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An Empirical Comparisqn of Vectors, Arrays and
Quadtrees for Representing Geographic Data

CLIFFORD A. SHAFFER

Quadtrees, hierarchical data structures, cartography, boundary representations, area representa-
tions, vectors, picture arrays, data storage :

Abstract: Until recently geographic data was typically stored using edge representations such
as a list of points representing a series of vectors which form the boundaries of regions. The pixel
array has been a popular alternative to the vector representation, particularly for storing elevation
data. Much interest has developed in the use of hierarchical data structures such as the quadtree. A
comparison of vector, array, and quadtree data representations is presented. In particular, this pa-
per contains a discussion of the relative strengths and weaknesses of each for various geographic
applications. Storage comparisons and empirical timing results for selected geographic database
functions are presented.

[Ein empirischer Vergleich der Verwendung von Vektoren, Rastern und Quadtrees zur
Speicherung geographischer Daten]

Kurzfassung: Bisher wurden geographische Daten in Form von Punkt-Tabellen, die die fii-
chenumgrenzenden Vektoren darsteliten oder, besonders bei Hohendaten, als Pixel-Felder (Raster)
abgespeichert. Von steigendem Interesse sind mittlerweile hierarchische Datenstrukturen wie der
Quadtree. In diesem Beitrag wird die Speicherung geographischer Daten in Form von Vektoren,
Rastern oder Quadtrees miteinander verglichen und die Stirken bzw. Schwichen der jeweiligen
Methode anhand verschiedener Anwendungen diskutiert. Speicherplatzbedarf und Zeitverhalten
einzelner graphischer Datenbankfunktionen werden erléutert.
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1. Introduction

Traditionally, polygonal maps in computerized geographic databases have been stored
by means of boundary representations. This stems from the fact that it is the natural way
for a person to hand-draw a map (PEUQUET 1979). A typical boundary representation
will represent a polygon by a list of points which represents a chain of straight line seg-
ments forming the boundary of the polygon. Such techniques will be referred to as vec-
tor representations. Many commercial cartographic systems, such as ARC/INFO, are
based on such methods. Vector representations store maps efficiently, but are inefficient
when performing key operations such as determining the value of a point (referred to as
the point-in-polygon operation) and polygonal overlay (i.e., intersection of two sets of
polygons). Vector representations are also not a good method for storing elevation data
(i.e., were each stored point has a z-value associated with it).

In the past several years, area representations have gained acceptance as a body of car-
tographic algorithms has been developed for their use (PEUQUET 1979). In particular, the
array has been applied to cartography, its use driven by the availability of algorithms de-
veloped by the image processing community. Arrays are good for storing elevation data,
and have been used to represent region maps. However, arrays require much more space
to represent region maps than do boundary representations, and are not well suited to
representing point and linear feature data. The vector and array structures illustrate the
basic differences between boundary and area representations.

Recent interest has developed in hierarchical data structures; in particular we focus on
the region quadtree (SAMET 1984b). The quadtree is based on successive subdivision of
an image into quadrants. If the image is not homogeneous, it is subdivided into qua-
drants, subquadrants, ..., until we obtain homogeneous square blocks (see Fig. 1 for an
example of quadtree decompostion). The region quadtree is an area representation, with
the area representations’ advantages over boundary representations with respect to effi-
cient processing of many cartographic operations. An important feature of the quadtree
is that it maintains a spatial index for the data, regardless of the data type. It also allows
aggregation of array pixels, giving a potential savings in storage and processing time over
the array for certain classes of data. The quadtree is good for representing polygonal re-
gions, linear features, and point features, but no better than an array for elevation data.

Many algorithms have recently been developed for efficient manipulation of quadtrees
in geographic applications. Early algorithms which initated interest in quadtrees includ-
ed area and centroid calculation (SHNEIER 1981) and aligned map intersection (polygon
overlay) (HUNTER 1978). For these operations, the complexity of the quadtree algorithm
is related to the number of nodes in the quadtree representation of the input image(s). A
number of conversion algorithms (quadtrees to/from arrays and chaincodes) were pro-
duced early on (DYRER 1980, SAMET 1980, 1981, 1984a). Efficient algorithms for perime-
ter and connected component analysis were then developed based on active border tables
(SAMET & TAMMINEN 1985). Recently, a new generation of algorithms allowing efficient
array to quadtree conversion, and (more importantly) unaligned map intersection and
map transformations have been developed (SHAFFER 1986, SHAFFER & SAMET 1987). It is
reasonable to expect further advances in quadtree algorithms in the future.

With the ongoing maturation of quadtree algorithms and the advent of researchers ex-
perimenting with the use of quadtrees in geographic information systems (e.g. the
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Fig. 1: A region, its binary array, its maximal blocks and the corresponding quadtree.

QUILT system, SAMET et al. 1984, SHAFFER et al. 1985), it seems appropriate at this time
to compare the quadtree with the more traditional vector and array representations. This
paper discusses the relative merits of these three data structures in the context of a geo-

graphic information system. Empirical studies of storage requirements and relative ope-
rational efficiency are presented.

2. Region Representation

In this section we discuss the advantages and disadvantages of the vector, array, and
quadtree representations for storing region data (sometimes referred to as polygonal
data). An example polygonal map is shown in Figure 2.

Vector representations store polygonal maps by means of one or more chains of line
segments that represent each polygon’s border, as illustrated by Figure 2b. Since only the
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Fig. 2: A polygonal map and its vector, array and quadtree representations.

edges of the polygons are stored (plus some incidental amount of information to identify
the polygon), we see that the storage requirements for the vector representation are relat-
ed to the complexity of the polygon boundaries. In the worst case, this will be proportio-
nal to the length, of the polygon boundaries (i.e., the perimeter of the polygons). As the
database becomes more complicated (i.e., more polygons, or more complex polygons),
the storage requirements will grow. When the resolution of the database is increased (re-
quiring a possible breakup of long vectors at the coarse resolution into several vectors at
the finer resolution) the storage requirements of the database will increase by a ratio pro-
portional to the “complexity® of the image. A recently developed branch of research,
called fractal geometry (MANDELBROT 1983) investigates this phenomenon. In the worst
case, we can expect that the increase in storage requirements for the vector represent-
ation of a polygonal map will be by a factor of two when the image resolution is dou-
bled.
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A significant problem encountered in the use of vector representations is the inherent
lack of organization of the data. Storing a chain of vectors forming the polygon bound-
ary gives no indication of the spatial relationship between the individual vectors (other
than their connectivity), and between polygons. At best, a conceptual relationship may
explicitly be stored, such as adjacency and topography information. Operations such as

_point-in-polygon and polygonal overlay (intersections between two sets of polygons, as
illustrated in Figure 3) are thus very inefficient to perform, and difficult to program.
Point-in-polygon algorithms are fairly well understood, but polygonal overlay algo-
rithms for vector representations are still a research topic. Some attempts have been
inade to combine vectors with some form of raster-based spatial ordering (e.g., the vas-
ter of PEUQUET 1983), but no extensive work has appeared for such representations.

S N N

Fig. 3: Examples of the point-in-polygon and polygonal overlay operations.

Figure 2c illustrates the use of an array representation for a region map. The array has
straight-forward storage requirements, based solely on the area of the region represent-
ed, and not on its complexity. For a given resolution, a map of R rows and C columns,
with pixels of size P bytes requires RxCxP bytes of storage. Thus, as image resolution
doubles in both the horizontal and vertical directions, storage requirements increase in
the array by a factor of 4.

Functions such as area, and polygonal overlay are computed very simply in the array,
requiring a single examination of every pixel. Many other cartographic algorithms have
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‘been developed. Those algorithms (such as area computation) which can be performed
on vector representations on O(Number of vectors) typically require in the array
O(Number of pixels). For such algorithms, the vector representation should have the ad-
vantage over the array. However, the importance of polygonal overlay and point-in-po-
lygon operations seems to outweigh the importance of those operations where vectors
perform efficiently. Original interest in the array was due to its compatibility with raster
output devices (such as line printers). Since many modern graphic display devices can
display arbitrary vectors as primitive objects, this particular advantage for arrays has
been reduced, at least for display purposes.

i\
K

|

Fig. 4: The true accuracy for a vector whose endpoints’ resolution is the same as the pixel resolu-
tion used by an array.
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When comparing the digitization of a vector in Figure 4b with the original vector in
Figure 4a, the digitization shows a “staircase® effect. It is possible to be misled by the
precision of the vector endpoints as drawn into the belief that vector representations are
inherently more accurate than area representations, where this staircase is not as obvious
(note that there is some blockiness, however, in the polygonal representation of Figure
2b as compared to Figure 2a). In particular, a “loss of accuracy“ appears when convert-
ing from a vector representation to an array representation. A shown by Figure 4c, this is
entirely an artifact of false precision ascribed to the vector endpoints and line width if
the illustration. If the vector endpoints have the same precision as an array pixel, then
the precision of the vector is actually as indicated in Figure 4c. The vector representation
has no greater accuracy than the array when both are stored with the same precision.

Like the vector representation, the region quadtree’s storage requirements for a given
map are related to the complexy of the map. HUNTER (1978) has demonstrated that the
number of nodes in the quadtree representation of an image is related to the length of the
perimeter of the polygons in that image. The fact that the quadtree’s complexity is relat-
ed to the perimeter is significant. It means that as the resolution is increased by a factor
of two, the quadtree will require approximately twice as much storage (as would the vec-
tor representation), whereas the array’s storage requirements will grow by a factor of
four. Section 4.1 below provides empirical evidence to support this claim.

When comparing the quadtree and array representations for a map, the complexity of
that map is clearly the key factor in determining which will be more efficient. Since a
given quadtree node must store some form of position and size information, it takes up
more space than a given array pixel in the case where both the quadtree node and the ar-
ray pixel use the same amount of storage to represent the pixel value. Second, we can ex-
pect more time to be required to process a given quadtree node than a given array pixel.
This is because a quadtree node requires more time to locate, more time to decode, and

“has a more complicated relationship with neighboring nodes.

Since a given quadtree node takes more space and processing time than an array pixel,
it is interesting to determine the trade-off point in terms of pixels/node above which the
quadtree is more efficient than the array. Clearly, if every pixel of the image has the
same value, and thus the image can be represented by a single quadtree node, any reason-
able function will run much faster on the quadtree for all but the smallest of images.
Conversely, if every pixel has a different value, and a complete quadtree is required for
its representation, then the quadtree is inappropriate. The key question for the practical-
ity of a geographic information system based on quadtrees is where this trade-off point
falls with respect to the complexity of the “typical“ image to be represented in the sys-
tem. This depends in part on what operations the system will perform, since different op-
erations have different trade-off points,

3. Point and Linear Feature Representation

A general purpose geographic information system will not process only region data.
Point and linear feature data plays an important role as well, each data type associated
with its own operations. In this section we will briefly consider the ability of vectors, ar-
rays, and quadtrees to store these data types.
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The vector is naturally very efficient for storing linear feature data, since linear featu-
res are most commonly approximated by chains of line segments. When the linear featu-
res are not meant to form polygons, the difficult operations of point-in-polygon and po-
lygonal overlay need not be performed. However, as with polygonal data, there is no
spatial organization to the collection of vectors. Operations such as finding all linear fea-
tures in a region is nearly as difficult to perform with vector representations as comput-
ing polygonal overlays. Points can be represented as degenerate line segments (i.e.,
simply store a list of points). Once again, there is no spatial organization.

The arrays is a poor representation for point and linear feature data. Point data can be
stored in an array by associating each point with a particular pixel. This leads to much
wasted space with most pixels being empty. The array does, however, maintain the spa-
tial relationship between the data points. Efficient array representations for linear fea-
ture data are hard to produce. A simple representation would make BLACK those array
pixels which contain a line segment. However, this indicates only a weak relationship
among the set of pixels making up a line segment (i.e., adjacent BLACK pixels may or
may not be part of the same segment). The most difficult problem is to distinguish bet-
ween several line segments which intersect a given pixel. At best, the array stores an ap-
proximation of the line data in a very inefficient manner.

Several methods have been proposed to use the quadtree as a spatial organization for a
collection of points or line segments (SAMET et al. 1984, SAMET & WEBBER 1985, NELSON
& SAMET 1986). Basically, a list of line segments is maintained, and a quadtree decompo-
sition storing pointefs into the segment list is used for the spatial organization. Such a
structure allows for efficient manipulation of the line data without any loss of accuracy.
The cost of such a spatial organization is related to the size of the segment list. The PR
quadtree (ORENSTEIN 1982, SAMET 1984b) is a similar representation designed to store
point data.

4. Empirical Comparisons

In this section we present empirical results on the storage requirements and operation-
al efficiency of the vector, array and quadtree representations. Section 4.1 discusses rela-
tive storage requirements for the three representations. Section 4.2 compares computa-
tional costs for selected operations on the array and quadtree data structures.

4.1 Storage Comparisons

The test data consisted of two sets. The first set is a series of images each of the same
approximate size (three images of 400 x 450 pixels and five images of 512 x 512kpixels)
but with varying complexity. These images included the floodplain, landuse, and topo-
graphy maps which make up our standard test set (Figures 5a to 5c). Three images deriv-
ed from these were also used; the center region from the floodplain map and the ACC
and VV landuse classes from the landuse map. Finally, the pebble and stone images were
also included (Figures 6a and 6b).

The pebble and stone images are quite complicated, as can be seen from the number of
nodes required for their quadtree representations (see Table 1). The landuse class, topo-
graphy, and floodplain maps are considerably simpler, and finally, the center region,
ACC class, and VV class maps are simpler yet.



Fig. 5: Four example maps.
a) The Floodplain map.
b) The Topography map.
¢) The Landuse map.
d) DMA data.

Fig. 6: Two example images.
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The second test set is derived from data supplied by the Defense Mapping Agency.

This test data does not seem to correspond to any known geographical location or ob-
jects, but is presumed to represent “reasonable“ data. The original data was in vector
format, to a resolution of 36,000 by 36,000 units. For this experiment, the data was re-
scaled to a variety of digitizations, and converted to our array representation. The vector
to array conversion process removed those line segments whose vertices both fell at the
same location. This gives the effect, as the resolution is increased, of having small featu-
res reappear to fill empty space.
This mirrors the natural practice of filling in a given map with smaller scale features as
the resolution increases. The image, at a resolution of 500 x 500 pixels, is shown in
Figure 5d. As can be seen in Table 1, the image is extremely complex, nearly as complex
as the pebble image. The data has been digitized at seven resolutions, from 63 x 63 pixels
up to 4000 x 4000 pixels. They are referred to as P63, P125, etc., where the number indi-
cates the image size.

For the purpose of empmcal experimentation, a storage implementation for each of
the three data structures was selected. Arrays are stored as disk files containing a con-
tiguous block of pixels in row major order. Differing applications have widely differing
storage requirements for pixel elements, ranging anywhere from one bit/pixel for binary
images to 199 bits/pixel used by the DMA Prototype Tactical Terrain Analysis Data-
base. Throughout this test, the array pixels were stored using 32 bits; the quadtree nodes
also store 32 bit value fields. The quadtree implementation used is the QUILT system
(SAMET et al. 1984, SHAFFER et al. 1985), which utilizes disk-based files containing a li-
‘near quadtree (GARGANTINI 1982). The linear quadtree recasts the leaf nodes as a sorted
list; this list is organized by a B-tree (COMER 1979). No vector-based geographic software
was available, and time did not permit an implementation to be developed specifically
for this project. However, a raster to vector (polygonal approximation) algorithm was
available to allow computation of vector storage requirements. For storage calculations,
each vertex point is assumed to require 4 bytes of storage (for the x and y values), and
each polygon was arbitrarily assumed to require an additional 8 bytes

Table 1. Storage requirements

‘ Vector Array Quadtree Pixels/
Image | Points Polys Bytes Pixels Bytes Nodes Bytes Node
Flood 792 3 3,192 180,000 720,000 5,266 47,104 49.7
Land 4,890 212 21,256 180,000 720,000 28,447 249,856 9.2
Top 5,086 94 21,095 180,000 720,000 24,859 217,088 10.5
Stone - - - 262,144 1,048,576 31,969 279,552 8.1
Pebble - - - 262,144 1,048,576 44,950 392,192 5.8
ACC 405 1 1,628 262,144 1,048,576 4,687 41,984 55.9
Center 13 1 60 262,144 1,048,576 3,280 29,696 79.9
\'AY 241 19 1,116 262,144 1,048,576 103 1,024 | 2545.0
P63 5,177 606 25,556 3,969 15,876 1,162 13,312 35
P125 9,183 814 43,244 15,625 62,500 4,351 43,008 3.7
P250 16,253 923 72,396 62,500 250,000 14,770 138,240 4.4
P500 22,340 947 96,936 250,000 1,000,000 42,931 387,072 6.1
P 1000 26,255 961 112,708 1,000,000 4,000,000 106,432 948,224 9.8
P2000 27,521 962 117,780 4,000,000 16,000,000 235,615 2,089,984 17.8
P 4000 27,865 962 119,156 | 16,000,000 64,000,000 501,127 4,350,976 334
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As expected, the vector representation was the most efficient of the data structures for
most test images (surprisingly, both the quadtree and the array were more efficient for
the image P63). For all test images, the quadtree requires less space than the array. One
of the most important observations to be noted here is the effect of increased image reso-
lution. As can be seen in the progression from P63 to P4000, when the image doubles in
resolution, the space requirements for the array increase by a factor of four. For the
quadtree, beyond the smaller images, the increase approaches a factor of two. Thus, as
pictures of a given complexity get larger, the space efficiency of the quadtree with respect
to the array becomes more dramatic, The relative space efficiency of the vector repre-
sentation is also dramatic.

4.2 Computation Cost Comparisons

In order to compare the efficiency of the quadtree representation to a standard pixel
array, we have implemented a set of six functions using both the array and the quadtree
as the underlying data structure for image representations. The functions which we test-
ed were area, perimeter, point in polygon (i.e., random access), windowing, WITHIN,
and single polygon value changing. These six functions were then executed on the test
images, with the results presented in Tables 2 through 5 below. All times in these tables
are measured in CPU seconds. The tests were run on a SUN Microsystems 2/120 work-
station using a 200 megabyte Eagle disk drive. The algorithms for the six functions are
briefly described below. .

The area function for both the array and the quadtree simply visits each pixel or node.
If the value is not WHITE, then the size of data element is added to the area counter.
The array is processed in raster-scan order; the quadtree in a pre-order traversal. The test
results are shown in Table 2. Other operations that can be computed in the same way in-
clude bounding rectangles, area of a subset of polygons whose membership can be deter-

Table 2. Execution times for area, perimeter, and access

Area Perimeter Access
Image Array Quadtree Array Quadtree Array Quadtree Pixels/
Time Time Time Time Time Time Node
Flood 5.4 1.0 8.5 3.0 9.3 5.3 49.7
Land 5.5 5.2 8.6 14.3 9.6 11.2 9.2
Top 5.4 4.4 8.7 12.5 9.7 9.7 10.5
Stone 7.3 4.9 12.1 16.0 10.0 10.9 8.1
Pebble 7.3 7.0 12.2 22.5 10.4 14.0 5.8
Center 7.4 0.8 12.2 2.6 10.1 4.0 55.9
ACC 7.4 0.6 12.0 2.8 10.7 33 79.9
\'A' 7.3. 0.2 12.1 0.2 10.9 1.7 2545.0
P63 0.2 0.3 0.3 0.7 4.1 2.5 3.5
P125 0.6 0.8 0.9 2.4 4.4 6.5 3.7
P250 2.2 2.3 3.3 7.4 5.4 9.4 4.4
P 500 7.3 6.8 11.7 21.2 9.9 12.3 6.1
P 1000 26.7 18.2 4.5 58.5 11.0 19.9 9.8
P 2000 100.2 37.5 171.5 117.7 12.1 20.9 17.8
P 4000 377.5 80.0 666.0 252.3 13.0 24.4 334
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mined by node value, the size of a population where the value of a node indicates density
of the population, and centroid of a polygon. The trade-off point (beyond which the
quadtree is more efficient than the array) for the area operation seems to be at about 5
pixels/node. These results indicate that for most applications, quadtrees are more effi-
cient than arrays for simple node visit functions.

The perimeter function for the array processes each row in conjunction with the pre-
vious row. For each pixel, the value of the neighbor to its left is compared to the value of
the current pixel. If they differ, the perimeter count is incremented. The neighbor in the
previous row is likewise examined. For the quadtree, the nodes are visited in a preorder
traversal. An active border table is maintained which describes the border of that portion
of the tree visited so far (SAMET & TAMMINEN 1985). Each node is compared against its
western and northern neighbors as represented in the table; where they differ, the length
of the edge is added to the perimeter counter. This perimeter algorithm is similar to that
used when labeling connected components; it is the standard quadtree algorithm that we
use for any function calculable by comparing nodes to previously processed neighbors.
As can be seen from analyzing Table 2, the trade-off point seems to be at about 12-15 pi-
xels/node. Thus, for the 512 x 512 pixel sized images in our test set, the more complicat-
ed images are more efficient with arrays, the less complicated with quadtrees. For larger
images, the quadtree has a significant advantage. o

The third function compares the ability of the two representations to compute the va-
lue of a given point (i.e., random access). 2000 random points are generated for each
image, with both the array and the corresponding quadtree searching for the same 2000
points. For each point the corresponding node or pixel is retrieved. While the array is
more efficient than the quadtree, this test shows mainly that both the quadtree and the
array are quite efficient then performing random access. Either is likely to be much more
efficient than a vector based representation at determining the value of a given point.
Moreover, the size of the image has only a small effect on the execution time.

The fourth function tested takes a window from an image; i.e., it extracts a rectan-
gular subsection. We first compared the array and the quadtree for the special case in
which the windows are not rotated with respect to the image x and y axes. The first win-
dow was half of the width of the image, with origin at (0,0); the second was half of the
width of the image with origin at (1,1); the third and fourth were each a quarter of the
width of the image with origins at (0,0) and (1,1) respectively. This allows for two tests
each for the best position for quadtree windowing (origin at (0,0)) and then the worst po-
sition (origin at (1,1)). Windowing for the array where there is no rotation of the window
is extremely efficient; those rows within the window are read in, and the appropriate sub-
portions are then re-written. Windowing for quadtrees is much more complicated; the al-
gorithm is presented in SAMET et al. (1985). The windowing function is ideally suited to
the array. On the other hand, it is unsuited to the quadtree since the window border may
not mesh with the quadtree nodes, thus causing much splitting and remerging of nodes.
From Table 3, we see that the array is superior for all but the most homogeneous images
(although such cases do frequently occur, particularly for smaller windows).

The next test compared the ability of the array and the quadtree to extract rotated win-
dows. This function is calculated in the quadtree in a manner almost identical to that
used for unrotated windowing. However, the array algorithm needed exteme modifica-
tion. Our algorithm makes several passes over the input array. During each pass, as
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Table 3. Empirical results for windowing

Origin (0,0) Origin (1,1)
One half One quarter One half One quarter

Image Array  Quadtree | Array Quadtree Array  Quadtree | Array  Quadtree

Time Time Time Time Time Time Time Time
Flood 4.1 7.4 2.7 1.3 4.0 13.1 2.4 2.8
Land 4.1 34.8 2.4 6.9 4.0 48.6 2.5 10.6
Top 4.0 8.3 2.5 2.0 41 15.3 23 10.6
Stone 4.3 20.7 2.7 4.0 4.6 31.1 2.5 6.4
Pebble 4.2 30.6 2.5 8.4 4.4 43.8 24 11.9
Center 4.4 7.1 2.3 1.3 4.4 13.1 2.6 2.8
ACC 4.3 6.9 2.5 0.9 . 4.4 13.2 2.5 1.9
vv 4.2 0.3 2.5 0.3 4.5 0.8 2.6 0.3
P63 0.4 1.8 0.2 0.7 0.4 1.8 0.3 0.7
P125 0.8 5.0 0.4 1.6 0.8 6.0 0.4 1.9
P250 2.1 16.1 0.9 5.0 2.1 20.2 0.9 6.0
P500 4.3 51.2 2.5 13.7 4.2 20.2 0.9 6.0
P 1000 13.0 155.1 5.4 34.5 12.0 200.8 52 47.0
P 2000 43.4 284.5 17.2 93.0 42.8 528.0 17.5 136.2
P 4000 153.6 807.2 57.1 225.4 156.9 1260.2 56.4 351.3

many output rows as can be stored in memory are computed. At the end of each pass,
these rows are output; the next several rows are then processed in turn. For test purpo-
ses, the output row buffer was as large as the memory buffer allocated to the quadtree
memory management system (12K bytes). Naturally, the actual number of input image
rows read during each pass is dependent on the rotation angle and size of the output
image window. Only those input rows actually covering pixels of the output window
need processed. Thus, the best rotation angle is 0 degrees, while the worst is 90 or 270 de-
grees. For our tests, we took two windows with origin at (WIDTH/2, WIDTH/4) where
WIDTH is the width of the image. Each window was rotated by 45 degree with respect to
the input image axes. For rotated windows, the window’s origin does not significantly
affect the quadtree’s efficiency, so only one window of each size was tested. The results
of this test are shown in Table 4. Timing results for the 4000 x 4000 pixel image are un-
available since this algorithm was tested at a latter time than the others. Sufficient disk
space was no longer available to store the array! The quadtree performed better than the
array in nearly all test cases. The trade-off point for the quadtree is at about 5 pixels/
node. Note that scale change and projection transformation algorithms are quite similar
to that used for rotated windowing.

The fifth function compared is termed the WITHIN function. This function expands
the non-WHITE polygons of a given image by a specified number of pixels. For the ar-
ray, this function was computed by use of a standard two-pass chessboard distance
transform in the WHITE pixels, with the second pass setting each pixel originally
WHITE to BLACK if its distance transform value is less than the radius value. For each
test image, a radius of 1/64th of the image width was used. The quadtree computes this
function by calculating the distance transform for all WHITE pixels, and converting
them to BLACK as appropriate. Our WITHIN algorithm is an example of a case where
the array representation needs only to examine neighbor values for each pixel, while the
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Table 4. Empirical results for windows rotated 45 degrees

One half One quarter
Array Quadtree Array Quadtree
Image | Tyme Time | _Time Time
Flood " 413 8.8 13.1 1.8
Land 47.8 44.6 13.1 9.9
Top 48.7 39.2 13.6 14.5
Stone 76.9 45.6 20.4 9.7
Pebble 58.5 51.9 15.7 14.0
Center 61.0 6.8 15.9 1.8
ACC 58.9 16.3 15.8 29
A\'A" 59.7 2.5 15.6 1.5
P63 0.6 1.6 0.2 0.8
P125 1.7 4.1 0.7 1.5
P250 8.9 13.4 2.6 34
P 500 59.9 43.0 16.0 10.9
P 1000 651.0 128.0 164.4 31.5
P2000 | 13765.7 344.3 3434.4 81.8
P 4000 ~ - = —

quadtree must also do splitting and merging. Thus, the array is superior for images with
less than about 40 pixels/node at the 512 x 512 image size, as indicated in Table 5. Since
the quadtree algorithm seems to be of cost O(n?) where n is the number of WHITE no-
des, larger images (with an absolute increase in the number of WHITE nodes) does not
lead to a relative improvement in the quadtree over the array. This is the only function
that we examined which has this property. It should be noted, however, that in practice
the WITHIN function would likely be executed on images such as the ACC or center
maps rather than the landuse map. This is so because the user will normally wish to de-
rive those features within’ a given distance of specified features - i.e., a polygon or
landuse class. Such images are, of course, less complex.

The final function tested changes the color of a particular polygon within an image.
For each test image, the function was performed with input point (WIDTH/2,
WIDTH/2) for an image of width WIDTH. The function was then computed with input
point (WIDTH/4, WIDTH/4). Both the array and the quadtree utilize an algorithm si-
milar to the standard two-pass connected components algorithm. The first pass for both
the quadtree and the array is nearly identical to the perimeter function, with the excep-
tion that each node or pixel must then be rewritten with the value indicating the equiva-
lence class of that node or pixel. The second pass visits each node or pixel, restoring its
proper color value, and outputs the image. The size of the polygon being changed has
some impact on the amount of time required. Quadtrees are particularly efficient when
the polygon is small. In general, from the Table 6 we find that the trade-off point is ab-
out 10 or 11 pixels/node, making the change function slightly better for quadtrees for a
“typical“ image. This function is also a necessary step in creating a map containing a
subset of polygons from an input map.



Table 5. Empirical results for the WITHIN function

Array Quadtree Pixels/
Image Time Time Node

Flood 313 20.2 49.7
Land 323 105.0 9.2
Top 33.2 105.9 10.5
Stone 97.0 472.0 8.1
Pebble 78.6 454.9 5.8
Center 100.8 71.1 55.9
ACC 107.1 60.4 79.0
vv 109.2 3.1 2545.0
P63 2.2 10.1 3.5
P125 7.2 44.2 3.7
P250 23.5 140.6 44
P500 86.5 49946 6.1
P 1000 345.7 1524.2 9.8
P2000 1354.9 5197.3 17.8
P 4000 4494.5 18092.2 33.4

Table 6. Empirical results for the change function

Change at (1/2, 1/2) Change at (1/4, 1/4)

Array Quadtree Array Quadtree | Pixels/

Image Time Time Time Time Node
Flood 30.0 6.0 23.2 9.2 49.7
Land 22.8 23.0 20.7 19.5 9.2
Top 20.9 20.4 25.8 20.3 10.5
Stone 438.8 67.2 48.4 65.2 8.1
Pebble 37.5 87.8 41.7 83.0 5.8
Center 48.6 9.3 30.1 8.6 55.9
ACC 50.8 0.5 50.9 0.5 2545.0
P63 1.4 2.6 1.3 2.6 3.5
P125 4.1 9.0 2.7 8.7 3.7
P250 12.9 28.1 8.6 28.0 4.4
P 500 45.1 78.3 45.1 78.0 6.1
P 1000 165.8 187.1 166.2 186.2 9.8
P 2000 636.9 408.3 636.7 404.1 17.8
P 4000 2455.6 854.5 2462.5 848.3 33.4

We have compared the vector, array,
ness in a geographic information system.

5. Conclusions

the most efficient representation in terms
many important functions. This result is
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and quadtree representations as to their useful-
We have found that the vector representation is

of storage, but very inefficient for execution of
» of course, well known. What this paper pro-
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vides is a discussion of the relative merits of the quadtree data structure with respect to
the better known vector and array representations. Our experiments show that the quad-
tree is more efficient in its storage requirements than the array, with an even greater ad-
vantage to the quadtree as the image resolution increases.

The quadtree can perfom some, but not all, of the common functions efficiently in
terms of execution time as compared to the array. The current state of the art in quadtree
database implementations allows the quadtree to compute simple tree traversal functions
(such as area and rotated window computation) more quickly than the comparable algo-
rithms in the array for most images of interest. Scale and projection change functions
would likely utilize algorithms nearly identical to our rotation algorithm. The perimeter
computation and polygon value changing functions are computed by our implementa-
tions in about the same time for both the quadtree and the array if we assume that the
“typical“ image requires about 10 pixels/node (as do the landuse and topography maps).
Both representations are quite efficient at computing point-in-polygon values, unlike a
vector based representation. The array has an advantage for the WITHIN function, and
a tremendous advantage when performing the special case of un-rotated windowing.

When selecting a data structure, one must examine the desired application to deter-
mine which of two representations is more appropriate. For geographic systems, the
quadtree seems generally to perform at least as well as the array for our particular imple-
mentations. There are two major factors which argue in favor of the quadtree at this
stage. First, our implementation is only a prototype. It should be possible to achieve
greater efficiency through further optimizations. Array implementations for many func-
tions are quite simple. While this is an advantage for developing programs for short term
use, for production systems the developers can spend the time necessary to produce
greater efficiency. We feel that the particular quadtree implementation tested has a po-
tential for greater efficiency, while our array implementation does not.

The second major advantage of the quadtree is the fact that it is more suitahle for stor-
ing point and line data than the array. Quadtree representations can use the same under-
lying representation and disk accessing/memory management code for all three types of
data. While a (storage inefficient) array-based point representation could be developed,
it would be particularly hard to develop a line representation based on arrays. One of the
major difficulties is the fact that an unbounded number of line segments can pass
through a given array pixel.

Finally, the quadtree becomes more efficient with respect to the array as the image size
increases, Thus, for databases with larger map objects, the quadtree may prove to be sig-
nificantly more efficient than the array.
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