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Abstract
The growing size and complexity of molecular network models makes them increasingly difficult to construct and under-
stand. Modifying a model that consists of tens of reactions is no easy task. Attempting the same on a model containing
hundreds of reactions can seem nearly impossible. We present the JigCell Model Connector, a software tool that sup-
ports large-scale molecular network modeling. Our approach to developing large models is to combine smaller models,
making the result easier to comprehend. At the base, the smaller models (called modules) are defined by small collec-
tions of reactions. Modules connect together to form larger modules through clearly defined interfaces, called ports. In
this work, we enhance the port concept by defining three types of ports. An output port is linked to an internal compo-
nent that will send a value. An input port is linked to an internal component that will receive a value. An equivalence port
is linked to an internal component that will both receive and send values. Not all modules connect together in the same
way; therefore, multiple connection options need to exist.
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1. Introduction

The functions of a living cell are controlled by macromo-

lecular interactions. These complex interactions between

genes and proteins can be mapped as regulatory networks.

In an effort to understand the dynamic properties of these

networks, mathematical models of the biochemical reac-

tions are often constructed.1–3 During this process, mode-

lers have the difficult task of specifying reaction details

between species connected in these complex regulatory

networks.

Modeling a system accurately is an iterative process

involving frequent changes to the underlying network.4

Once a model is drafted, the equations can be analyzed and

simulated to describe the dynamical behavior of the regula-

tory network.2 These computational results can then be

compared to existing experimental data, and if inconsisten-

cies arise, the model can be modified. Once a model has

been tested against existing experimental data, it can be

used to make predictions that might guide the direction of

future experiments.5 If further experiments uncover incon-

sistencies, then the model can be modified again.

As molecular biologists discover more information

about how gene and protein interactions affect cell

physiology, the size and complexity of the mathematical

models tend to grow. Constructing these models is becom-

ing more difficult. Historically, modelers have been lim-

ited in the scope of the behavior being modeled by the

complexity of larger models. For these reasons, modelers

have a need to deal with increasingly complex models,

which require new modeling approaches.

Hierarchical model composition is a modeling tech-

nique where, instead of building one large, complex

model, smaller models are combined together to form a

larger model. By breaking a complex system into smaller

parts, with clearly defined interactions between the parts,

it can be more easily understood.

In this paper we present the JigCell Model Connector

(JCMC), a software tool to support hierarchical model
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composition. In our tool, the smallest models (called mod-

ules) are defined by small collections of reactions.

Modules connect together to form larger modules through

clearly defined interfaces, called ports. Modelers are able

to regulate external access to internal components of a

module by utilizing ports. We implement three port types

that allow modules to connect in different ways. An output

port is linked to an internal component that will send a

value to an external reference. An input port is linked to

an internal component that will receive a value from an

external reference. An equivalence port is linked to an

internal component that will both receive and send val-

ues from an external reference. Once a model is created

in the JCMC, it can be exported to one of the existing

standard model formats, at which point the model can be

simulated and analyzed using other tools. Our goal is to

develop large models in a modular way, making the

result easier to comprehend. A major contribution of this

paper over prior efforts to define systems for building

models in a modular fashion are new port and node con-

structs that allow modules to connect in different ways

using the JCMC.

The remainder of this paper is organized as follows.

First, previous work on hierarchical model composition

standards and tools is reviewed. Next, we present the

JCMC environment and its components. Then the different

types of ports and their impact on a model are discussed.

Last, best practices for constructing hierarchical models,

conclusions, and future work are presented in the form of

a case study.

2. Background

In this section, we discuss the basic concepts of hierarchi-

cal modeling, and a standard format that enables the shar-

ing of models. We also review previous attempts to create

hierarchical modeling tools.

2.1. Hierarchical model composition

Randhawa and colleagues6–8 describe model composition

as another approach to create large models from smaller

models. The smaller models become submodels of a larger

composed model. Composition involves describing how

components from different submodels interact with one

another, without changing the inner workings of each sub-

model. The interaction descriptions are stored in the over-

arching composed model. Here, large models are simply

collections of submodels, and can be organized in a hier-

archical fashion. Unlike fusion, model composition is a

reversible process. If the interaction descriptions are

removed, then the original submodels can be recovered.

Randhawa and colleagues8,9 characterize model aggre-

gation as a restricted form of model composition. Here,

they define a module as a collection of model components.

A module also includes a specification for predetermined

ports. A port is a link to an internal model component, such

as a species or parameter. Therefore, a module is a submo-

del with ports. The ports of a module form an interface,

which only allows access to specific components within

the module. The process of grouping model components

and assigning ports is referred to as modularization, as

shown in Figure 1. The difference between model compo-

sition and model aggregation lies in the restrictions placed

on access to the internals of the modules. In model compo-

sition, any component of a submodel could be referenced

in a larger composed model. The lack of information-

hiding interfaces is considered a white-box coupling

approach.10 In model aggregation, only a component

linked to a port can be referenced in a larger composed

model. Incorporating information-hiding interfaces is con-

sidered a black-box coupling approach.10 Modules are then

connected together by their interface ports. With model

aggregation, modelers can build larger models in a con-

trolled manner.

Randhawa and colleagues6,8,9 also presented the con-

cept of model flattening. Model flattening converts com-

posed or aggregated models to their ‘‘flattened versions.’’

The interaction details of the composed or aggregated

models are used as instructions during the flattening pro-

cess. The result is a single large (flat) model, which is

equivalent to fusing the submodels. The flat model is in a

standard format that can be read by existing software tools

for the purpose of running simulations and further analy-

sis. The flattening process loses the hierarchical and other

relationships between the various modules, yielding a set

of reaction equations.

Figure 1. Model aggregation.
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2.2. The SBML standard

Systems Biology Markup Language (SBML) is a format

that represents systems biology models electronically. Such

a standard allows for the sharing and collaboration of mod-

els. SBML Level 111 was introduced in 2001. A model

defined in SBML can consist of many components, such as

compartments, species, reactions, and parameters. The inter-

actions between components in the model are also defined

in SBML. SBML is not designed with the goal of being an

easily human-readable format. Modelers are not expected to

write their models by hand in SBML. Instead, software tools

are expected to read and write the format.

Since SBML supports the concept of defining models

as consisting of many components, it already includes

many of the features necessary for hierarchical modeling.

For those hierarchical modeling features that do not exist

within the SBML standard, extra information about a com-

ponent can be stored in annotations. Annotations can be

thought of as comments in an SBML file. These comments

can be associated with any SBML component, such as a

reaction, species, or parameter. Software that processes

standard SBML models can also be augmented to process

this additional information carried in the annotations.

Therefore, annotations can be used by software developers

to include application-specific data.

The latest version of SBML, Level 3 Version 1 Core,12

was released in 2010. This version of SBML incorporates

new features that support hierarchical model definitions.

Such feature extensions are referred to as packages. Two

SBML packages relevant to component-based modeling,

comp and layout, are described next.

2.2.1. The SBML comp package. The latest version of the

SBML comp package13 was released in 2013. This pack-

age allows instances of models to be incorporated as sub-

models within a model. The model structure is extended to

include a list of submodels and a list of ports. A submodel

is an instance of a model definition, which in turn is a

complete, self-contained model. Model definitions (instan-

tiated as submodels) are located either in the list of internal

model definitions or the list of external model definitions.

An internal model definition is stored within the SBML

file. An external model definition is a placeholder that spe-

cifies the location of an external file containing the model

definition. This external file can be on the local machine

or available on the internet. Ports allow models to interact

with other models through a designated interface. A port

references some component within the model that is being

explicitly exposed, such as a species or parameter. These

extended features of comp enable hierarchical model com-

position in SBML.

2.2.2. The SBML layout package. The latest version of the

SBML layout package14 was released in 2013. The layout

package allows components of a model to be represented

graphically, along with their positions. To do so, the

model structure is extended to include a list of layouts. A

layout can store information specifying the graphics repre-

senting some or all components of the SBML model.

These graphics are referred to as glyphs in the layout

package. A compartment, species, or reaction can be rep-

resented by a CompartmentGlyph, SpeciesGlyph, or

ReactionGlyph, respectively. A GeneralGlyph can be used

to represent parts of a model that are not specified in the

Level 3 Version 1 Core, such as a submodel from comp. A

glyph stores information pertaining to the location and

dimension of a graphical object. A glyph does not include

information describing the shape, color, or style of a gra-

phical object; it is left up to the software tool reading the

layout to display such details. These extended features of

layout enable model visualization in SBML, and these fea-

tures are used heavily by JCMC.

2.3. Related tools

There are numerous software tools available for the model-

ing and simulation of molecular networks. For example,

Antimony is a model definition language that can be used

to create, import, and combine models in a modular way.15

However, Antimony is text-based and only provides lim-

ited support for importing/exporting models using SBML

comp.

Similar to Antimony, Genetic Engineering of living

Cells (GEC) is a text-based formal language.16 GEC

allows interactions between proteins and genes to be

expressed in a logical manner. GEC programs can be used

to create models in a modular way. However, GEC does

not support exporting models using SBML comp.

COPASI is a tool used to model, simulate, and analyze

biochemical networks.17 Its graphical user interface offers

many features such as stochastic and deterministic simula-

tion methods, parameter estimation, and data visualization.

COPASI is an excellent tool for creating a single model,

and it provides support for importing/exporting standard

SBML (Level 3). However, COPASI lacks features to sup-

port hierarchical modeling and SBML comp.

TinkerCell is a tool that supports hierarchical model-

ing.18 The graphical user interface lets users create mod-

ules that can be connected together to form larger models.

TinkerCell does not have a notion of port types and does

not support SBML output.

The JigCell suite of tools can be used to model, simu-

late, and analyze biochemical networks.7,9,19–23 Previous

iterations of JigCell have included a Model Builder,

Aggregation Connector, Run Manager, Comparator, and

Parameter Estimation Toolkit. The Model Builder is used

to create and edit reactions, species, and other model prop-

erties in a tabular format. The Aggregation Connector is

used to combine models in a modular way. The Run

Jones et al. 995



Manager and Parameter Estimation Toolkit are used to

define simulation properties and determine unknown para-

meter values within the model. The Comparator is used to

compare the model simulations with experimental results.

The JigCell suite provides support for importing/exporting

standard SBML (Level 2).

JigCell Multistate Model Builder (JC-MSMB) is a tool

that supports the modeling of biochemical networks.24 The

graphical user interface builds on the tabular spreadsheet

format used by Vass and colleagues.22,23 JC-MSMB

reduces the complexity of model creation by introducing a

new syntax to describe multistate species. This syntax

requires fewer reactions to represent complex molecular

systems. The tool has many editing support features such

as flexible autocompletion and consistency checks to assist

users during the model-creation process. It provides sup-

port for importing/exporting SBML (Level 3). However,

JC-MSMB lacks features to support hierarchical modeling

and SBML comp.

The current work on JCMC can be viewed as a new

generation beyond the JigCell Aggregation Connector,

working in connection with the JigCell Multistate Model

Builder.

iBioSim is a tool for the modeling, analysis, and design

of genetic circuits.25 In synthetic biology, genetic circuits

can be used to design and construct networks to imple-

ment a particular cellular function.26 Although primarily

designed for genetic circuits, it can be used to study biolo-

gical networks as well. Its graphical user interface can be

used to create, import, and combine models in a modular

way. iBioSim offers multiple simulation methods, model

analysis, and data visualization, along with support for

importing/exporting hierarchical models using SBML

comp. Both JigCell’s Aggregation Connector and iBioSim

offer support for SBML and hierarchical modeling.

However, JigCell lacks the features of different port types.

iBioSim does offer input and output port types, but does

not support equivalence ports.

2.4. Model simulation

Once a model has been created, it is typically used for

simulation and further analysis. There are multiple

approaches to simulate a hierarchical model. One option is

to first flatten the model. Once flattened, copies of all sub-

models have been instantiated and replacements and dele-

tions have been applied, the model is no longer in its

hierarchical form. After flattening, the model is simulated.

COPASI is an example of a tool that uses this approach.17

Another option is to simulate the model in its hierarchi-

cal form. One such algorithm is hSSA.27 Instead of instan-

tiating copies of each submodel, hSSA instantiates a

single copy of each unique submodel and re-uses them as

needed. Replacements and deletions are made as they are

encountered. iBioSim is an example of a tool that uses this

approach.25

3. JigCell Model Connector

We next describe the JCMC in detail. In order to better

understand the purpose and key features of the JCMC, it

helps to first have an overview of the system’s user inter-

face. At this point, the reader need not worry too much

about the underlying meaning of the various components

that are presented here. This will be discussed later.

3.1. Interface

The JCMC interface consists of three panels, shown in

Figure 2.

3.1.1. TreeView. The left panel contains the TreeView. This

displays the hierarchical relationships between components

of the model, somewhat like a traditional file folder dis-

play. An example is shown in Figure 3. A module can be

selected from the TreeView using the left mouse button,

and it will be highlighted. Double-clicks (using the left

mouse button) will expand/collapse the selected module.

After selecting a module, the user can add or remove sub-

modules (using the Module menu).

3.1.2. DrawingBoard. The right panel contains the

DrawingBoard. This displays the graphical view of a mod-

ule, its submodules, and any connections among them, as

shown in Figure 4. The currently loaded module is called

the container module. In Figure 4, the container module is

named RegulationExample. Submodules can be moved

Figure 2. Three panels and the menu bar.
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inside of the container module. In Figure 4, Cdh1 and

CycB are submodules. If ports exist, they are displayed on

the container module and submodules. Connections

between ports, visible variable nodes, and equivalence

nodes are also shown. Examples of these components are

presented in later sections.

3.1.3. ModelBuilder. The bottom panel is the ModelBuilder,

shown in Figure 5. The ModelBuilder in JCMC is actually

a version of the JC-MSMB,24 which was previously imple-

mented by our group. The version of JC-MSMB used by

JCMC is a subset of the complete model editor because

JCMC does not support multistate species. JC-MSMB has

a tabular spreadsheet interface that displays the details of a

module. Attributes such as reactions, species, parameters,

and events can be modified.

4. Components
4.1. Container module

The container module is the module currently loaded into

the DrawingBoard. The TreeView panel shows the con-

tainer module’s name in bold font. The ModelBuilder

panel displays the module definition for the container

module. A module definition contains a module’s detailed

information, such as reactions, species, parameters, and

events. The DrawingBoard displays the container module

and any submodules, ports, or connections in the module.

4.2. Submodule

A submodule is simply a module contained within another

module. The TreeView panel lists a submodule under the

container module to which it belongs. In the

DrawingBoard, a submodule can be moved and resized

within the bounds of its container module. A submodule’s

information is listed as:

\ Definition Name .

‘‘\ Submodule Name . ‘‘

Definition Name corresponds to the name of the mod-

ule definition. A module definition contains detailed infor-

mation, such as reactions, species, parameters, and events.

Submodule Name corresponds to the name of a specific

instantiation of the module definition. In Figure 4, submo-

dule Cdh1 is an instantiation of module definition

PhosDephos. Similarly, submodule CycB is an instantia-

tion of module definition SynDeg. A single module defini-

tion can be instantiated multiple times. We show examples

of this in later sections.

A submodule’s detailed information (reactions, species,

parameters, events, etc.) is not listed in the ModelBuilder

panel because the container module’s information is dis-

played instead. However, a submodule’s information can

be previewed in the ModelBuilder panel. Each submodule

has a button in the top left-hand corner. When this button

is clicked, the information for that submodule will be

Figure 3. TreeView.

Figure 4. DrawingBoard.

Figure 5. ModelBuilder.
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displayed in the ModelBuilder. An example is shown in

Figure 6. After the button for Cdh1 is clicked, the template

information for Cdh1 is displayed in the ModelBuilder

pane. Notice that the tables are grayed-out in Figure 6.

This is because the information is a preview only, and can-

not be modified. To modify the information, the user

would load the submodule as the container module.

Submodules can be added and removed using the

Module menu. Removing a submodule will remove the

selected module, all of its submodules, and any connec-

tions associated with other modules.

5. Technical contributions

As discussed in Section 2, Randhawa and colleagues8,9

define model aggregation as a restricted form of model

composition. With aggregation, modelers can regulate

external access to internal components of a module by

defining ports. A port allows an internal component to be

referenced in a larger composed model. Modules can then

be connected together by their interface ports to build

larger models in a controlled manner. However, not all

modules are the same. Internal components linked to ports

do not necessarily serve the same purpose for every mod-

ule. Not all modules connect together in the same way;

therefore, multiple connection options need to exist. Our

primary contribution to hierarchical modeling is a richer

variety of port types for connecting modules. In this sec-

tion, we present these different port and node constructs.

We also discuss how these connections can impact a

model.

5.1. Ports

Ports expose internal components of a module so that they

can be referenced from outside of that module. A port can

be linked to either a species or a module quantity. Once

created, the ports collectively form an interface to the

module, with external access to a module’s internal com-

ponents being regulated by the interface. Modules can be

connected together by their interfaces to build larger

models.

Previous software tools support ports,7,9,21 and ports are

a part of the SBML comp package.13 However, this prior

work treats all ports the same. Internal components linked

to ports do not necessarily serve the same purpose for

every module. When the port mechanism gives no infor-

mation as to how an internal component is used, modelers

have no way to discern a component’s purpose within a

module. So there exists a need for different port types.

The port types supported by JCMC are as follows.

An output port is linked to an internal component that

will send a value to an external reference. The component

linked to the port may be modified inside the module, but

the component is not meant to be modified outside the

module. Consider the scenario in which a species is

synthesized in a module and then used as a transcription

factor outside of the module. An output port is appropriate

because the species is not modified outside of the module.

A detailed example is presented in Section 6.1. Output

ports are represented as triangles on the edge of modules.

They are oriented so the arrowhead points out of the

module.

An input port is linked to an internal component that

will receive a value from an external reference. The com-

ponent linked to the port is not meant to be modified

within the module. Consider the scenario in which a rate

constant for a reaction within a module has a value deter-

mined outside of the module. An input port is appropriate

because the rate constant is only used in calculations for

the reaction, and not modified inside the module. A

detailed example is presented in Section 6.1. Input ports

are represented as triangles on the edge of modules. They

are oriented so the arrowhead points into the module.

An equivalence port is linked to an internal component

that will both receive and send values from an external ref-

erence. The component linked to the port may be modified

inside and outside the module. Consider the scenario in

which a species is synthesized in one module and phos-

phorylated in another module. An equivalence port is

appropriate because the species is modified in both mod-

ules. A detailed example is presented in Section 6.2. An

equivalence port is represented as a diamond on the edge

of a module.

In the DrawingBoard panel, ports are displayed on mod-

ule boundaries. In the ModelBuilder panel, ports are listed

under the Ports tab (shown in Figure 7). The list is popu-

lated with ports from the container module and ports from

any submodules in the container module. When a port is

selected in the DrawingBoard panel, the Ports tab is

Figure 6. Submodule information preview.

998 Simulation: Transactions of the Society for Modeling and Simulation International 94(11)



displayed and the corresponding port is highlighted in the

ModelBuilder panel. Each port has three properties:

� Ref Name: the species or module quantity refer-

enced by the port;
� Port Type: the type of port;
� Port Name: the name of the port.

Port additions or removals can only happen to the con-

tainer module. To modify the ports of a submodule, the

user must first load the submodule as the container

module.

5.2. Nodes

A node allows connections to occur between module ports.

The type of node used depends on the type of ports

connected.

5.2.1. Visible variable node. A visible variable node is auto-

matically created when a connection is made between

input or output ports of two modules. Figure 8 shows two

submodules after a connection has been made, a visible

variable was created, and the new variable was added in

the ModelBuilder panel. Another way to create a visible

variable node is to right-click the active module and select

‘‘Show Variable.’’ Once selected, a pop-up window will

appear with a drop-down box that contains a list of all the

species and module quantities in the module. The user will

select a variable and click ‘‘Add,’’ then a visible variable

node will be created in the DrawingBoard panel.

A visible variable node can have at most one incoming

connection. A single incoming connection lets the node

receive values. A visible variable node can have multiple

outgoing connections. The outgoing connections are used

to send values.

5.2.2. Equivalence node. An equivalence node is created

automatically when a connection is made between an

equivalence port and any other port in the DrawingBoard

panel. When created, the new variable is added in the

ModelBuilder panel. An equivalence node can have multi-

ple connections. Since values are both sent and received,

there is no distinction between incoming and outgoing

connections.

5.3. Connections

A set of connections link modules together. Connections

can occur between the ports of different modules, visible

variable nodes, and equivalence nodes. The rules for con-

nections are listed in Tables 1, 2, and 3.

A connection can be created by dragging a line from a

valid source to a valid target. Attempting to create an inva-

lid connection will result in a warning message, and no

connection will be created.

6. Port, node, and connection effects

In this section we explore the effect that different ports,

nodes, and connections have on a model. In the equation

notation used below, variables are represented by strings,

Figure 7. Ports tab. Figure 8. Visible variable created with a connection.

Table 1. Rules for submodule (source) to submodule (target)
connections

Target submodule port

Input Output Equivalence

Source Input Invalid Invalid Invalid
Output Valid Invalid Invalid
Equivalence Valid Invalid Valid
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multiplication is denoted by 3 , and differentiation by
d
dt
½name�. (Throughout this paper, the notation ½name�

refers to the concentration of species name.)

6.1. Input and output ports

We begin with a simple synthesis and degradation module.

Figure 9 shows how a synthesis and degradation mod-

ule would look in JCMC. The reactions are displayed in

the ModelBuilder panel at the bottom. The rate of synth-

esis is determined by rate constant k0 and transcription

factor F. The rate of degradation is determined by mass

action kinetics with rate constant k1. The dynamics of spe-

cies R in module SynDeg are as follows:

d

dt
½R�=(k03 ½F�)� (k13 ½R�): ð1Þ

Figure 9 also shows that module quantities k0 and k1

are connected to input ports. Because k0 and k1 are con-

nected to input ports, they can receive values from external

connections. Note that k0 and k1 are not modified within

the module SynDeg, they are only used for the computa-

tions of other variables.

Figure 10 shows a phosphorylation and dephosphoryla-

tion module in JCMC. The rate of phosphorylation is

determined by mass action kinetics with rate constant kp,

while the rate of dephosphorylation is determined by mass

action kinetics with rate constant kh. The species dynamics

of module PhosDephos are defined as follows:

d

dt
½S�= � (kp 3 ½S�)+ (kh 3 ½SP�), ð2Þ

d

dt
½SP�=(kp 3 ½S�)� (kh 3 ½SP�): ð3Þ

Figure 11 displays Model01, where S and R are submo-

dules. Submodule R is an instantiation of SynDeg, shown

in Figure 9. Submodule S is an instantiation of

PhosDephos, shown in Figure 10. Species TF, module

quantity ks, and module quantity gd are displayed as visi-

ble variable nodes. Submodule S has an output port linked

to species SP and submodule R has input ports linked to

species F, module quantity k0, and module quantity k1.

Node ks is connected to the k0 port on submodule R. This

means that k0 will receive the value of ks. To accomplish

this, k0 will be replaced by ks in submodule R. The same

will happen with k1 and gd. The replacement is not imme-

diate, but will occur when the entire model is flattened.

There is one connection from submodule S’s SP port to

node TF, and another from node TF to submodule R’s F

Table 2. Rules for container module (source) to submodule
connections (target)

Target submodule port

Input Output Equivalence

Source Input Valid Invalid Invalid
Output Invalid Invalid Invalid
Equivalence Valid Invalid Valid

Table 3. Rules for submodule (source) to container module
(target) connections

Target container module port

Input Output Equivalence

Source Input Invalid Invalid Invalid
Output Invalid Valid Invalid
Equivalence Invalid Invalid Valid

Figure 9. Synthesis and degradation module SynDeg.

Figure 10. Phosphorylation and dephosphorylation module
PhosDephos.
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port. Submodule S’s SP port will send its internal value to

node TF. Node TF will then send the value to submodule

R’s F port. Finally, the internal species F in submodule R

will receive the value. When the model is flattened, TF

will replace SP in submodule S and F in submodule R.

The species dynamics after flattening are as follows:

d

dt
½S�= � (kp 3 ½S�)+ (kh 3 ½TF�), ð4Þ

d

dt
½TF�=(kp 3 ½S�)� (kh 3 ½TF�), ð5Þ

d

dt
½R�=(ks 3 ½TF�)� (gd 3 ½R�): ð6Þ

Equation (3) has been replaced by Equation (5) and TF

has replaced SP in Equation (2) to form the updated

Equation (4). Similarly, TF has replaced F in Equation (1)

to form the updated Equation (6).

6.2. Equivalence port

Figure 12 shows the ModelBuilder panel for three different

modules.

Figure 12(a) shows the reaction details for the synthesis

and degradation of species X in module SynDeg. The rate

of synthesis is determined by ks and the rate of degrada-

tion is determined by mass action kinetics with rate con-

stant gd. The dynamics of species X in module SynDeg

are defined as follows:

d

dt
½X �= ks� (gd 3 ½X �): ð7Þ

Figure 12(b) shows the reaction details for the phos-

phorylation and dephosphorylation of species Y in module

PhosDephos. The rate of phosphorylation is determined by

mass action kinetics with rate constant kp. The rate of

dephosphorylation is determined by mass action kinetics

with rate constant kh. The species dynamics of module

PhosDephos are defined as follows:

d

dt
½Y �= � (kp 3 ½Y �)+ (kh 3 ½YP�), ð8Þ

d

dt
½YP�=(kp 3 ½Y �)� (kh 3 ½YP�): ð9Þ

Figure 12(c) shows the reaction details for the associa-

tion and dissociation of species Comp in module

AssocDissoc. The rate of association is determined by

mass action kinetics with rate constant ka. The rate of dis-

sociation is determined by mass action kinetics with rate

constant kd. The species dynamics of module AssocDissoc

are defined as follows:

d

dt
½Z�= � (ka 3 ½Z�3 ½W �)+ (kd 3 ½Comp�), ð10Þ

d

dt
½W �= � (ka 3 ½Z�3 ½W �)+ (kd 3 ½Comp�), ð11Þ

d

dt
½Comp�=(ka 3 ½Z�3 ½W �)� (kd 3 ½Comp�): ð12Þ

Figure 13 shows Model02, where X, Y, and Comp are

submodules. Submodule X is an instantiation of SynDeg,

submodule Y is an instantiation of PhosDephos, and sub-

module Comp is an instantiation of AssocDissoc. Species

A is displayed as an equivalence node. Submodule X has

an equivalence port linked to species X , submodule Y has

an equivalence port linked to species Y , and submodule

Comp has an equivalence port linked to species Z. Each of

these equivalence ports are connected to node A in

Model02. When the model is flattened for simulation, A

will replace X in submodule X, Y in submodule Y, and Z

in submodule Comp. The species dynamics after flattening

are as follows:

Figure 11. Output port example.

Figure 12. Module reaction information.
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d

dt
½YP�=(kp 3 ½A�)� (kh 3 ½YP�), ð13Þ

d

dt
½W �= � (ka 3 ½A�3 ½W �)+ (kd 3 ½Comp�), ð14Þ

d

dt
½Comp�=(ka 3 ½A�3 ½W �)� (kd 3 ½Comp�), ð15Þ

d
dt
½A�= ks� (gd 3 ½A�)

zfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflffl{
from X in submodule X

� (kp 3 ½A�)+ (kh 3 ½YP�)
zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{

from Y in submodule Y

� (ka 3 ½A�3 ½W �)+ (kd 3 ½Comp�)
zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{

from Z in submodule Comp

:

ð16Þ

Equation (13) is an updated version of Equation (9),

where A has replaced Y . Similarly, A has replaced Z in

Equations (11) and (12) to form the updated Equations

(14) and (15). Notice that Equation (16) is an aggregate of

Equations (7), (8), and (10). Since node A is connected to

equivalence ports, values are both sent and received, and

therefore information from each connection is kept.

6.3. SBML syntax

We discussed the SBML standard in Section 2.2. JCMC is

able to store the information that describes a hierarchical

model by using the SBML comp package. The submodules

in JCMC can be stored as model definitions within the

SBML file. In this section we explain how the port and

node constructs are stored in SBML.

6.3.1. Ports. Ports are included in the comp package.

However, the different port types introduced in Section

5.1 are not. In order to store this extra information in

SBML, we decided to use SBML annotations and Systems

Biology Ontology (SBO) terms.28 The annotation stores

the variable type and variable name by using the tags

vType and refName. The SBO term stores the port type.

SBO terms can be used and read by other software tools,

such as iBioSim.25

SBML Syntax in the Supplemental Material shows an

example of two ports using the comp package.

The layout package does not have a specific glyph to

represent ports. It does support a GraphicalObject, which

can be used to store general information about an object.

We decided to use GraphicalObjects combined with anno-

tations to describe the port layout. The GraphicalObject

stores the position of each port. The additional annotation

stores the port type, variable type, variable name, variable

id, and the name of the module in which the port is located.

SBML Syntax in the Supplemental Material shows the gra-

phical information for two ports using the layout package.

6.3.2. Nodes. Visible variable nodes and equivalence

nodes are not defined in the comp package. However, a

node always represents either a species or a module quan-

tity. Since both species and module quantities are present

in SBML, we include node information with an annota-

tion. SBML Syntax in the Supplemental Material shows

an example of a visible variable node ClbS and an equiva-

lence node ClbM .

The annotation stores the variable name and node type.

The layout package does have a SpeciesGlyph to repre-

sent species, but it does not have a specific glyph to repre-

sent module quantities. Since a node can be a species or a

module quantity, we decided to use GraphicalObjects com-

bined with annotations to describe their layout. SBML

Syntax in the Supplemental Material shows an example of

the graphical information for visible variable node ClbS

and equivalence node ClbM using the layout package.

Similar to ports, the GraphicalObject stores the position

of each node. The annotation stores the variable name and

variable type.

6.3.3. Connections. In SBML, there is no definition for a

connection. Instead, the comp package introduced the

notion of replacements. A replacement allows one compo-

nent to replace another. Replacements are the interaction

details used as instructions if the model is flattened. Most

connections in JCMC are represented as replacements in

SBML. All of our replacements are top-down, which

makes them easy to follow and they do not require any

rules for resolution. It is important to note that the top-

down approach applies to initial values as well. After flat-

tening, initial values may need to be reassigned before

simulation.

Figure 13. Equivalence port example.
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7. Case study

In this section, we will demonstrate the features of JCMC

by building a complex biological model. Barik and col-

leagues29 published a model of yeast cell-cycle regulation,

consisting of 58 species and 220 reactions. We will recon-

struct this model with a more efficient approach by utiliz-

ing modules. We will show how submodules connect

together and the role that ports play in the process.

7.1. Biological model

Figure 14 shows a wiring diagram of the biological model

from the work of Barik and colleagues.29 Species are

represented by the labeled shapes. Chemical reactions are

represented by solid arrows and enzymatic activities are

represented by dashed arrows. Reversible binding reac-

tions are represented by T-shaped arrows with balls on the

cross-bars. For clarification purposes, Figure 14 only dis-

plays some of the major regulatory interactions contained

in the model. For example, the synthesis and degradation

reactions for Whi5, SBF, Cdh1, Net1, Hbf, Hi5, and Ht1

are not shown.

The model by Barik and colleagues29 captures the

molecular controls of cell-cycle events, including the

initiation of DNA synthesis (by ClbS) and of mitosis (by

ClbM), and ‘‘exit’’ from mitosis, including cell division

(by Cdc14). When a mother cell divides, the volume of

the cell and the number of molecules of each chemical

species within the cell are evenly split between the two

resulting daughter cells. (For simplicity, we are ignoring

the fact that budding yeast cells divide asymmetrically.) In

the model, the event of cell division is triggered by ClbM.

When the concentration of ClbM drops below 12 nM, the

cell will divide evenly.

7.2. The hierarchical model

First, we will introduce a transcription and translation

module that will appear multiple times in our model. Next,

we will modularize the model (Figure 15) and build up

each module individually. Then, we will connect the mod-

ules together to form the final hierarchical model. Finally,

we will validate the hierarchical model by comparing

simulation results with the original model. In the following

descriptions, variables refer to the number of molecules.

7.2.1. Transcription and translation coupling. From Figure 14

we can see that some of the regulatory functions in the

model are similar. The mechanisms regulating ClbM,

ClbS, and Cln3 appear to follow the same pattern. The

synthesis of the protein is dependent upon the synthesis of

its mRNA. This is called transcription and translation cou-

pling. Since it occurs multiple times in the model, we can

build it as a reusable, generic module.

Figure 16 shows module TTCoupling, short for tran-

scription and translation coupling. The ModelBuilder panel

at the bottom displays the four reactions in the module that

describe the synthesis and degradation of mRNA and pro-

tein X. Module quantities ksm, gdm, ksx, and gdx are the

constants that determine the rates of the four reactions.

Protein X is linked to an output port and the rate constants

are linked to input ports. The ports allow external proteins

and rate constants to connect to the module and utilize the

interior transcription and translation reaction structure. We

will see how this is done in later sections.

There are also two more input ports for species V and

ClbM. These species are used to calculate when the con-

centration of ClbM falls below 12.5 nM, which is when

cell division occurs. Since V is the volume of the cell and

Figure 14. Model of cell-cycle control in budding yeast.29 Figure 15. Modular model of cell-cycle control in budding
yeast.
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ClbM is the number of ClbM molecules, they both must

be included to calculate the concentration of ClbM. When

the cell divides, most species are divided in half. To

accomplish this, an event is used. The event calculates the

concentration of ClbM to determine when the cell divides.

When the cell divides, the species numbers within the

module are reassigned appropriately. An event like this

occurs in most modules, which is why most modules

require V and ClbM . In the TTCoupling module, species

X and mRNA are reassigned to half their current values,

assuming that the protein and mRNA molecules are

divided equally between the two daughter cells.

7.2.2. ClbM regulation. Step 1 of the model will consist of

the interactions contained in area A of Figure 15.

The regulation of Cdh1 and ClbM play big roles in

step 1. Cdh1 has 1 unphosphorylated state as well as 10

phosphorylated states, for a total of 11 phosphorylation

states. In this model, only the unphosphorylated state of

Cdh1 is active. ClbM affects many parts of this model.

Figure 17 displays module Step01. Step01 contains

submodules Cdh1Reg and ClbMTT. Visible variable

nodes Cdh1 and .Cdh1Pt. receive connections from

Cdh1Reg’s output ports Cdh1a and Cdh1i. Cdh1 and

Cdh1Pt are used to calculate module quantity gdbmt. The

relationship between Cdh1, Cdh1Pt, and gdbmt is not

explicitly shown on the DrawingBoard. The calculation

defining gdbmt is viewable in the Module Quantities tab

of the ModelBuilder panel (not shown in the figure).

Visible variable nodes ksmbm, gdmbm, ksbmt, and gdbmt

connect the module quantities to ClbMTT’s input ports

ksm, gdm, ksx, and gdx. Visible variable node ClbM con-

nects the species to ports on both submodules as well as

module Step01. Node ClbM receives its value from sub-

module ClbMTT, where ClbM is regulated. Node ClbM

then sends its value to submodule Cdh1Reg, where ClbM

influences the phosphorylation of Cdh1. Node ClbM is

also connected to Step01’s output port ClbM , so it can be

referenced by other parts of the model. Step 01 has three

input ports connected to visible variable nodes. These

nodes are then connected to submodules, where their val-

ues can be used for calculations. Details for the submo-

dules in Step01 can be found in the Supplemental

Material.

7.2.3. Cdc14 regulation. Step 2 of the model will consist of

the interactions contained in area B of Figure 15. In step

2, the active phosphorylation states of Net1 combine with

Cdc14 to form the RENT complex. Ht1 causes depho-

sphorylation of both Net1 and RENT phosphorylated

states.

Figure 18 displays module Step02. Step02 contains

submodules Ht1Reg, Cdc14Reg, Net1Reg, and RENTReg.

Visible variable node Ht1 connects the species to three

different submodules. Node Ht1 receives a value from

submodule Ht1Reg, where it is regulated. Node Ht1 sends

its value to submodules Net1Reg and RENTReg, where it

promotes dephosphorylation. Equivalence nodes for each

of the Net1 phosphorylation states connect to Net1Reg

and RENTReg because the species are modified in both

submodules. Equivalence node Cdc14 connects to submo-

dules Cdc14Reg and RENTReg. Node Cdc14 also con-

nects to an output port on module Step02, so it can be

referenced by other parts of the model. Details for the sub-

modules in Step02 can be found in the Supplemental

Material.

7.2.4. SBF regulation. Step 3 of the model will consist of the

interactions contained in area C of Figure 15. In step 3, the

active phosphorylation states of SBF and Whi5 combine

to form the Cmp complex. Hi5 is involved with the

Figure 16. Transcription and translation coupling module
TTCoupling.

Figure 17. Step01 module in JCMC.
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dephosphorylation of Whi5 and Cmp, while Hbf is

involved with the dephosphorylation of SBF.
Figure 19 displays module Step03. Step03 contains

submodules Hi5Reg, SBFReg, Whi5Reg, and CmpReg.

Visible variable node Hi5 connects the species to three

different submodules. Node Hi5 receives a value from

submodule Hi5Reg, where it is regulated. Node Hi5 sends

its value to submodules Whi5Reg and CmpReg, where it

promotes dephosphorylation. Equivalence nodes for each

of the Whi5 phosphorylation states connect to Whi5Reg

and CmpReg because the species are modified in both

submodules. Equivalence node SBF connects to submo-

dules SBFReg and CmpReg. Node SBF also connects to

an output port on module Step03, so it can be referenced

by other parts of the model. Step 03 has five input ports

connected to visible variable nodes. These nodes are then

connected to different submodules, where their values can

be used for calculations. Details for the submodules in

Step03 can be found in the Supplemental Material.

7.2.5. Final model. We have created all of the modules nec-

essary for our model, so now it is time to put them

together. A JCMC user would start by importing all of the

modules we have discussed. After the modules are

imported, the CellCycle model contains submodules

Step01, Step02, Step03, ClbSReg, and Cln3Reg.

Figure 20 displays the completed CellCycle model.

Visible variable node ClbS connects the species to three

submodules. Node ClbS receives a value from submodule

ClbSReg, where it is regulated. Node ClbS sends its value

to submodules Step01 and Step03, where it promotes phos-

phorylation. Visible variable node Cdc14 connects the spe-

cies to three submodules as well. Node Cdc14 receives a

value from submodule Step02, where it is regulated and

part of the RENT complex. Node Cdc14 sends its value to

submodules Step01 and Step03, where it promotes depho-

sphorylation. Visible variable node Cln3 connects the spe-

cies to two submodules. Node Cln3 receives a value from

submodule Cln3Reg, where it is regulated. Node Cln3

sends its value to submodule Step03, where it promotes

phosphorylation. Visible variable node SBF connects the

species to two submodules. Node SBF receives a value

from submodule Step03, where it is regulated and part of

the Cmp complex. Node SBF sends its value to submodule

ClbSReg, where it promotes ClbS transcription. Visible

variables nodes ClbM and V are connected to each of the

submodules through either input or output ports. ClbM

and V are present in every submodule because their values

are used to calculate when cell division occurs.

7.2.6. Simulation results. To validate the hierarchical

model, we compared its simulation results with results

from the original model. Figure 21 displays the two model

simulations.

We exported the hierarchical model into SBML format

with the comp package using JCMC. Since the original

Figure 18. Step02 module in JCMC.

Figure 19. Step03 module in JCMC.

Figure 20. Final CellCycle model in JCMC.
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model is a non-hierarchical model, we decided to use the

software tool COPASI to flatten and simulate the hierarch-

ical model.17 COPASI was able to flatten the model by fol-

lowing the module interaction details stored with SBML

comp. Parameter values and initial concentrations were set

as described by Barik and colleagues.29 We compared the

flattened hierarchical model to the deterministic version of

the original model, in which the cell divides symmetri-

cally. The simulation results from the flattened hierarchical

model in Figure 21(b) match the results from the original

model in Figure 21(a). This was verified by confirming

that the time series simulation data from both models were

identical.

8. Conclusions and future work

When building a mathematical model, templates can pro-

vide a compact and expressive way to re-use model com-

ponents. A template is characterized as a generic module

definition. Templates do not hold information related to

one specific species. Instead, they contain general molecu-

lar mechanisms that are common in the regulatory net-

work. A good example is the transcription and translation

coupling module from the case study, shown in Figure 16.

Here, species X is linked to an output port and the rate

constants for the reactions are all linked to input ports.

The ports let external entities utilize the interior transcrip-

tion and translation reaction structure of the module. A

template can be instantiated multiple times to describe the

molecular behavior of different species without needing to

be modified. The desired species and rate constants can be

connected to the appropriate ports. This is done with

ClbM , ClbS, and Cln3 in the case study. Alternatively, we

could have created individual module definitions for

ClbM , ClbS, and Cln3. In this case, each module defini-

tion would have contained the same reaction structure and

we would have needed to write 12 repetitive reactions.

Using a template allowed us to avoid such inefficiencies.

The ability to test a model is important, and frequent

testing should occur during the model-building process. In

software engineering, development testing ensures compo-

nents are correct as they are developed.30 Each component

is tested individually before it is added to the system. This

allows errors to be discovered, and hopefully fixed, early in

development. A similar approach should be taken when

building a mathematical model. As modules are created,

their inner reaction structures can be verified using simula-

tion tools such as COPASI.17 As modules are connected

together, their connections can be verified by checking the

resulting equations. These tests should be done throughout

the model-building process. Waiting until the end to test

can make it extremely difficult to find the cause of an error.

As molecular network models continue to grow in size

and complexity, traditional modeling practices are

becoming obsolete. Building complex models in a con-

trolled, organized manner is important. Without proper

organization, complex models become difficult to under-

stand. In order to construct and comprehend such models,

we must evolve our modeling approach. In this paper, we

have reviewed improved modeling approaches related to

hierarchical model composition, along with software stan-

dards that support this modeling approach. We proposed

enhancements to the way modules interact in model aggre-

gation. We introduced new port and node constructs that

enable multiple connection options for modules. We also

described how different connections can impact a model.

Our tool that supports hierarchical modeling is named

the JigCell Model Connector (JCMC). We described the

JCMC interface and explained how the components of a

hierarchical model are represented. We detailed how input,

output, and equivalence ports form the module interface.

We also explained how visible variable and equivalence

nodes are utilized in JCMC. Finally, we demonstrated the

benefits of hierarchical modeling with JCMC by recon-

structing a complex biological model in a modular fashion.

A possible enhancement to the JCMC would be to

incorporate multistate modeling. Currently, the JCMC only

builds models with single-state species. Multistate model-

ing can drastically reduce the size of models containing

species that have multiple states. Adding this enhancement

to JCMC would give modelers the opportunity to create

complex multistate models by connecting smaller submo-

dules together.

Another possible enhancement to the JCMC would be

to let any model component link to a port. Currently,

JCMC only links species and module quantities to ports.

SBML comp allows any model component to link to a

port. Adding this feature to JCMC would allow for the

import and export of reactions, events, and other model

components between modules.
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