
J Glob Optim (2008) 40:719–738
DOI 10.1007/s10898-007-9273-7

Deterministic parallel global parameter estimation
for a model of the budding yeast cell cycle

Thomas D. Panning · Layne T. Watson ·
Nicholas A. Allen · Katherine C. Chen ·
Clifford A. Shaffer · John J. Tyson

Received: 13 October 2006 / Accepted: 15 December 2007 / Published online: 12 February 2008
© Springer Science+Business Media, LLC. 2008

Abstract Two parallel deterministic direct search algorithms are combined to find
improved parameters for a system of differential equations designed to simulate the cell
cycle of budding yeast. Comparing the model simulation results to experimental data is diffi-
cult because most of the experimental data is qualitative rather than quantitative. An algorithm
to convert simulation results to mutant phenotypes is presented. Vectors of the 143 parame-
ters defining the differential equation model are rated by a discontinuous objective function.
Parallel results on a 2200 processor supercomputer are presented for a global optimization
algorithm, DIRECT, a local optimization algorithm, MADS, and a hybrid of the two.

Keywords DIRECT (DIviding RECTangles) algorithm · Direct search · MADS (Mesh
Adaptive Direct Search) algorithm · Computational biology

1 Introduction

Molecular cell biology describes how cells convert genes into behavior. This description
includes how a cell creates proteins from genes, how those proteins interact, and how net-
works of interacting proteins determine physiological characteristics of the cell. The central
biological question addressed here is how protein interactions regulate the cell cycle of bud-
ding yeast (Saccharomyces cerevisiae).

The budding yeast cell cycle [12–14] consists of four phases (G1, S, G2, M), with cell divi-
sion occurring in the final phase. A newborn cell starts in G1 phase (unreplicated DNA), during
which time it grows to a sufficiently large size to warrant a new round of DNA synthesis

T. D. Panning · N. A. Allen · K. C. Chen · C. A. Shaffer · J. J. Tyson
Departments of Computer Science and Biological Sciences, Virginia Polytechnic Institute and State
University, Blacksburg, VA 24061, USA

L. T. Watson (B)
Departments of Computer Science and Mathematics, Virginia Polytechnic Institute and State University,
Blacksburg, VA 24061, USA
e-mail: ltw@ieee.org

123

720 J Glob Optim (2008) 40:719–738

(S phase). After DNA synthesis has completed, the cell passes briefly through G2 phase
(replicated DNA) and then enters M phase (mitosis, where the two copies of each DNA
molecule are separated and the cell divides, creating two new cells that are in G1 phase).

The protein interactions that govern these cell cycle events are modeled using differential
equations that describe the rate at which each protein concentration changes. In general, the
rate of change of the concentration of protein A is

synthesis − degradation − binding + dissociation − inactivation + activation,

where “synthesis” is the rate at which new protein A molecules are synthesized from amino
acids (which depends on the concentration of active messenger RNA molecules for a partic-
ular protein), “degradation” is the rate at which protein A is broken down into amino acids
and polypeptide fragments (which depends on the activity of specific proteolytic enzymes),
“binding” is the rate at which protein A combines with other molecules to form distinct
molecular complexes, “dissociation” is the rate at which these complexes break apart, “inac-
tivation” is the rate at which certain post-translational modifications (e.g., phosphorylation)
of protein A are made, and “activation” is the rate at which these modifications are reversed
(e.g., dephosphorylation). Each of these rates is itself a function of the concentrations of the
interacting species in the network. For example,

synthesis = k1[transcription factor],

degradation = k2[proteolytic enzyme][A],

binding = k3[A][B], where B is a binding partner,

dissociation = k4[AB],

inactivation = k5[kinase][A]

J5 + [A] ,

activation = k6[phosphatase][Ap]
J6 + [Ap] , where Apis the phosphorylated form of A.

In these rate laws, [A] is the concentration of protein A, [AB] is the concentration of the
compound that is created when proteins A and B bind together, [A][B] is the concentration
of A times the concentration of B, the ks are rate constants, and the J s are Michaelis con-
stants. Other differential equations must be used to determine the temporal dynamics of the
concentrations of the “transcription factor,” “proteolytic enzyme,” “kinase,” etc.

The budding yeast cell cycle model consists of 36 such differential equations for two
classes of variables: regulatory proteins and physiological “flags.” The regulatory proteins
are triggers for specific events of the budding yeast cell cycle: Cln2 triggers budding, Clb5
triggers DNA synthesis, Clb2 drives cells into mitosis, and Esp1 drives cells out of mito-
sis and back to G1. The physiological “flags” are dummy variables that track the strength
of these trigger proteins. For example, “BUD” is an integral of the activity of Cln2; when
BUD = 1, a new bud is initiated. “ORI,” an integral of [Clb5], represents the state of “origins
of replication.” When ORI = 1 (“fired” origins), DNA synthesis is initiated; at cell division,
when [Clb2]+ [Clb5] drops below a threshold level, ORI is reset to zero (“licensed” origins).
Finally, “SPN” represents the alignment of replicated chromosomes on the mitotic spindle.
SPN is driven by Clb2 activity; i.e., SPN is an integral of [Clb2].

In the budding yeast model there are 143 rate constant parameters (ks, J s, etc.). In some
cases, these parameters can be calculated directly from laboratory experiments (e.g., appar-
ent protein half-lives), but most parameters are difficult to obtain directly from experimenta-
tion. Normally, modelers determine the remaining parameters by making educated guesses,

123

J Glob Optim (2008) 40:719–738 721

solving the differential equations numerically, comparing the simulation results with labora-
tory data, and then refining their guesses. (Modelers call this process “parameter twiddling”
[1].) For the budding yeast cell cycle, the laboratory data consists of observed phenotypes
of more than 100 mutant yeast strains constructed by disabling and/or over-expressing the
genes that encode the proteins of the regulatory network.

Although parameter twiddling is extremely tedious, it was used to obtain a parameter vec-
tor (s1, s2, . . . , s143) for which the model’s predictions are consistent with almost all of the
budding yeast mutants being modeled. Obviously, the modelers would prefer a method that
allows them to spend more time working on the model and less time twiddling parameters.
In addition, a person can only keep track of a few parameters at one time, which makes it
easy for him or her to unwittingly miss a portion of the parameter space. For these reasons,
modelers would prefer to use a tool that determines “good” parameters automatically, quickly
and accurately.

Section 2 describes the biological problem in some detail. Section 3 formulates a dis-
continuous objective function, reflecting biological criteria for an acceptable model. Two
deterministic algorithms, DIRECT and MADS, that are applicable to global parameter esti-
mation, are briefly described in Sect. 4. Numerical results on the supercomputer System X
(a 2200 processor cluster) are given in Sect. 5. Parallel efficiency and scalability are impor-
tant issues to be addressed separately—the emphasis here is on the biological problem, the
discontinuous objective function formulation, and the practical applicability of DIRECT and
MADS to such optimization problems.

Throughout this paper, the observed phenotype refers to the phenotype that was recorded
in a laboratory experiment. The predicted phenotype refers to the phenotype that the math-
ematical model (with its associated parameters) predicts. The wild type is the normal strain
of an organism. The mutant strains have genetic changes that make them behave differently
from the wild type in some way.

2 Observed and predicted phenotypes

Experimental biologists have studied many budding yeast mutants to learn about the cell
cycle regulatory system. Of these mutants, 115 were chosen to model (see Appendix A).
A model of budding yeast can be considered acceptable only if it is able to duplicate the
behavior of most of these mutants. (It would be too much to expect a model to account
for all the “observations” because of lingering uncertainties about the reaction network and
inevitable mistakes in phenotyping mutants.) When the model is used to simulate a mutant,
the parameter vector can be changed only in ways that are dictated by the genetic changes in
the mutant. Consider the hypothetical proteins A and B presented in the previous section: if
a mutant had a modified form of B that did not bind to A, then in the parameter vector for
that mutant, k3 would be set to zero and all the other parameters would be kept at the wild
type values.

When comparing the model to the experimental data, it is important to realize that much
of the data from laboratory experiments is qualitative. Such data is of the form “the cell
is viable but considerably larger than wild type cells” or “the cell arrests in G1 phase and
eventually dies.” The quantitative data that is available (e.g., duration of G1 phase, cell
mass at division) is generally imprecise. With all these uncertainties, there may be many,
clustered parameter vectors that allow the model to reproduce the experimental data suffi-
ciently well.

123

722 J Glob Optim (2008) 40:719–738

2.1 Rules of viability

To compare solutions of the differential equations with experimental data, it is necessary to
predict cell cycle properties from a simulation of regulatory protein dynamics. Viability is
determined by four rules:

1. The modeled cell must execute the following events in order, or else the modeled cell is
considered inviable:
(a). DNA licensed for replication (modeled by a drop in [Clb2] + [Clb5] below Kez2);
(b). start of DNA synthesis (due to a subsequent rise in [Clb2]+ [Clb5], causing [ORI]

to increase above one) before a wild-type cell in the same medium would divide
twice;

(c). alignment of DNA copies (due to a rise in [Clb2], causing [SPN] to increase above
one);

(d). separation of DNA copies (modeled by [Esp1] increasing above 0.1, due to Pds1
proteolysis at anaphase);

(e). cellular division (modeled by [Clb2] dropping below a threshold Kez).
2. The cell is inviable if division occurs in an “unbudded cell” (i.e., if [BUD] does not reach

the value 0.8 before event (e) occurs).
3. The cell cycle should be stable, i.e., the squared relative differences of the masses and

G1 phase durations in the last two cycles should both be less than 0.05.
4. Lastly, the modeled cell is considered inviable if cell mass at division is greater than four

times or less than one-fourth times the steady-state mass at division of the wild type in
the same medium.

As mentioned in Sect. 1, the physiological flags are reset when certain events (a–e) occur.
For a complete description of the resetting rules, see [5].

The viability rules are used by an algorithm [2,3] (called a transform) that outputs a phe-
notype from a solution of the differential equations. The transform keeps track of what stage
the cell is in, where the stages are demarcated by the events (a–e) above. The first stage is
unlicensed, which ends when the first event, origin relicensing, occurs. The other four stages
are, in chronological order, licensed, fired, aligned, and separated. When the simulated cell
is in the separated stage, cellular division signals the transition back to the unlicensed stage.
The relations among the stages, events, and biological phases of the cell are shown in Fig. 1.
If one of the rules of viability is broken, the transform sets an error flag and records the stage
when the error occurred and the number of cycles (i.e., cell divisions) completed from the
time when the mutation was expressed to the time when the cell arrested.

Fig. 1 The five stages of the cell cycle, delineated by the events described in the first rule of viability. The
four biological phases of the cell are above the stages, and two of the phases within M phase are shown below
their corresponding stages

123

J Glob Optim (2008) 40:719–738 723

2.2 Initial conditions

In the experimental data set, many of the mutations are conditional, that is, the mutant cells
when grown under “normal” conditions (say, glucose medium at room temperature) behave
like wild-type cells, but when grown under “restrictive” conditions (say, galactose medium
or elevated temperature) the cells express the genetic mutation and the aberrant phenotype.
To model this situation at sample points in parameter space, start a “wild-type” simulation
from arbitrary (but reasonable) initial conditions and integrate the differential equations for
two full cycles, in order to wash out any effects of the initial conditions. Then record the
state of the control system just after origin relicensing (see Fig. 1) at the beginning of the
third cycle. These recorded values are used as initial conditions for simulating a steady state
wild-type cell and for simulating each of the mutants.

3 Formulation as a discontinuous minimization problem

The objective function takes the observed phenotype and predicted phenotype for all of the
mutants and computes a nonnegative score. Zero indicates a perfect match and larger num-
bers indicate increasingly worse matches. The ensuing discussion uses the symbol O for
observed phenotype values and P for predicted phenotype values.

A budding yeast phenotype for a single mutant is represented by a six-tuple (v, g, m, a,

t, c), where the viability v ∈ {viable, inviable}, the real number g > 0 is the steady state
length of the G1 phase in minutes, the real number m > 0 is the steady state mass at division
expressed as a multiple of the wild type’s steady state mass at division in the same medium
(e.g., glucose or galactose), the stage when arrest occurs is

a ∈ A = {unlicensed, licensed, fired, aligned, separated},

the positive integer t is the arrest type (e.g., if events occur in improper order), and the nonneg-
ative integer c is the number of successful cycles completed. Arrest types cannot be compared
unless the stage of arrest is the same for both phenotypes. The observed and predicted phe-
notypes are written O = (Ov, Og, Om, Oa, Ot , Oc) and P = (Pv, Pg, Pm, Pa, Pt , Pc),
respectively. Then

P = {(v, g, m, a, t, c)} = {viable, inviable} × (0,∞)2 × A × {1, . . . , 10} × Z+

is the space of all budding yeast phenotypes, where Z+ denotes the nonnegative integers
{0, 1, 2, . . .}.

The rating function, R, computes a non-negative real number that expresses the devia-
tions between the observed and predicted phenotypes for a mutant. This rating function is
a modified version of the one developed by N. Allen et al. [2]; the only difference is that if
Pv is missing (if integration fails for some reason), then R(O, P) = ωv . The rating function
is split into four cases depending on the viability of the observed and predicted phenotypes.
If Ov = inviable, Pv = viable, and Oc is missing, then R(O, P) = ωv , the same as if
Oc = 0. Otherwise, if a needed classifier is missing, the term is simply dropped and does
not contribute to the objective function. In the case that classifiers are missing, this allows
the objective function value to be at or near zero when viability is in agreement between the
phenotypes, and forces larger objective function values when viability is not in agreement.

123

724 J Glob Optim (2008) 40:719–738

Table 1 Constants used in the
objective function

Symbol Definition Value

ωg G1 length weight 1.0

σg G1 length scale 10.0

ωm Mass at division weight 1.0

σm Mass at division scale ln 2

ωa Arrest stage weight 10.0

ωt Arrest type weight 5.0

ωc Cycle count weight 10.0

σc Cycle count scale 1.0

ωv Viability weight 40.0

In what follows, the ωs and σ s are constants defined in Table 1. The rating function when
all classifiers are present is given by

R(O, P) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ωg ×
(

Og−Pg
σg

)2 + ωm ×
(

ln Om
Pm

σm

)2

, if Ov = viable and Pv = viable,

ωv × 1
1+Pc

, if Ov = viable and Pv = inviable,

δO,P + ωc ×
(

Oc−Pc
σc

)2
, if Ov = inviable and Pv = inviable,

ωv × 1
1+Oc

, if Ov = inviable and Pv = viable,

where δ is a real-valued discrete function used to assess a penalty for the arrest stage and
type, given by

δO,P =

⎧
⎪⎨

⎪⎩

ωa, if Oa �= Pa,

ωt , if Oa = Pa and Ot �= Pt ,

0, if Oa = Pa and Ot = Pt .

The rating function is tuned by parameters that allow adjusting the relative importance of
classifiers. The parameters given by Table 1 were set so that a rating of around ten indicates
a critical error in the model’s prediction of a phenotype.

Denote the real numbers by R, the integers by Z, the number of parameters by Np , and
the number of mutants by Nm . Let the domain of the objective function be the box

� = {x ∈ RNp : ln(si/ui) ≤ xi ≤ ln(si × ui), i = 1, . . . , Np},
where u ∈ RNp is a vector of positive scale factors (most components of u are approximately
100) reflecting a priori limits on the rate constants, and s ∈ RNp is the modeler’s best guess
point. For any x ∈ �, the simulated phenotype of mutant j ∈ {1, 2, . . . , Nm} is Pj (x) ∈ P .
The objective function is the weighted sum of the rating function over all of the mutants, that
is,

f (x) =
Nm∑

j=1

µ j R(O j , Pj (x)),

where µi > 0 indicates the relative importance of the i th mutant. The objective function
value at the best previously known point [5] is 470.

123

J Glob Optim (2008) 40:719–738 725

4 Algorithms

This section describes two algorithms that show promise for optimizing the discontinuous
objective function described in the previous section. Consider the problem of minimizing
f : � → R, where � = [l, u] ⊂ Rn is a box.

4.1 DIRECT

The DIRECT (Dividing Rectangles) global minimization algorithm [11] requires the objec-
tive function to be Lipschitz continuous to guarantee convergence. Even though the objective
function used here is discontinuous, the DIRECT algorithm seems to be an efficient and rea-
sonable deterministic sampling strategy worth trying.

The DIRECT algorithm is one of a class of deterministic direct search algorithms that does
not require gradients. It works by iteratively dividing the search domain into boxes that have
exactly one function value at the box’s center. In each iteration, the algorithm determines
which boxes are most likely to contain a better point than the current minimum point—these
boxes are called “potentially optimal”. It then subdivides the potentially optimal boxes along
their longest dimensions. Intuitively, a box is considered potentially optimal if it has the
potentially best function value for a given Lipschitz constant. The formal definition from
[11] follows.

Definition 1 Suppose that the unit hypercube has been partitioned into m (hyper) boxes. Let
ci denote the center point of the i th box, and let di denote the distance from the center point
to the vertices. Let ε ≥ 0 be a positive constant. A box j is said to be potentially optimal if
there exists some K̃ > 0 such that for all i = 1, . . . , m,

f (c j) − K̃ d j ≤ f (ci) − K̃ di , for all i = 1, . . . , m,

f (c j) − K̃ d j ≤ fmin − ε| fmin|.
The DIRECT algorithm is described by the following six steps [10].

Step 1. Normalize the design space � to be the unit hypercube. Sample the center point ci

of this hypercube and evaluate f (ci). Initialize fmin = f (ci), evaluation counter
m = 1, and iteration counter t = 0.

Step 2. Identify the set S of potentially optimal boxes.
Step 3. Select any box j ∈ S.
Step 4. Divide the box j as follows:

(1) Identify the set I of dimensions with the maximum side length. Let δ equal
one-third of this maximum side length.

(2) Sample the function at the points c ± δei for all i ∈ I , where c is the center
of the box and ei is the i th unit vector.

(3) Divide the box j containing c into thirds along the dimensions in I , starting
with the dimension with the lowest value of wi = min{ f (c+δei), f (c−δei)},
and continuing to the dimension with the highest wi . Update fmin and m.

Step 5. Set S = S − { j}. If S �= 0 go to Step 3.
Step 6. Set t = t +1. If iteration limit or evaluation limit has been reached, stop. Otherwise,

go to Step 2.

For an illustration of how the DIRECT algorithm searches the domain on an example prob-
lem, see Fig. 2. Both serial [10] and parallel [7–9] versions of DIRECT have been described
in the literature.

123

726 J Glob Optim (2008) 40:719–738

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

initial

after 5 iterations after 11 iterations

after 1 iteration

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Fig. 2 These graphs show the function evaluations that DIRECT performed after zero, one, five, and eleven
iterations. Comparing the first and second graphs shows how DIRECT divides a two-dimensional box. The
second and third graphs include the rectangles that DIRECT had created. After five iterations, DIRECT has
found the global minimum at (−1.8,−1.1). After the fifth iteration DIRECT has explored the domain, sub-
dividing most of the larger boxes. After eleven iterations, DIRECT has evaluated the function at points near
the local minimum

4.2 MADS

A MADS (Mesh Adaptive Direct Search) algorithm, as defined by Audet and Dennis [4],
minimizes a nonsmooth function f : Rn → R ∪ {+∞} under general constraints x ∈ � ⊆
Rn, � �= ∅. If � �= Rn , the algorithm works with f�, which is equal to f on � and
+∞ outside �. Using f� in lieu of f is called a “barrier” approach to handling arbitrary
constraints x ∈ �.

In each iteration, a MADS algorithm evaluates the objective function f� at a finite number
of trial points. Central to these algorithms is the concept of a mesh, which is a discrete set of
points in Rn . Every previous trial point must lie on the current mesh, and in each iteration
the algorithm may only generate new trial points on the current mesh. This is not as restric-
tive as it might sound because the algorithm changes the mesh after each iteration (with the
restriction that all previously evaluated points remain in the new mesh).

To further define the mesh, three entities—�m
k , D, Sk—must be introduced. First, the

mesh size parameter �m
k > 0 controls the granularity of the mesh at iteration k; after the kth

iteration, �m
k+1 is adjusted from �m

k depending on the success of that iteration. The second
entity is an n ×nD matrix D, where each column D j = Gz j (for j = 1, 2, . . . , nD) for some

123

J Glob Optim (2008) 40:719–738 727

fixed nonsingular generating matrix G ∈ Rn×n and nonzero integer vector z j ∈ Zn . The
columns of D must also be a positive spanning set, Pos(D) = Rn (i.e., the cone generated by
nonnegative combinations of columns of D spans Rn). Lastly, Sk is the set of points where
the objective function has been evaluated by the start of iteration k. Now that those entities
have been introduced, the current mesh can be precisely defined.

Definition 2 At iteration k, the current mesh is defined to be

Mk =
⋃

x∈Sk

{x + �m
k Dz: z ∈ N nD }.

This definition ensures that all previously evaluated points are included in the mesh. It also
shows that a smaller �m

k will result in a more refined mesh, while a larger �m
k will create a

coarser mesh.

Now that the mesh has been defined, the iterations of a MADS algorithm can be described.
Each iteration consists of two steps: the search step and the poll step. The search step
may evaluate f� at any finite number of mesh points. At which mesh points f� is evaluated
depends on the precise MADS algorithm in use. A MADS algorithm may even do zero evalua-
tions in the search step; the search step is said to be empty when no points are considered.
If the search step fails to find a mesh point at which f� is less than minx∈Sk f�(x), then
the algorithm performs the poll step by generating and evaluating f� at new trial points
around the current incumbent solution xk , where f�(xk) = minx∈Sk f�(x). The poll size
parameter �

p
k limits the distance between xk and the new trial points. The set of new trial

points is called a frame, and xk is called the frame center. The MADS frame is constructed
using xk , �

p
k , �m

k , and D to obtain a set Dk of positive spanning directions.

Definition 3 At iteration k, the MADS frame is defined to be the set

Pk = {xk + �m
k d: d ∈ Dk} ⊂ Mk,

where Dk is a positive spanning set such that 0 /∈ Dk and for each d ∈ Dk ,

• d can be written as a nonnegative integer combination of the columns of D: d = Du for
some vector u ∈ N nD ,

• the distance from the frame center xk to a frame point xk + �m
k d ∈ Pk is bounded by a

constant times the poll size parameter: �m
k ‖d‖∞ ≤ �

p
k ‖D‖∞,

• limits (as defined in Coope and Price [6]) of the normalized sets Dk are positive spanning
sets.

The algorithm evaluates f� at points in the frame Pk until it encounters an improved point
x∗ (f�(x∗) < f�(xk)) or it has evaluated f� at all of the points in Pk .

After the algorithm has executed the search step and (conditionally) the poll step, it
sets the mesh size and poll size parameters, �m

k+1 and �
p
k+1, for the next iteration. If the

iteration successfully found a better mesh point xk+1 such that f�(xk+1) < f�(xk), then
�m

k+1 will be larger than or equal to �m
k ; otherwise, �m

k+1 will be smaller than �m
k . The poll

size parameter �
p
k+1 must be set such that �m

k+1 ≤ �
p
k+1, and it must satisfy

lim inf
k→∞ �m

k = 0 ⇐⇒ lim inf
k→∞ �

p
k = 0.

Exactly how �m
k+1 and �

p
k+1 are generated is determined by the individual algorithm in

use. A typical algorithm uses the following rules to set the mesh size parameter: �m
0 = 1,

123

728 J Glob Optim (2008) 40:719–738

and

�m
k+1 =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

�m
k/4, if xk is a minimizing

frame center,

4�m
k , if an improved mesh

point is found, and

if �m
k ≤ 1

4 ,

�m
k , otherwise.

The same example algorithm then uses the simple rule �
p
k = √

�m
k to determine the value

of �
p
k+1. These rules ensure that �m

k is always a power of 1/4 less than or equal to one, and
�m

k is always less than or equal to �
p
k .

In summary, the MADS class of algorithms is described by the following five steps.

Step 1. Let x0 ∈ � and 0 < �m
0 ≤ �

p
0 . Let D be an n × nD matrix with the properties

described earlier. Set the iteration counter k := 0.
Step 2. Perform the search step. This step varies among the individual algorithms; in all

algorithms f� is evaluated at a finite subset of points (called trial points) on the
mesh Mk . If a trial point y is found such that f�(y) < f�(xk), then the algorithm
may go to Step 4 with xk+1 := y.

Step 3. Perform the poll step, evaluating f� at points from the frame Pk ⊂ Mk until a
frame point xk+1 is found with f�(xk+1) < f�(xk) or f� has been evaluated at all
of the points in Pk .

Step 4. Update �m
k+1 and �

p
k+1 according to the specific algorithm’s rules. In all algorithms,

(1) �m
k+1 is greater than or equal to �m

k if an improved mesh point is found,
(2) �m

k+1 is less than �m
k if an improved mesh point is not found,

(3) �
p
k+1 is greater than or equal to �m

k+1, and
(4) lim inf j→∞ �m

j = 0 if and only if lim inf j→∞ �
p
j = 0.

Step 5. If an appropriate stopping criterion has been met, stop. Otherwise, set k := k + 1
and go back to Step 2.

The previous discussion presents the MADS class of algorithms. The following discussion
describes a specific instance of the class, and Fig. 3 shows how that algorithm behaves on an
example problem. To emphasize the poll step of the algorithm, there is no search step in
the algorithm presented here.

In this MADS algorithm,

D =
(

1 0 −1 0
0 1 0 −2

)

.

Notice that a MADS mesh constructed using this matrix is identical to a mesh constructed
using the matrix

B =
(

1 0 −1 0
0 1 0 −1

)

.

However, ‖D‖∞ = 2 while ‖B‖∞ = 1; thus, a MADS frame constructed using D instead
of B will extend twice as far in every direction. ¿From D, the matrix Dk is generated (using
random coefficients as described in [4]) at the beginning of the kth iteration so that it is a
positive spanning set, and so that the (normalized) columns of Di , for i = 1, 2, . . ., are dense

123

J Glob Optim (2008) 40:719–738 729

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

(a) (b)

(c)

Fig. 3 These three graphs show how a MADS algorithm can refine the mesh, choose different poll directions,
and contract the search area. (a) the intersections of the dotted lines indicate points that met the criteria for
frame points in the first iteration. From these possibilities, the algorithm chose the four points indicated by
the large circles; these four points constitute P1. At all of these points, the function is higher than at x0, so
the algorithm refined the mesh by setting �m

2 = �m
1 /4. The intersections of the solid lines in the same graph

indicate possible frame points for the second iteration. The algorithm evaluated the function at only two points
in P2 because the function is lower at the second point than at x0, (b) shows how the mesh allows a MADS
algorithm to choose different poll directions at each iteration, (c) highlights three consecutive iterations of
the algorithm. In the first two iterations, the algorithm is unable to find an improved mesh point, therefore it
restricts the search area to be closer to xk . This can be seen by looking at the points evaluated in the three
iterations; the circles are the furthest away from xk , the squares are closer, and the triangle is the closest. There
is only one triangle because the function value at that point is lower than f (xk), so the algorithm stopped the
poll step and went on to the next iteration

in the unit circle S1. The mesh size parameter �m and poll size parameter �p are updated
using the same rules as presented earlier.

The example function in Fig. 3 has two local minima in the chosen domain. The basin
of attraction for the global minimum point is smaller than that of the other local minimum
point. For the example problem, � = {(x1, x2) : x1 ∈ (−2, 2.4), x2 ∈ (−2, 2.4)}.

5 Results

Because it takes approximately 17 s to evaluate the objective function on a 2.3 GHz PowerPC
G5 processor, parallel versions of both algorithms were used. All computation took place on
a cluster of 1100 dual-processor Mac G5 nodes, called System X, at Virginia Tech.

NOMAD [4] is a C++ implementation of the MADS class of algorithms. The specific
MADS algorithm used here is the same as the example algorithm given in Sect. 4, with

123

730 J Glob Optim (2008) 40:719–738

�m
0 = 1/4. To take advantage of System X, NOMAD’s implementation of the poll step

was parallelized using a master/worker paradigm. The master ran the MADS algorithm as
presented in Sect. 4 and sent requests to the workers whenever objective function values
were needed. NOMAD, started from the modeler’s best point, evaluated the objective func-
tion 135,000 times over 813 iterations using 128 processors, converging at a point for which
the objective function value was 299.

pVTDirect [7] is a parallel implementation of DIRECT written in Fortran 95. While the
DIRECT algorithm does not have a traditional “starting point”, the first sample in each sub-
domain is always taken at the center of the subdomain bounding box. For this problem, the
bounding box was designed so that the modeler’s best point [5] would be at the center and
therefore would be evaluated before any other points. pVTDirect (with only one subdomain
and ε = 0) ran for 473 iterations using 1024 processors and evaluated the objective function
1.5 million times, finding a point at which the objective function value was 212.

The first set of runs (the results of which are illustrated in Figs. 4 and 5) use the same initial
conditions simulating all of the points, not different initial conditions as described in Sect. 2.2.
(These runs led to the discovery of the necessity of the procedure in 2.2.) Figure 4 shows the
progress that each algorithm was able to make in minimizing the objective function. While
NOMAD was able to quickly find a better point than the modeler’s best point, pVTDirect
eventually found an even lower point. In a later run, NOMAD was started from pVTDirect’s
lowest point, but NOMAD was unable to make any further progress. After looking at Fig. 4,
it is tempting to believe that pVTDirect could have been stopped earlier (for instance, after
200,000 evaluations), and NOMAD started at pVTDirect’s last best point could have found a
point at which the objective function value was 212 or less. To test this, NOMAD was started
at the best point at the 54th, 157th, and 239th iterations of pVTDirect. These points corre-
spond to the beginning, middle, and end of the second-lowest plateau in Fig. 4. As shown in
Fig. 5, NOMAD started from the middle point converged to a point at which the objective
function value was 210. However, the NOMAD runs started at the beginning and end plateau
points converge to worse points than pVTDirect’s best point. These four extra NOMAD runs
(including the one starting from pVTDirect’s best point) show that using NOMAD to get
more value out of a pVTDirect run is not simple.

 200

 250

 300

 350

 400

 450

0 100000 200000 300000 400000 500000 600000

f(
x)

Number of Evaluations

MADS
DIRECT

Fig. 4 The objective function value at the best point found versus the number of evaluations for MADS and
DIRECT (The computations on which Figs. 4 and 5 are based used a standard set of initial conditions for every
simulation, not the more accurate updating of initial conditions described in Sect. 2.2.)

123

J Glob Optim (2008) 40:719–738 731

 200

 210

 220

 230

 240

 250

 100000 150000 200000 250000 300000 350000

f(
x)

Number of Evaluations

DIRECT
MADS started from 245
MADS started from 233
MADS started from 232

Fig. 5 The performance of NOMAD when started from the best point at pVTDirect’s 54th, 157th, and 239th
iterations. The plots are shown as if the NOMAD runs started as soon as the respective pVTDirect iterations
completed

Table 2 Results for the runs that started from the best known point[5]

Run lowest f # evaluations # CPUs CPU hours

MADS 325 77,221 64 384

DIRECT, ε = 0 233 1,243,429 400 8,895

DIRECT, ε = 0.1 365 1,452,597 400 10,703

When the initial conditions were generated (as described in Sect. 2.2) for the best points
from the previously described runs, the points received considerably worse objective function
values, leading to the realization that the initial conditions have to be chosen per Sect. 2.2
for each parameter vector. To remedy this, the objective function was modified to generate
proper initial conditions (see Sect. 2.2) for each point before evaluating the point. NOMAD
and pVTDirect were then rerun on the corrected objective function. For this set of runs,
pVTDirect was run twice, once with ε = 0 and again with ε = 0.1. Table 2 gives basic
information for each method, and the results of these three runs are shown in Fig. 6.

Figures 7, 8, and 9 give an idea of what areas of parameter space the different runs explored.

The distance measure used for these figures was
∑Np

i=1 |si − pi |/si , where s is the modeler’s
best parameter vector and p is the parameter vector of the point being plotted. These figures
confirm that DIRECT evaluates points further away from the starting point than MADS.
What is not shown in Figs. 8 and 9 is that DIRECT found only 77,752 points that evaluated
to less than 480 when ε was set to 0.1, but it found 565,982 such points when ε was set to 0,
even though both runs evaluated approximately the same number of points. This, combined
with the information shown in Figs. 8 and 9, shows that setting ε to 0.1 caused DIRECT to
spend more time dividing large boxes and less time refining small boxes.

However, Fig. 5 showed that MADS may be able to quickly improve on the best points that
DIRECT has found. Unfortunately, it is difficult to guess which points from DIRECT will be
good starting points for MADS. To find points that scored well but were reasonably far apart,

123

732 J Glob Optim (2008) 40:719–738

 200

 250

 300

 350

 400

 450

 500

0 100000 200000 300000 400000 500000 600000

f(
x)

Number of Evaluations

MADS
DIRECT eps=0

DIRECT eps=0.1

Fig. 6 The objective function value at the best point found so far versus the number of evaluations for MADS,
DIRECT with ε = 0, and DIRECT with ε = 0.1

Fig. 7 The distribution of points that evaluated to less than 480 when MADS ran

Fig. 8 The distribution of points that evaluated to less than 480 when DIRECT ran with ε = 0

123

J Glob Optim (2008) 40:719–738 733

 200

 250

 300

 350

 400

 450

0 20 40 60 80 100 120 140 160

f(
x)

Distance from Box Center

Fig. 9 The distribution of points that evaluated to less than 480 when DIRECT ran with ε = 0.1

the following algorithm was used. Define the closed ball B(x, δ) = {y ∈ Rn |‖y − x‖ ≤ δ},
and denote the complement of the set S by C(S).

Step 1. Let P be all of the points that DIRECT evaluated when ε was set to 0. Set k := 1.

Step 2. Find sk ∈ P such that f (sk) ≤ f (p) for all p ∈ P ∩ C
(⋃k−1

i=1 B(si , 2)
)

.

Step 3. If f (sk) ≥ 300, then stop, else set k := k + 1 and go to Step 2.

This algorithm yielded 13 points to use as starting points for MADS runs. The results
of those runs are given in Table 3. In this table, there does not seem to be any relationship
between f (si) and the objective function value at the point to which MADS converges. It is
also interesting that for 12 of the runs, MADS converges to a point that evaluates to 220–240,
but the third run converges to a point that evaluates to a much lower score of 189. This is the
lowest score found by any of the runs.

6 Conclusion

Even with a discontinuous objective function and a 143-dimension search domain, both
DIRECT and MADS performed well. When ε was set to zero, DIRECT explored the param-
eter space and refined the boxes near local minima. When ε was set to 0.1, DIRECT used
most of its evaluations to explore the parameter space. Any inferences about the choice of
ε must be made with caution, since the box center here was already a very good point, and
sizeable volumes of the 143-dimensional space still remain unsampled. MADS was almost
always able to find a better point than its starting point, and it did so with far fewer evaluations
than DIRECT. Using the two algorithms together yielded the lowest-scoring point.

The best previously known parameter vector from Chen et al. [5] has an objective function
value of 470, and correctly models all of the mutants except (numbers from Appendix A) 7,
16, 35, 41, 45, 53, 76, 93, 97, 103, 104, and 110. The best point from DIRECT/MADS has
an objective function value of 189, and correctly models all but mutants 35, 41, 45, 53, 76,
93, and 110.

How sensitive is the biological model (as reflected in the objective function) to local dis-
turbances of these parameter vectors? If the DIRECT/MADS parameter values were rounded

123

734 J Glob Optim (2008) 40:719–738

Table 3 The MADS runs that started from points found during the DIRECT (with ε = 0) run. All MADS
runs used 64 processors

i f (si) final f # evaluations CPU hours

1 233 233 1,590 12

2 244 234 22,153 105

3 244 189 76,978 384

4 249 226 39,990 189

5 250 230 82,551 384

6 250 231 79,869 385

7 255 224 59,884 266

8 257 220 80,361 385

9 260 228 86,251 384

10 262 233 81,431 385

11 291 228 79,110 384

12 292 244 53,257 238

13 293 238 84,035 384

MADS/DIRECT

0%

10%

20%

30%

40%

50%

60%

70%

 200 300 400 500 600 700

P
er

ce
nt

 o
f p

er
tu

rb
ed

 v
ec

to
rs

Objective function value

Chen et al.

Fig. 10 The best DIRECT/MADS parameter vector and the parameter vector from Chen et al. [5] were
randomly perturbed by up to ±0.5% in all dimensions, and the objective function was evaluated at each
of the perturbed vectors. This figure shows the percentage of vectors that scored in [x, x + 100), for x =
200, 300, . . . , 700

to two significant figures, would the model be such a good fit to the data? To investigate this
question, random perturbations (up to ±0.5%) were applied to all of the parameter values in
both the Chen et al. [5] parameter vector and the best DIRECT/MADS parameter vector, and
histograms of the resulting objective function values were computed (Fig. 10). For the Chen
et al. [5] parameter vector, about 25% of perturbations (white bars in Fig. 10) give significantly
worse fits to the data, a reflection of the fact that behavior of the model is quite sensitive
to a small number of the parameters, as described in detail in [5]. The DIRECT/MADS
parameter vector (grey bars in Fig. 10) appears to be not only better but also its perturbations
are less likely to produce inferior models than for the Chen et al. parameter vector. Thus the

123

J Glob Optim (2008) 40:719–738 735

combination of DIRECT and MADS to perform parameter optimization on discontinuous
objective functions in very high dimensional (>100) parameter spaces is not only feasible
computationally but also can find “good” parameter vectors that improve on the best estimates
of expert modelers.

Acknowledgements This work was partly supported by Defense Advanced Research Projects Agency
(DARPA) grant F30602-02-0572.

Appendix I: Mutant phenotypes

Listed below are the phenotypic characteristics of all the mutants used to construct the objec-
tive function. The data are expressed as a six-tuple (v, g, m, a, t, c) as described in Sect. 3.
The meanings of the values for t are described in [2]. For all fields other than viability, a dash
(–) means that the data is either not available or not applicable for that mutant

Mutant name v g m a t c

1. Wild type in glucose Viable 35.2 1 – – –
2. Wild type in galactose Viable 109 1 – – –
3. cln1� cln2� Viable – 2 – – –
4. GAL-CLN2 cln1� cln2� Viable – 0.5 – – –
5. cln1� cln2� sic1� Viable – – – – –
6. cln1� cln2� cdh1� Viable – – – – –
7. GAL-CLN2 cln1� cln2� cdh1� Viable – 1.7 – – –
8. cln3� Viable – 1.7 – – –
9. GAL-CLN3 Viable – 0.44 – – –

10. bck2� Viable – 1.4 – – –
11. Multi-copy BCK2 Viable – 0.8 – – –
12. cln1� cln2� bck2� Viable – 1.7 – – –
13. cln3� bck2� Inviable – – Licensed 5 0
14. cln3� bck2� GAL-CLN2 cln1� cln2� Viable – – – – –
15. cln3� bck2� multi-copy CLN2 Inviable – – Licensed 5 –
16. cln3� bck2� GAL-CLB5 Inviable – – – – –
17. cln3� bck2� sic1� Inviable – – – – –
18. cln1� cln2� cln3� Inviable – – Licensed 5 0
19. cln1� cln2� cln3� GAL-CLN2 Viable – – – – –
20. cln1� cln2� cln3� GAL-CLN3 Viable – – – – –
21. cln1� cln2� cln3� sic1� Viable 10 3.5 – – –
22. cln1� cln2� cln3� cdh1� Inviable – – Separated 3 –
23. cln1� cln2� cln3� multi-copy CLB5 Viable – – – – –
24. cln1� cln2� cln3� GAL-CLB5 Viable – – – – –
25. cln1� cln2� cln3� multi-copy BCK2 Viable – – – – –
26. cln1� cln2� cln3� GAL-CLB2 Inviable – – Licensed 5 0
27. cln1� cln2� cln3� apc-ts Inviable – – Aligned 3 0
28. sic1� Viable 15 1 – – –
29. GAL-SIC1 Viable 135 2 – – –
30. GAL-SIC1-db� Inviable – – Licensed 5 0
31. GAL-SIC1 cln1� cln2� Inviable – – Licensed 5 –
32. GAL-SIC1 cln1� cln2� cdh1� Inviable – – Licensed 5 –

123

736 J Glob Optim (2008) 40:719–738

Mutant name v g m a t c

33. GAL-SIC1 GAL-CLN2 cln1� cln2� Viable – – – – –
34. GAL-SIC1 GAL-CLN2 cln1� cln2� cdh1� Viable – – – – –
35. sic1� cdh1� Inviable – – Unlicensed 1 1
36. sic1� cdh1� GALL-CDC20 Viable – – – – –
37. cdh1� Viable – 0.6 – – –
38. Cdh1 constitutively active Inviable – – Fired 3 –
39. cdc6�2-49 Viable – – – – –
40. sic1� cdc6�2-49 Viable – – – – –
41. cdh1� cdc6�2-49 Viable 20 2.0 – – –
42. clb1� clb2� Inviable – – Fired 3 0
43. GAL-CLB2 Viable – – – – –
44. Multicopy GAL-CLB2 Inviable – – Separated 3 0
45. GAL-CLB2 sic1� Inviable – – Separated 3 0
46. GAL-CLB2 cdh1� Inviable – – – – –
47. CLB2-db� Inviable – – Separated 3 –
48. CLB2-db� in galactose Inviable – – Separated 3 –
49. CLB2-db� multicopy SIC1 Viable – – – – –
50. CLB2-db� GAL-SIC1 Viable – – – – –
51. CLB2-db� clb5� Inviable – – Separated 3 0
52. CLB2-db� clb5� in galactose Viable – – – – –
53. GAL-CLB2-db� Inviable – – Separated 3 –
54. clb5� clb6� Viable 65 – – – –
55. cln1� cln2� clb5� clb6� Inviable – – Licensed 5 0
56. GAL-CLB5 Viable – – – – –
57. GAL-CLB5 sic1� Inviable – – Unlicensed – 1
58. GAL-CLB5 cdh1� Inviable – – – – –
59. CLB5-db� Viable – – – – –
60. CLB5-db� sic1� Inviable – – – – 1
61. CLB5-db� pds1� Viable – – – – –
62. CLB5-db� pds1� cdc20� Inviable – – Separated 3 0
63. GAL-CLB5-db� Inviable – – – – 1
64. cdc20-ts Inviable – – Aligned 3 0
65. cdc20� clb5� Inviable – – Aligned 3 0
66. cdc20� pds1� Inviable – – Separated 3 0
67. cdc20� pds1� clb5� Viable – – – – –
68. GAL-CDC20 Inviable – – Fired 10 0
69. cdc20-ts mad2� Inviable – – Aligned 3 0
70. cdc20-ts bub2� Inviable – – Aligned 3 0
71. pds1� Viable – – – – –
72. esp1-ts Inviable – – Aligned 1 0
73. PDS1-db� Inviable – – Aligned 1 0
74. GAL-PDS1-db� Inviable – – Aligned 1 0
75. GAL-PDS1-db� esp1-ts Inviable – – Aligned 1 0
76. GAL-ESP1 cdc20-ts Inviable – – Separated 3 0
77. tem1� Inviable – – Separated 3 0
78. GAL-TEM1 Viable – – – – –

123

J Glob Optim (2008) 40:719–738 737

Mutant name v g m a t c

79. tem1-ts GAL-CDC15 Viable – – – – –
80. tem1� net1-ts Viable – – – – –
81. tem1-ts multicopy CDC14 Viable – – – – –
82. cdc15� Inviable – – Separated 3 0
83. Multicopy CDC15 Viable – – – – –
84. cdc15-ts multicopy TEM1 Inviable – – – – –
85. cdc15� net1-ts Viable – – – – –
86. cdc15-ts multicopy CDC14 Viable – – – – –
87. net1-ts Viable 50 – – – –
88. GAL-NET1 Inviable – – Separated 3 0
89. cdc14-ts Inviable – – Separated 3 0
90. GAL-CDC14 Inviable – – Licensed 5 0
91. GAL-NET1 GAL-CDC14 Viable – – – – –
92. net1� cdc20-ts Inviable – – Aligned 1 –
93. cdc14-ts GAL-SIC1 Viable – – – – –
94. TAB6-1 Viable – – – – –
95. TAB6-1 cdc15� Viable – – – – –
96. TAB6-1 clb5� clb6� Inviable – – Licensed 5 0
97. TAB6-1 CLB1 clb2� Viable – – – – –
98. mad2� Viable 35 1 – – –
99. bub2� Viable 35 1 – – –

100. mad2� bub2� Viable – – – – –
101. APC-A Viable 20 1.5 – – –
102. APC-A cdh1� Inviable – – Separated 3 –
103. APC-A cdh1� in galactose Viable – – – – –
104. APC-A cdh1� multicopy SIC1 Viable – – – – –
105. APC-A cdh1� GAL-SIC1 Viable – – – – –
106. APC-A cdh1� multicopy CDC6 Viable – – – – –
107. APC-A cdh1� GAL-CDC6 Viable – – – – –
108. APC-A cdh1� multicopy CDC20 Viable – – – – –
109. swi5� Viable 20 – – – –
110. sic1� cdc6�2-49 cdh1� Inviable – – Fired 3 1
111. sic1� cdc6�2-49 cdh1� GALL-CDC20 Viable – – – – –
112. APC-A cdh1� clb5� Inviable – – – – –
113. APC-A cdh1� pds1� Inviable – – – – –
114. APC-A sic1� Viable – – – – –
115. APC-A GAL-CLB2 Inviable – – Separated 3 –

References

1. Allen, N.A., Calzone, L., Chen, K.C., Ciliberto, A., Ramakrishnan, N., Shaffer, C.A., Sible, J.C.,
Tyson, J.J., Vass, M.T., Watson, L.T., Zwolak, J.W.: Modeling regulatory networks at Virginia
Tech. OMICS 7, 285–299 (2003)

2. Allen, N.A., Chen, K.C., Tyson, J.J., Shaffer, C.A., Watson, L.T.: Computer evaluation of network
dynamics models with application to cell cycle control in budding yeast. IEE Syst. Biol. 153, 13–21
(2006)

123

738 J Glob Optim (2008) 40:719–738

3. Allen, N.A., Shaffer, C.A., Ramakrishnan, N., Vass, M.T., Watson, L.T.: Improving the development
process for eukaryotic cell cycle models with a modeling support environment. Simulation 79, 674–
688 (2003)

4. Audet, C., Dennis, Jr., J.E.: Mesh adaptive direct search algorithms for constrained optimization. SIAM
J. Optim. 17, 188–217 (2006)

5. Chen, K.C., Calzone, L., Csikasz-Nagy, A., Cross, F.R., Novak, B., Tyson, J.J.: Integrative analysis of
cell cycle control in budding yeast. Mol. Biol. Cell 15, 3841–3862 (2004)

6. Coope, I.D., Price, C.J.: Frame based methods for unconstrained optimization. J. Optim. Theory
Appl 107, 261–274 (2000)

7. He, J., Sosonkina, M., Shaffer, C.A., Tyson, J.J., Watson, L.T., Zwolak, J.W. : A hierarchical parallel
scheme for a global search algorithm. In: Meyer, J. (ed.) Proceedings of High Performance Computing
Symposium 2004, pp. 43–50. Society for Modeling and Simulation International, San Diego, CA (2004)

8. He, J., Sosonkina, M., Shaffer, C.A., Tyson, J.J., Watson, L.T., Zwolak, J.W.: A hierarchical parallel
scheme for global parameter estimation in systems biology. In: Proceedings of the 18th International
Parallel & Distributed Processing Symposium, 9 p, CD-ROM, Los Alamitos, CA, IEEE Computer Soc.
(2004)

9. He, J., Sosonkina, M., Watson, L.T., Verstak, A., Zwolak, J.W.: Data-distributed parallelism with dynamic
task allocation for a global search algorithm. In: Parashar, M., Watson, L. (eds.) Proceedings of High
Performance Computing Symposium 2005, pp. 164–172. Society for Modeling and Simulation Interna-
tional, San Diego, CA (2005)

10. He, J., Watson, L.T., Ramakrishnan, N., Shaffer, C.A., Verstak, A., Jiang, J., Bae, K., Tranter, W.H.:
Dynamic data structures for a direct search algorithm. Comput. Optim. Appl. 23, 5–25 (2002)

11. Jones, D.R., Perttunen, C.D., Stuckman, B.E.: Lipschitzian optimization without the Lipschitz constant. J.
Optim. Theory Appl. 79, 157–181 (1993)

12. Murray, A., Hunt, T.: The Cell Cycle: an Introduction. Oxford University Press, New York (1993)
13. Nasmyth, K.: At the heart of the budding yeast cell cycle. Trends Genet. 12, 405–412 (1996)
14. Nurse, P.: A long twentieth century of the cell cycle and beyond. Cell 100, 71–78 (2000)

123

	Deterministic parallel global parameter estimation for a model of the budding yeast cell cycle
	Abstract
	Introduction
	Observed and predicted phenotypes
	Rules of viability
	Initial conditions
	Formulation as a discontinuous minimization problem
	Algorithms
	DIRECT
	MADS
	Results
	Conclusion
	Acknowledgements

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002d00730062006d002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

