Virginia Tech. His research interests include software design,
systems biology, synthetic biology, computational biology,
bioinformatics and modeling and simulation.

CLIFFORD A. SHAFFER is an associate professor in the
Department of Computer Science at Virginia Tech since
1987. He received his PhD from University of Maryland in
1986. His current research interests include problem solving
environments, bioinformatics, component architectures, visu-
alization, algorithm design and analysis, and data structures.
His Web address is www.cs.vt.edu/shaffer.

JOHN J. TYSON is University Distinguished Professor of
Biological Sciences at Virginia Tech. He received his PhD
in chemical physics from the University of Chicago in 1973
and has been specializing in theoretical cell biology since that
time. His current interests revolve around the gene-protein in-
teraction networks that regulate features of cell physiology
such as cell division, circadian rhythms, intracellular signal-
ing networks, and programmed cell death.

ISBN 1-56555-313-6 344 SpringSim Vol. 1

	TITLE PAGE
	SYMPOSIA LIST
	HPC Table of Contents
	ACROBAT HELP
	FUSING AND COMPOSING MACROMOLECULAR REGULATORY NETWORK MODELS
	Keywords:
	Abstract
	REGULATORY NETWORK MODELING
	BUILDING LARGE NETWORKS
	CONTEXT AND PRIOR WORK
	MODEL FUSION
	Sample models
	Fusion Prototype

	MODEL COMPOSITION
	FUTURE PLANS
	REFERENCES
	AUTHOR BIOGRAPHIES

