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The eukaryotic cell cycle is regulated by a complicated chemical reaction network. Although many
deterministic models have been proposed, stochastic models are desired to capture noise in the cell re-
sulting from low numbers of critical species. However, converting a deterministic model into one that
accurately captures stochastic effects can result in a complex model that is hard to build and expen-
sive to simulate. In this paper, we first apply a hybrid (mixed deterministic and stochastic) simulation
method to such a stochastic model. With proper partitioning of reactions between deterministic and
stochastic simulation methods, the hybrid method generates the same primary characteristics and
the same level of noise as Gillespie’s stochastic simulation algorithm, but with better efficiency. By
studying the results generated by various partitionings of reactions, we developed a new strategy for
hybrid stochastic modeling of the cell cycle. The new approach is not limited to using mass-action
rate laws. Numerical experiments demonstrate that our approach is consistent with characteristics of
noisy cell cycle progression, and yields cell cycle statistics in accord with experimental observations.
© 2012 American Institute of Physics. [doi:10.1063/1.3677190]

I. INTRODUCTION

The eukaryotic cell cycle is regulated by a complicated
chemical reaction network. To model the cell cycle control
system, theoretical biologists previously used deterministic
models based on ordinary differential equations (ODEs).1–10

Although deterministic cell cycle models can be precise
and robust in many respects, experimental data exhibit con-
siderable variability from cell to cell during cell growth
and division.11–13 For example, the coefficient of variation
(CV = standard deviation

mean ) of size at division for fission yeast cells
is around 7.5%, and the CV of their cell cycle time is up
to 14%.11 This observed noise is usually attributed to two
sources: intrinsic noise from fluctuations of molecule num-
bers present within a single cell; and extrinsic noise, from
inequalities in sizes of the two daughter cells after division.
Given the small volume of a cell (e.g., a yeast cell is roughly
30 fl at birth), the total number of molecules of a particular
protein species is usually limited to several thousand. More-
over, the number of molecules of the mRNA for each protein
at any time is normally less than 10.14 In this case, molecular
fluctuations cannot be neglected, and they may significantly
affect the behavior of the cell. Therefore, to accurately model
the cell cycle, stochastic models and simulations are required
to capture this noise.
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A rigorous way to build a stochastic model is to convert
a deterministic model into its stochastic equivalent, which
employs only elementary reactions. The result is suitable
for simulation by Gillespie’s stochastic simulation algorithm
(SSA).15, 16 One of the major difficulties in this type of con-
version lies in the rate laws, which are often not elementary
(mass-action) kinetics. For example, Tyson and Novak’s sim-
ple three-variable model of the cell cycle7 (see Sec. II) in-
volves variables X, Y, and Z. The phosphorylation and de-
phosphorylation of Y are governed by Michaelis-Menten rate
laws, and the synthesis of Z is given by a Hill function. These
phenomenological rate laws are approximations, derived from
more detailed elementary reaction mechanisms using pseudo-
steady-state approximations. However, applying Gillespie’s
SSA to phenomenological rate laws may possibly generate
incorrect stochastic results.17 Thus, a model based fully on
mass-action kinetics for all reactions was developed in Kar
et al.18 by “unpacking” the reactions with phenomenologi-
cal rate laws in the Tyson-Novak three-variable model into
sets of elementary stochastic reactions. In the process, mRNA
variables for X, Y, Z, and other helper proteins were intro-
duced into the network. The unpacked model was then sim-
ulated using Gillespie’s SSA. The work of Kar et al. man-
aged to model the repetitive cell cycle behavior on average
and capture proper amounts of both the extrinsic and intrinsic
noise. However, the cost is a much larger system of variables
and reactions. If a more detailed deterministic model, such as
Chen et al.,9 were to be unpacked for stochastic simulation,
the complexity of the model would quickly increase as well
as the central processing unit (CPU) time for simulation by
Gillespie’s SSA.
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Our goal is to develop a modeling and simulation strategy
for cell cycle models that is both accurate and efficient. First,
to improve the simulation efficiency of Kar et al.’s stochastic
model, we apply Haseltine and Rawling’s hybrid method19

with different partitioning strategies, and check the corre-
sponding accuracy and efficiency. We demonstrate that, with
a more efficient partitioning strategy, the hybrid simulation
gives reasonably accurate results and saves significant com-
putational cost as compared to the full stochastic simulation.
Furthermore, through an analysis of the partitioning results in
the hybrid simulation, we conclude that a good partitioning
strategy for a cell cycle model is to treat all reactions related
to gene expression (reactions modifying gene and mRNA
species) as “slow” reactions (meaning that they happen infre-
quently enough that they must be simulated stochastically).
Biologically, it matches with our intuition that (for cell cycle
models) most of the intrinsic noise arises at the gene expres-
sion level due to the low numbers of molecules of genes and
mRNAs. On the other hand, it also implies that, to prepare
a deterministic cell cycle model for stochastic simulations,
one may not need to unpack the phenomenological rate laws.
Instead, we managed to build a new hybrid model by pack-
ing Kar et al.’s model back to a comparable three-variable
model. The ODEs are similar to the original three-variable
model, while stochastic elementary reactions related to gene
expression are added as slow reactions and simulated with the
SSA. In this way, we avoid creating a large reaction network
while obtaining sufficient accuracy and improved efficiency in
simulation.

This paper is organized as follows. In Sec. II, we pro-
vide a description of the cell cycle models that we base
our work on. In Sec. III, we briefly review Haseltine and
Rawlings’ hybrid method and then apply it to Kar et al.’s
model. We discuss its accuracy and efficiency with different
partitioning strategies. In Sec. IV, we propose a new hybrid
stochastic cell cycle model, and we show evidence that the
new model is able to correctly capture both the basic dynam-
ics and the intrinsic noise of the cell cycle. In Sec. V, we
present an analysis for the new partitioning strategy. Our con-
clusions are summarized in Sec. VI.

II. CELL CYCLE MODELS

The cell cycle is driven by the mutual antagonism be-
tween B-type cyclins (such as Clb2) and G1-stabilizers (such
as Cdh1).20 When B-type cyclins are abundant, they combine
with kinase subunits (Cdk1) to form active protein kinases
(e.g., Cdk1-Clb5 and Cdk1-Clb2 in budding yeast) that pro-
mote DNA synthesis and mitosis (S, G2, and M phases of the
cell cycle). When Cdh1 is active, Clb-levels are low, and cells
are in the unreplicated phase (G1) of the DNA replication-
division cycle. The cell cycle control system alternates back-
and-forth between G1 phase (Cdh1 active, Clb-levels low) and
the S-G2-M phase (Cdh1 inactive, Clb-levels high).

Tyson and Novak built their three-variable model7 based
on a bistable switch created by the antagonism between Clb
complexes, denoted by X in the three variable model, and
Cdh1, denoted by Y, as illustrated in Figure 1.

FIG. 1. Bistable switch on which Tyson and Novak’s model is based.

In this model, X inactivates Y by phosphorylating it, and
the unphosphorylated Y catalyzes the degradation of X. The
exit protein, Cdc20, activates a phosphatase (Cdc14) that de-
phosphorylates and activates Y. The actions of Cdc20 and
Cdc14 are lumped together in a single variable Z, whose syn-
thesis is promoted by X. Therefore, X is involved in a posi-
tive feedback loop with its repressor Y (mutual antagonism),
which creates a bistable switch. Cell growth flips the switch
from the G1 state to the S-G2-M state. The reverse transition
(back to the G1 state) is triggered by the negative feedback
loop in the model (X activates Z, Z activates Y, and Y inacti-
vates X).

This three-variable model can be formulated as the fol-
lowing set of ODEs:7

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

d
dtV = μV

d
dt [X] = ksxV − (kdx + kdxy[Y])[X]
d
dt [Y] = (khy+khyz[Z])([YT]−[Y])

Jhy+[YT]−[Y] − kpyx[X][Y]
Jpyx+[Y]

d
dt [Z] = ksz + ksmzx[X]n

Jsmzx
n+[X]n − kdz[Z]

, (1)

where square brackets denote the concentration of a chemi-
cal species. The k’s are reaction rate constants, and the J’s are
equilibrium binding constants (measured in terms of concen-
tration). [YT] is the total concentration of Y (the sum of the
phosphorylated and unphosphorylated forms). The Hill expo-
nent, n, determines the steepness of the sigmoidal curve ex-
pressing the dependence of Z-synthesis on [X]. With proper
choice of parameter values, this model shows alternations of
G1 phase and the S-G2-M phase in deterministic simulations.
A more detailed deterministic cell cycle model for budding
yeast, developed by Chen et al.,9 successfully accounts for
the phenotypes of wild-type budding yeast cells and about 120
mutant strains.

The equations in Eq. (1) represent a deterministic phe-
nomenological model. In order to build a stochastic cell cy-
cle model, the state variables have to be converted from con-
centrations (nM) to numbers of molecules per cell (“popula-
tions”), and new state variables have to be added to represent
mRNA populations because intrinsic noise in cells is mostly
generated at the gene expression level.21–23 Moreover, follow-
ing Gillespie’s framework of SSA, chemical reactions with
mass action kinetics are desired to capture the full stochastic
effect in chemical reaction systems. Thus, reactions that use
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phenomenological rate laws (such as Michaelis-Menten and
Hill functions) must each be replaced by a series of reactions
written with elementary mass-action kinetics using additional
variables as intermediate species. The result is a much larger
system of equations. Kar et al.18 built a stochastic cell cy-
cle model with 19 variables and 47 reactions, based on Tyson
and Novak’s three-variable model. Kar et al.’s model gener-
ates distributions of cell cycle times and division sizes that
match the data observed in wet-lab experiments. However,
conversion from the original three-variable, phenomenolog-
ical, deterministic model to the fully unpacked and supple-
mented stochastic model takes a great amount of work, and
simulations of the unpacked model by Gillespie’s SSA are
slow. The goal of this paper is to reduce the modeling ef-
fort and to improve the efficiency of the stochastic simulation
without sacrificing the accuracy of the model.

III. HYBRID METHOD AND PARTITIONING
STRATEGIES

A. Hybrid method

For large systems with fast reactions, Gillespie’s SSA
can be computationally slow because it simulates every re-
action event. “Fast” reactions are so called to contrast with
“slow” reactions that occur comparatively infrequently. To
speed up the SSA, several approximate simulation strategies
have been proposed. One group of approximation methods
tries to take advantage of the multiscale characteristics ob-
served in the reactant populations. Some species are present
at larger population numbers than others. If all reactants have
relatively large populations, one can represent a stochastic
system by chemical Langevin equations (CLEs) and solve
them as stochastic differential equations,24 or directly apply
tau-leap methods,25, 26 which approximate the numbers of re-
actions by Poisson random numbers. The other group of ap-
proximation methods tries to take advantage of multiscale fea-
tures in the reactions: fast reactions, by definition, occur much
more frequently than slow ones. A quasi-steady-state assump-
tion on the high-population variables27 or a partial equilib-
rium assumption on the fast (high propensity) reactions28 can
be applied to reduce the system and accelerate the simulation.
In realistically large biochemical systems, usually both mul-
tiscale features are present. Species populations and reaction
propensities can each span several orders of magnitude. Thus,
it is not realistic to simulate a multiscale system with only one
method that works well in one scale. Instead, hybrid methods
should be considered from a more practical, system-specific
point of view.

Several hybrid methods have been presented.19, 29, 31 Cao
et al.31 proposed to partition the system, based simply on the
species population numbers. For species whose population
numbers are less than a threshold, all related reactions are
simulated by the SSA, while other reactions are simulated by
the tau-leaping method. Haseltine and Rawlings19 proposed
to partition a system into groups of slow and fast reactions.
The partitioning criterion is determined by two thresholds set
by the user before simulation. A reaction is put into the fast
reaction group if its propensity is greater than the propensity

threshold, and the populations of all its reactants are greater
than the population threshold. In this method, the fast reac-
tion group is governed by ODEs or CLEs and the slow reac-
tion group is simulated by Gillespie’s direct method. A similar
strategy was adopted by Salis et al.,29, 30 but fast reactions are
approximated by CLEs and slow reactions are simulated by
Gibson and Bruck’s next reaction method.32 They also devel-
oped a more efficient mechanism to monitor the occurrences
of slow, discrete events while simultaneously simulating the
dynamics of a continuous, stochastic or deterministic process.

Our work follows the original idea of the hybrid method
from Haseltine and Rawlings,19 and adopts a similar imple-
mentation strategy for event handling as in Salis et al.29, 30

Suppose the system has N species, and its state vector is de-
noted by X(t) = (X1(t), . . . , XN(t)), where Xi(t) is the number
of molecules of the ith species at time t. Suppose M reactions
are involved. The M reactions are partitioned into two sub-
sets: Sfast for fast reactions, which are formulated by ODEs,
and Sslow for slow reactions, which are stochastic reactions.
Let ai(x, t) be the propensity of the ith reaction in Sslow when
X(t) = x, τ be the jump interval of the next stochastic reaction,
and μ be its reaction index. The ODE system is formed from
the fast reaction set (Sfast) and the SSA system from the slow
reaction set (Sslow). Set t = 0. The hybrid algorithm is given
as follows.

Hybrid simulation algorithm

1. Generate two uniform random numbers r1 and r2 in U(0,
1).

2. Integrate the ODE system with the integral equation,

∫ t+τ

t

atot(x, s)ds + log(r1) = 0, (2)

where atot(x, t) is the total propensity of Sslow.
3. Determine μ as the smallest integer satisfying

μ∑
i=1

ai(x, t) > r2atot(x, t). (3)

4. Update X(t) according to the μth reaction in Sslow.
5. If stopping condition is not reached, go to step 1.

Note that solving Eq. (2) is an important step, particu-
larly when the slow reaction propensities change appreciably
over time according to the fast reaction dynamics. The origi-
nal strategy by Haseltine and Rawlings19 is to add a propen-
sity of “no reaction” that decreases the time of the next slow
reaction, τ , so that the slow reaction propensities do not ap-
preciably change over time τ , while Salis et al.29, 30 intro-
duced a system of jump differential equations, where each
equation describes the propensity for a single slow reaction
to occur. These jump equations are numerically integrated
alongside the system of ODEs (or SDEs). When the solution
to a jump equation crosses zero, its corresponding slow reac-
tion has fired. This step is the key difference between the two
algorithms. In our implementation, we follow a similar strat-
egy as Salis et al. but apply it to the direct method instead of
Gibson and Bruck’s next reaction method.32 Suppose that the
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ODE system is given by

x ′ = f (x). (4)

We simply add an integration variable z and add an equation

z′ = atot(x), z(0) = 0. (5)

At every simulation step, starting from time t, ODEs
(4) and (5) are numerically integrated until z(t + τ ) = z(t)
+ log(r1). Then, τ gives the solution for Eq. (2). This integra-
tion can be performed by a standard ODE solver with root-
finding, such as LSODAR.36

B. Partitioning strategy

The hybrid simulation algorithm is straightforward, if the
system is well partitioned. However, an important decision
has to be made on the partitioning strategy. The original par-
titioning strategy proposed by Haseltine and Rawlings, which
was adopted in the software package hy3S,29, 30 partitions the
system with two thresholds pre-selected by the user. One is
the population threshold x̄, while the other is the propensity
threshold ā. A reaction is considered as a fast reaction only
when the populations of all its reactants are greater than x̄

and its propensity is greater than ā. Figure 2 illustrates this
strategy.

Here, the scales are measured by the time average of the
populations and propensities. The species populations and re-
actions are sorted from low to high. The whole system is thus
divided into four regions, as illustrated in the figure. Hasel-
tine and Rawlings’ partitioning strategy puts regions I, II, and
III into the SSA regime and region IV into the ODE regime.
This is a conservative strategy. Unfortunately, simulations for
both the ODE and SSA regimes have to stop and restart for
every SSA firing. Thus, the efficiency of the hybrid method

FIG. 2. Scales of reactions and populations. Region I contains slow reac-
tions whose reactants have low populations; region II contains slow reac-
tions whose reactants have high populations; region III contains fast reac-
tions whose reactants have low populations; region IV contains fast reactions
whose reactants have high populations.

depends heavily on the stepsize allowed by the SSA, which is
limited by the scales of the reactions in the SSA regime. Par-
ticularly, the reactions in region III, which contains fast reac-
tions with at least one reactant/product with a low population,
will force the system to take small steps. Thus, the efficiency
of the hybrid method is limited by region III. This presents
a challenge when the hybrid method is applied to model and
simulate complex systems. In this paper, we propose a differ-
ent partitioning strategy for the cell cycle model: We only put
region I into the SSA regime, while reactions in regions II, III,
and IV are all simulated with ODEs.

C. Applying the hybrid method to the cell cycle model

In preparing the Tyson-Novak three-variable model for
stochastic simulation, Kar et al. not only converted the phe-
nomenological rate laws (Michaelis-Menten and Hill kinet-
ics) to elementary steps (mass-action kinetics) but also added
stochastic reactions related to gene expression. We predict
that most of the intrinsic noise in the cell cycle should come
from the gene and mRNA species. These species have lower
molecule numbers and react less frequently than protein level
reactions. Meanwhile, the majority of the reactions are on the
protein level, where insignificant noise is expected. These two
levels suggest a natural partitioning of the system. But all
these conjectures need verification from numerical results.

To find an appropriate partitioning of this system, we first
generated a sample SSA run on the fully stochastic model to
collect scale information for all the reactions from the simula-
tion profile. Two characteristics are calculated and plotted in
the sample run. One is the time average population for each
species. The other is the total number of firings for each reac-
tion. (In the SSA, the total number of firings, which is easy to
track, is equivalent to the scale of the integral of the propen-
sities.) Figure 3 shows (on a double-log plot) the profile for
all 47 reactions in Kar et al.’s model in terms of these two
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characteristics. Each circle represents a reaction. Some circles
may overlap due to the resolution of the image. Note that for
each reaction, its population scale is determined by the small-
est time average population of all its reactants and products,
but not catalysts.

We test four partitioning strategies as illustrated in Fig-
ure 3. Starting from the lower left part of the profiling plot,
we initially partition the five slowest reactions with the lowest
molecule numbers into the SSA system (strategy A). These
reactions fire less than 10 000 times in 200 cycles (the total
number of reaction events is about 109) and their reactants
have average populations less than 1. Three of them control
the activation/inactivation of the gene and two of them are
synthesis and degradation of mRNA for protein Z. We pre-
dict that these reactions should be the main source of intrin-
sic noise. In strategy B, we add nine more reactions into the
SSA system. These reactions fire less than 106 times in 200
cycles, and their reactants have average populations less than
10. They are all on the gene expression level. Eight of them
are mRNA synthesis and degradation reactions and one is re-
lated to degradation of the transcription factor. Strategies A
and B both follow the idea of partitioning only region I into
the SSA regime. The difference is only on the threshold val-
ues. Interestingly, in strategy B the SSA regime includes all
the reactions related to gene expression. For comparison pur-
poses, we also tried two more partitioning strategies. Strategy
C includes ten more slow reactions (<106) with high popula-
tions (>30), while strategy D includes two more fast reactions
(>06) with low populations (<10).

Since the mRNAs for proteins X, Y, and Z are crucial
indicators of this cell cycle system, in order to analyze the
impact of the four partitioning strategies we first compare the
hybrid method to the SSA on these distributions. Figures 4
and 5 show the comparison for strategies A and B, respec-
tively. For strategy B (Figure 5), both methods generate nearly
identical distributions of the mRNAs because all reactions re-
lated to the mRNAs are treated stochastically. For strategy A
(Figure 4), only the mRNA for Z (Mz) has matching distri-
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FIG. 4. mRNA distributions for the hybrid method and the SSA on Kar
et al.’s cell cycle model. Partitioning strategy A is used.
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FIG. 5. mRNA distributions for the hybrid method and the SSA on Kar
et al.’s cell cycle model. Partitioning strategy B is used.

butions because the other two mRNA variables (Mx and My)
are included in the ODE system. Therefore, we can see from
Figure 4 that Mx and My exhibit much smaller variances than
they do in the full stochastic simulation. We do not show com-
parisons for strategies C and D, because they give the same
results as strategy B (Figure 5).

Next, we compare the overall performance of the hybrid
method with the four strategies to the SSA on the full model.
The data (Table I) are collected from runs of 20 000 cycles.
While the four strategies and the full SSA generate the same
mean values for cycle time and division size, we observe dif-
ferences in the CVs. Strategy A includes only five stochastic
reactions, so it achieves the best efficiency, which is over 100
times faster than the full SSA simulation. On the other hand, it
captures only 81% and 93% of the intrinsic noise in the cycle
time and division size distributions, respectively. Under con-
ditions where computational cost is our major concern, it can
still serve as a useful partitioning strategy. Strategy B puts all
(and only) the gene expression reactions into the SSA regime.
It captures over 97% of the noise in the system and is five
times faster than the SSA, but it takes 22 times longer than
strategy A. Considering the tradeoff between accuracy and ef-
ficiency, this strategy appears to be the best among the four.
Both strategies C and D include more reactions in the stochas-
tic system, but they do not gain thereby much improvement in

TABLE I. Statistics for different partitioning strategies of the hybrid method
and the full Gillespie SSA on Kar’s cell cycle model.

Cell cycle time Volume at division

Mean CV Mean CV CPU time
Strategy (min) (%) (fl) (%) (s)

A 115.5 10.4 30.3 7.5 386
B 115.5 12.6 29.2 8.1 8613
C 115.5 12.9 29.2 8.2 14 474
D 115.5 12.5 29.2 7.9 37 011
Full stochastic 115.5 12.9 29.1 8.1 41 774
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simulating stochastic effects of the system. Since strategies
C and D are considerably less efficient computationally than
strategy B, there is little to commend them.

IV. A HYBRID CELL CYCLE MODEL

The hybrid simulation method demonstrates good perfor-
mance on Kar et al.’s cell cycle model. However, the whole
process still requires a modeler to build a complex, full-
stochastic model by converting the phenomenological rate
laws into many stochastic elementary reactions. Moreover,
after the conversion, the simulator has to appropriately par-
tition the system into the SSA regime and the ODE regime
with a good partitioning strategy. We have already noticed
that the best partition strategy on Kar et al.’s model is to
put all gene and mRNA reactions into the SSA regime. All
of these reactions were absent from the three-variable model
and were added to it later to account for stochastic effects of
transcription-translation coupling.21–23 If (as we have shown
for Kar et al.’s model) the gene and mRNA reactions are pri-
marily responsible for intrinsic noise, it may not be necessary
to unpack the original deterministic model for the protein reg-
ulatory network. One only needs to apply the hybrid method
on a naturally partitioned model, where the SSA regime in-
cludes all newly added stochastic reactions at the gene expres-
sion level, while the ODE regime includes the ODE set from
the original deterministic model at the protein level. This is
an efficient way to model stochastic gene regulation systems.

To demonstrate this modeling strategy, we propose a new
“hybrid cell cycle model.”

ODE system: In the deterministic part, we inherit most of
the original ODE system from the three-variable model, but
modify it in the following ways, to match with Kar et al.’s
model:

1. In the deterministic model, a fourth variable YT and its
corresponding ODE are added to represent the dynamics
of the total amount of Y (sum of the unphosphorylated
and phosphorylated versions of Y).

2. Originally, the activation of Z by X was modeled by
a Hill function with Hill coefficient n = 4. In Kar
et al.’s model, this process was unpacked and modeled
by dimerization of a phosphorylated transcription factor.
To match Kar et al.’s model, we used n = 2 in our hy-
brid model. Because this activation is accomplished at
the gene expression level, we removed the term for this
reaction from the ODE for Z, and placed the reaction
into the stochastic system.

TABLE II. ODE system for the hybrid cell cycle model. 〈X〉 denotes the
average number of molecules for species X.

d
dt V = μV
d
dt 〈X〉 = ksxMxV − kdx〈X〉 − kdxy〈Y 〉〈X〉

V

d
dt 〈YT〉 = ksyMyV − kdy〈YT〉
d
dt 〈Y 〉 = ksyMyV − kdy〈Y 〉 + (khyV +khyz〈Z〉)(〈YT〉−〈Y 〉)

JhyV +〈YT〉−〈Y 〉 − kpyx〈X〉〈Y 〉
JpyxV +〈Y 〉

d
dt 〈Z〉 = kszMzV − kdz〈Z〉

TABLE III. SSA system for the hybrid cell cycle model. 〈X〉 denotes the
average number of molecules for species X.

Reaction Propensity function

φ → Mx ksmxV

Mx → φ kdmxMx

φ → My ksmy

My → φ kdmyMy

φ → Mz ksmz + ksmzx〈X〉2

(JsmzxV )2+〈X〉2

Mz → φ kdmzMz

3. To improve the cell cycle oscillation so that it is more
precise and robust, we set the basal rate (khy) for the de-
phosphorylation of Y to be non-zero. Thus, the reaction
has non-zero rate even when Z = 0.

4. In the three-variable model, all variables are in concen-
trations. To convert the model from concentration-based
to molecule-number-based, we changed the ODEs and
parameter values accordingly.

SSA system: In the stochastic system, we introduce six
stochastic reactions for the synthesis and degradation of the
three mRNA variables, namely, Mx for X, My for Y, and Mz

for Z. All of these reactions use mass-action rate laws, except
the synthesis of Mz, whose propensity function includes the
nonlinear term for activation of Z.

With these changes in mind, we slightly tune the param-
eters of some reactions in our system to result in similar cell
cycle behaviors and statistics as in Kar et al.’s model. The
details of the hybrid model are listed in Tables II–IV.

The hybrid cell cycle model can be naturally simulated by
the hybrid method. The results are compared to the full Gille-
spie simulation on Kar et al.’s model (Figure 7 and Table V).
The hybrid model exhibits oscillations of the three proteins
of X, Y, and Z (Figure 6) that are comparable to Kar et al.’s
SSA results. The mRNA distributions of the hybrid method
also agree quite well with Kar et al.’s calculation (Figure 7).

Table V shows that the statistics generated by these two
models agree reasonably well with each other and with the
experimental data. Kar et al.’s model was parameterized to
give a nominal size at division of 30 fl, without much regard
for the actual size of yeast cells at division. This discrepancy

TABLE IV. Parameter values for the hybrid cell cycle model.

Parameter Value (min−1) Parameter Value (fl−1 min−1)

μ 0.006 ksx 1.53
kdx 0.04 ksy 1.35
kdy 0.02 khy 29.7
khyz 7.5 ksz 1.35
kpyx 1.88 ksmx 1.04
kdz 0.1 Parameter Value (fl min−1)
kdmx 3.5 kdxy 0.00741
ksmy 7.0 Parameter Value (fl−1)
kdmy 3.5 Jhy 5.4
ksmz 0.001 Jpyx 5.4
ksmzx 10.0 Jsmzx 756
kdmz 0.15
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FIG. 6. Time trajectory of the hybrid model.

can be corrected by adjusting the rate constants in Table IV.
To increase V by a factor of F, kdxy must be multiplied by
F and all parameters with units fl−1 or fl−1 min−1 must be
divided by F.

Our hybrid model produces larger CVs of the cycle time
and division size than Kar et al.’s model. Similar to Kar
et al.’s model, our hybrid model includes low numbers of
mRNAs. The average levels of Mx, My, and Mz are, respec-
tively, 6.4, 2.0, and 0.5. With such low abundances, both mod-
els require short half-lives of the mRNAs in order to keep the
intrinsic noise at an acceptable level. Therefore, we reuse the
degradation rates of the mRNAs from Kar et al.’s model. The
resulting half-lives of Mx, My, and Mz are, respectively, 0.2,
0.2, and 4.6 min, the same as in Kar et al.’s model. The hybrid
model reduced the simulation time by a factor of 40. More-
over, from the modeling point of view, we avoid the difficul-
ties that come from developing a complex chemical network,
as in Kar et al.’s work.

V. ANALYSIS OF THE PARTITIONING STRATEGY

The numerical experiments of Kar et al.’s model suggest
that the hybrid method with the new partitioning strategy can
provide an accurate and efficient stochastic simulation for the
cell cycle model. But, this may not be generally true for all
types of models.
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FIG. 7. mRNA distributions of the hybrid model with hybrid simulation and
Kar’s model with full SSA simulation.

To further study the new strategy, we adopt a Poisson
process formulation of the SSA proposed by Anderson.34 Let
kj(t) denote the total number of firings for reaction Rj from
initial time 0 to t. Then,

x(t) = x(0) +
M∑

j=1

vjkj (t). (6)

Anderson34 showed that kj(t) can be formulated as

kj (t) = Yj

(∫ t

0
aj (x(s))ds

)
, (7)

where all Yj are independent unit-rate Poisson processes.
Anderson called the integral Ij (t) = ∫ t

0 aj (x(s))ds the inter-
nal time, which determines the intensity inside a unit-rate
Poisson process. Ij is also the time integral of the propensity
function and determines the scale of the reaction Rj. Combin-
ing Eqs. (6) and (7), we have

x(t) = x(0) +
M∑

j=1

vjYj (I (t)) . (8)

Note that if we take the mean value for Yj, we will end up with

x(t) = x(0) +
M∑

j=1

vj

(∫ t

0
aj (x(s))ds

)
, (9)

TABLE V. Row 1 includes the experimental data from a fission yeast cell sample.11 Row 2 includes the experi-
mental data for daughter cells of the budding yeast.13 Rows 3 and 4 are statistics for the SSA on Kar’s model and
the hybrid method on the hybrid model, respectively.

Cell cycle time Volume at division

Mean CV Mean CV CPU time
(min) (%) (fl) (%) (s)

Fission yeast 116 14 175 8 . . .
Budding yeast (daughter) 112 22 68 19 . . .
Kar’s 116 13 29 8 41 774
Hybrid 116 20 30 12 1370
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which is the integral format of the reaction rate equations. If
we know the state at time t and would like to consider the state
change from time t to t + h, we have

x(t + h) = x(t) +
M∑

j=1

vjPj

(∫ t+h

t

aj (x(s))ds

)
, (10)

where all Pj(λ)’s are independent Poisson random num-
bers with mean and variance equal to λ. Note that although
Eq. (10) looks similar to the tau-leaping method proposed by
Gillespie,25 it is an exact representation, while tau-leaping is
an approximation.

Now consider different scenarios for a reaction Rj. If Rj is
in region I or IV, the decision is relatively easy. In region I, at
least one of the reactants/products is of small population and
the reaction is slow. We should put this reaction into the SSA
regime to exactly simulate its firing. In region IV, all reactants
and products are of large populations and the reaction is fast.
According to Haseltine and Rawlings,19 this reaction can be
put into the ODE or the CLE regime. If Rj is in region II, all
reactants and products of Rj are of large populations and the

reaction is slow. Because the reaction is slow,
∫ t+h

t
aj (x(s))ds

is small and the corresponding Poisson random number can-
not be approximated by either a normal random number or
its mean value. However, since all the involved species are of
large populations, the errors caused by the approximation are
relatively small and will not affect the system behavior signif-
icantly. Even if we keep only the mean value and ignore the
variance, the effect on the state variables is negligible. Thus,
it is safe to put reactions from region II into the ODE or the
CLE regime.38

If Rj is in region III, there are species with large pop-
ulations in reaction Rj. For them, the situation is similar to
the case when Rj is in region IV. With fast reactions and
species with large populations, there are no large errors in
those species, if Rj is put into the ODE or CLE regime. But,
since Rj is in region III, at least one of the reactants/products
is of small population. Errors caused by an ODE or CLE ap-
proximation are relatively large in this case. Here, we do not
aim to find general conditions such that Rj can be put into the
ODE regime; instead, we focus on two conditions that suit our
cell cycle model.

Condition 1: All chemical species of low molecular
counts that participate in reactions within region III do not
react with each other.

Condition 2: The sum of propensities for all reactions in
region I is much smaller than the propensity of any reaction
in region III.

Remark: For mass action kinetics, condition 1 guarantees
that propensity functions of reactions involved with species of
low populations are linear with the state variables correspond-
ing to these species. Condition 2 requires that the total firing
numbers in region I should not be comparable to the reacting
number of any region II reaction. It is a necessary efficiency
requirement since the efficiency of the hybrid method depends
heavily on how frequently reactions in the SSA regime fire.

Assume that these two conditions are satisfied. Let the
species with a small population be Si, whose population xi

gets changed by a reaction Rj in region III. Then, vij �= 0. For
xi, we have

xi(t) = xi(0) +
M∑

j=1

vijYj (Ij (t)). (11)

If Ij(t) is large, Yj(Ij(t)) will also be large. But, since xi is of
small population, there must be at least a reaction Rl to change
xi in an opposite direction, in other words, vilvij < 0. We can
rewrite Eq. (11) as

xi(t) = xi(0) +
∑
vij ′>0

vij ′Yj ′

(∫ t

0
aj ′ (x(s))ds

)

+
∑

vij ′ <0

vij ′Yj ′

(∫ t

0
aj ′ (x(s))ds

)
. (12)

Because of condition 2, it is impossible that reactions that
change xi in an opposite direction to Rj all come from region
I. There must be at least a reaction Rl in region III such that
vilvij < 0. Thus, xi is changed by fast reactions in two direc-
tions, while it maintains a low population level. It has to be at
a quasi-steady-state.27, 28, 33 According to the analysis by Rao
and Arkin,27 if xi is involved only in reactions whose propen-
sity functions are linear with the small state variables (condi-
tion 1), we only need its mean value to calculate the propensi-
ties of slow reactions, and its mean value can be solved from
ODEs formed by those reactions in region III.

To see a counter example when condition 1 is broken, we
consider a simple system

X1
c1
⇀↽
c2

X2, (c1 = c2 = 10 000),

X1 + X2
c3−→ X3, (c3 = 1).

(13)

If both X1 and X2 have small populations, or in the extreme
case where x1 + x2 = 1, then no X3 will be produced since it is
impossible that an X1 molecule binds with an X2 molecule to
form an X3 molecule. However, if we solve the pair of fast re-
versible equations using ODEs, we will have x1(0.5) = x2(∞)
= 0.5 and there will be a positive propensity for the slow re-
action. That will lead to errors.

If condition 2 is broken, we could have a system as
follows:

X0
c1−→ ∅, with c1 = 2000,

Xi −→ X0 + Xi, ci = 1, xi = 1,

where i = 1, . . . , 10 000.

(14)

The first reaction consumes X0 quickly, while the other 10 000
reactions generate X0 slowly. The first reaction is in region III
and the other 10 000 reactions are in region I. For this sys-
tem, x0 will be around five at a steady state (since 5 × 2000
= 10 000). When we apply the hybrid method by solving the
first reaction in ODEs and the rest in the SSA regime, the
ODE solver will be interrupted by SSA events so frequently
that the efficiency will be even lower than solving the whole
system using the SSA.

Fortunately, conditions 1 and 2 are often satisfied in gene
regulation networks, where proteins are of large populations,
genes and mRNAs are of small populations, and reactions



034105-9 Hybrid modeling and simulation of cell cycle J. Chem. Phys. 136, 034105 (2012)

in region III are regulation reactions on genes and mRNAs
by proteins. We note that the accuracy and efficiency of the
hybrid method depend on the threshold values (x̄ and ā in
Figure 2) and the actual scale differences in a problem. In gen-
eral, it remains an open question how to select these threshold
values. For Kar et al.’s model, the threshold values are de-
termined so that all (and only) gene expression reactions are
in the SSA regime. This seems to be a natural choice for gene
regulation models where proteins, genes, and mRNAs demon-
strate clear scale differences. To further test how this strategy
works for this type of system, we did numerical experiments
with two gene regulation models. One generates a steady state
and the other generates an oscillation at the protein level. De-
tails of these two models are given in the appendix. As shown
by the experimental results, similar to what we have seen for
Kar et al.’s model, the hybrid method with this partitioning
strategy generates system dynamics and state statistics rea-
sonably close to the SSA results for these two models as well.

VI. CONCLUSION

Recent discoveries have shown that the cell cycle is char-
acterized by different types of randomness, which play impor-
tant roles in cell physiology.13, 35 Stochastic models of cell cy-
cle regulation are necessary to understand these experimental
results in quantitative terms. Kar et al. successfully converted
Tyson and Novak’s three-variable, deterministic, cell cycle
model into a stochastic version by unpacking the phenomeno-
logical rate laws into detailed elementary reactions. However,
this approach has serious costs. The largest cost is the time
and effort needed to do the unpacking successfully. After that,
there are computational expenses involved in full SSA-based
simulations. These large costs make Kar et al.’s method hard
to generalize to more complicated cell cycle models, such as
Chen et al.’s budding yeast cell cycle model.9

In this paper, we have proposed to accelerate the stochas-
tic simulation using Haseltine and Rawlings’ hybrid method
with a more efficient partitioning strategy. Through numeri-
cal experiments, we explored different partitioning strategies
and concluded that, for certain classes of models, a reaction
should be put into the SSA regime only when both of the fol-
lowing conditions are met: (1) the reaction has a relatively
low average propensity; (2) at least one of its limiting species
has a very low molecule number on average. This includes
cell cycle models where, due to the low molecule numbers
of genes and mRNAs, randomness mostly comes from reac-

FIG. 8. Diagrams for the two test models. The steady-state model does not
include reactions in the shaded box, while the oscillation model includes
them.

TABLE VI. Reactions in the steady-state model.

Rate Average no. Average Reaction
Reaction constant of molecules propensity region

g → g + m 2 10 1 I
m → m + p 0.1 1000 1 II
p → φ 0.001 1000 1 II
m → φ 0.1 10 1 I
p + p → p2 0.001 100 1000 IV
p2 → p + p 10 100 1000 IV
p2 + g → gi 20 0.5 1000 III
gi → p2 + g 2000 0.5 1000 III

tions at the gene expression level. Our partitioning strategy
also resulted in such a natural partitioning. Numerical exper-
iments demonstrated that, with our new partitioning strategy,
the hybrid method accurately simulates intrinsic noise with
improved simulation efficiency. Although five-fold speedup
does not seem to be significant at the first glance, the effi-
ciency gain can be improved further with more efficient ODE
solvers. LSODAR will have order and stepsize drops each time
a SSA event fires. This is a great challenge for the implemen-
tation of the hybrid method. In the future, we will work on
improving the ODE solver for the hybrid method.

A more serious difficulty with Kar et al.’s method is that
it does not “scale up” easily to large deterministic models.
For the simple cell cycle model with only three ODEs, the
unpacked network required 19 variables and 47 reactions. For
more realistic deterministic models, it may not be practical to
unpack all the non-mass-action rate laws. To avoid this com-
plexity, we propose a new way of building stochastic mod-
els of the cell cycle. Assuming most of the intrinsic noise
comes from the gene expression level, we build stochastic re-
actions at the gene expression level and preserve the original
phenomenological ODEs from the deterministic model. This
combined model is self-partitioned and easily simulated by
the hybrid method. Following this idea, we have successfully
built a stochastic cell cycle model based on the original three-
variable model of Tyson and Novak.7 In the future, we plan to
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FIG. 9. Distribution of mRNA population for the steady-state model.
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FIG. 10. Distribution of p population for the steady-state model.

investigate more complex and realistic models such as Chen
et al.’s full model.9
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APPENDIX: TEST OF THE PARTITIONING STRATEGY
WITH TWO GENE REGULATION MODELS

To test the accuracy of the hybrid method with the new
partitioning strategy, we apply it to two gene regulation mod-
els. Their diagrams are shown in Figure 8.

The first test case is a negative feedback model. The reac-
tions are given in Table VI. In this model, a protein p regulates
its own expression by forming a homodimer (p2), which binds
to the promotor site of its own gene and inactivates gene ex-
pression. The average populations are set at typical values in
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1000 1050 1100 1150 1200 1250 1300 1350 1400
0

2

4

6

8

10

12

14

16

molecule number of pTotal

tim
e 

fr
ac

tio
n 

(%
)

SSA
Hybrid 1
Hybrid 2

FIG. 12. Distribution of pTotal population for the steady state model.

cells. The reaction rates are chosen so that the model contains
reactions in four regions.

We simulate the system with three methods: the SSA,
the hybrid method with only reactions in region I in the SSA
regime, and the hybrid method with only reactions in region
IV in the ODE regime. Note that for all methods, the distribu-
tions of the mRNA populations are similar (Figure 9). There
are noticeable differences for the population distributions of
the protein p (Figure 10) and its dimer p2 (Figure 11). But, the
differences are actually typical for species with medium pop-
ulations simulated by the hybrid method. We can see much
higher differences for p2 as its population is one tenth that of
p. Note that the mean values for both p and p2 are quite close
to the SSA results.

In many cases, the total protein level is more important
than counts for phosphorylation level subpopulations, as the
total is actually measured in wet-lab experiments. If we com-
pare the distributions of the total protein population level pTo-
tal = p + 2*p2, they are much closer (Figure 12).
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To determine how errors in protein level affect the accu-
racy of interesting system behaviors, we examined a second
test case, an oscillation model. This model is an extension
to the steady-state model. In this model, as before, protein
p forms a homodimer, p2, which binds to the promotor re-
gion of the gene encoding p and inhibits the gene’s expres-
sion. In addition, p2 binds to and inhibits the enzyme E that
catalyzes the degradation of protein p. For a suitable choice of
parameter values, this system exhibits spontaneous limit cycle
oscillations37 (see Figures 13 and 14). The diagram is shown
in Figure 8 and reactions are shown in Table VII. In the par-
titioning, species E has a relatively small population and the
pair of reactions between E and p2 are relatively slow. But,
they are still put into the ODE regime, and we expect some
errors to result. The important characteristic for this system
is the period of the oscillation. The statistics of the period by
different simulation methods are shown in Table VIII. We can
see that the hybrid method with the new partitioning strategy
works well for this model. With the original partitioning strat-
egy, the accuracy of the hybrid method is almost the same as

TABLE VII. Reactions of the oscillation model.

Rate Average no. Average Reaction
Reaction constant of molecules propensity region

g → g + m 0.5 6.3 0.3 I
m → m + p 60 1439 375 IV
p → φ 0.05 1439 72 IV
m → φ 0.05 6.3 0.3 I
p + p → p2 0.001 120 4799 IV
p2 → p + p 40 120 4780 IV
p2 + g → gi 40 0.4 459 III
gi → p2 + g 1000 0.4 402 III
E + p2 → Ep2 0.4 23 22 IV
Ep2 → E + p2 0.5 23 23 IV
E + p → Ep 0.2 23 602 IV
Ep → E + p 10 23 300 IV
Ep → E 10 23 300 IV

TABLE VIII. Statistics for the period of oscillation for different methods
simulating the stochastic oscillation model.

Simulation methods Mean CV CPU time(s)

SSA 123 37% 37
Hybrid method with the new
partitioning strategy

126 41% 0.8

Hybrid method with the
original partitioning strategy

126 40% 40

with the new partitioning strategy, but the CPU time is even
greater than for the SSA. That is usually because of frequent
firings of reactions in region III.
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