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ABSTRACT
Recursion is both an important and a difficult topic for
introductory Computer Science students. Students often develop
misconceptions about the topic that need to be diagnosed
and corrected. In this paper, we report on our initial attempts
to develop a concept inventory that measures student mis-
conceptions on basic recursion topics. We present a collection of
misconceptions and difficulties encountered by students when
learning introductory recursion as presented in a typical CS2
course. Based on this collection, a draft concept inventory in
the form of a series of questions was developed and evaluated,
with the question rubric tagged to the list of misconceptions and
difficulties.
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1. Introduction

Recursion is both an important and a difficult topic for introductory Computer
Science students. Recursion is one the most important and hardest topics in
lower division Computer Science courses (Dale, 2006; Goldman et al., 2010; Hertz
& Ford, 2013; Tew & Guzdial, 2011). Efforts can be made to enhance the learning
of recursion through interventions such as allowing student to practice exercises
that address theirmisconceptions (Hamouda, Edwards, Elmongui, Ernst, & Shaffer,
2018). But evaluating any such interventions depend on being able to effectively
measure a given student’s understanding both before and after the intervention.
This need for a reliable measurement tool is the main motivation to this work.

Students often develop misconceptions about the topic that need to be
diagnosed and corrected. In order to assess student progress, it is helpful to have
a test that can recognizewhether a given student has the knownmisconceptions.
A Concept Inventory (CI) is a test that can classify an examinee as either someone
who thinks in accordance with accepted conceptions on a body of knowledge or
in accordance with common misconceptions (Adams & Wieman, 2011; Rowe &
Smaill, 2007).
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122 S. HAMOUDA ET AL.

To be considered a successful and valid instrument, a CI must be approved by
content experts. A CI is not a comprehensive test of everything a student should
know about a topic after instruction (Herman, 2011). Rather, CIs selectively test
only critical concepts of a topic (Rowe & Smaill, 2007), since these are required to
be considered to have mastered the topic.

CIs have been successfully developed and used in STEM disciplines like Physics
(Savinainen & Scott, 2002), Chemistry (Krause, Birk, Bauer, Jenkins, & Pavelich,
2004), and Biology (D’Avanzo, 2008) to drive discipline-specific education re-
search and pedagogical reforms (Almstrum et al., 2006; Taylor et al., 2014). For
example, in Physics, the ForceConcept Inventory (FCI) showedgapsbetweenhow
students and instructors think about concepts related to mechanics (Savinainen
& Scott, 2002). In Computer Science, the development of concept inventories is
growing. The related work section presents efforts in Computer Science concept
inventory development. This paper describes our process used to develop a
concept inventory that measures students understanding of basic recursion. We
began by developing a collection of misconceptions and difficulties encountered
by students when learning introductory recursion as presented in a typical CS1
or CS2 course. We then developed a series of questions, with the question rubric
tagged to the list of misconceptions and difficulties. Care was taken to ensure
that as many of the items on the misconceptions and difficulties list as possible
are covered by multiple concept inventory questions.

2. Related work

In Computer Science, the development and use of CIs is rapidly growing. We are
aware of efforts to develop CIs for the topics of discrete math (Almstrum et al.,
2006), digital logic (Herman, Loui, & Zilles, 2010), operating systems (Andrus &
Nieh, 2012; Webb & Taylor, 2014), introductory programming courses (Kaczmar-
czyk, Petrick, East, & Herman, 2010), algorithms and data structures (Danielsiek,
Paul, & Vahrenhold, 2012; Paul & Vahrenhold, 2013), Binary Search Trees (Karpierz
& Wolfman, 2014), and Object-Oriented Programming (Ragonis & Ben-Ari, 2005).
Our research group has also recently developed a concept inventory for introduc-
tory Algorithm Analysis (Farghally, Koh, Ernst, & Shaffer, 2017). In the remainder
of this section, we present an overview for many of these efforts.

Kaczmarczyk et al. (2010) worked to find studentmisconceptions in a CS1-level
programming course. Using aDelphi process (Dalkey&Helmer, 1963), the authors
gathered 30 concepts from a pool of experts that they think are the most difficult
in CS1 programming. From these, the authors selected ten concepts as their initial
focus of interest. They are memory model, references and pointers, primitive and
reference type variables, control flow, iteration and loops, types, conditionals,
assignment statements, arrays, and operator precedence. The authors designed
a test of 18 questions covering the concepts of interest. In order tomake sure that
the results are not problem dependent, each concept was covered in questions
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COMPUTER SCIENCE EDUCATION 123

with at least twodifferent variations. The authors conducted student interviews to
help them understand student misconceptions regarding the targeted concepts.
Eleven undergraduate students participated in the interviews. These students
were either currently or recently enrolled in the CS1 course. Each interview
lasted about an hour and was audio and video recorded. In the interviews, each
student was asked to solve questions for all ten concepts. The purpose of the
interview was to reveal the misconceptions of the students and validate the
Delphi expert’s conclusions about the difficult concepts. The authors analyzed the
student interviews and described in detail the misconceptions found in memory
model representation and default value assignment of primitive values.

Danielsiek et al. (2012) described their first steps toward building a concept
inventory for Algorithms and Data Structures. Their results were based on expert
interviews and the analysis of 400 exams to identify the core concepts that are
considered to be associated with misconceptions. They reported a pilot study
to verify misconceptions previously reported in the literature and to identify
additional misconceptions. They have then wrote an initial instrument to detect
misconceptions related to algorithms and data structures (Paul & Vahrenhold,
2013). They presented the results from a second study that aimed at assessing
first-year student misconceptions. Their second study confirmed findings from
the previous small-scale studies, but additionally broadened the scope of the
topics.

Karpierz and Wolfman (2014) report an initial effort to determine misconcep-
tions and design a CI for Binary Search Trees and Hash Tables. They focused on
iterative methods rather than recursion. The authors found student misconcep-
tions by showing exam responses to nine instructors, showing them sample exam
responses with the goal to understand how an expert reorganizes something
important that the audience does not. The authors also reviewed more than 200
examproblems alongwith project code to determine themost difficult problems.
They interviewed 25 students who each solved two questions while thinking
aloud. The authors found threemain topics where students holdmisconceptions:
the possibility of duplicates in BSTs, conflation of Heaps and BSTs, and Hash table
resizing. The authors designed three multiple choice questions to address those
misconceptions.

Ragonis and Ben-Ari (2005) presented an initial effort to identify miscon-
ceptions and difficulties in Object-Oriented Programming (OOP). The authors
gathered data during two academic years from students studying OOP in tenth
grade CS. The data gathered included home works, lab exercises, tests, and
projects. They used these data to identify a comprehensive categorized list of
misconceptions and difficulties in OOP understanding. One novel aspect of this
work is the reporting of difficulties in addition to misconceptions.

Taylor et al. (2014) presented a recent survey paper on Computer Science CIs. It
includes a recommendation to build CIs for topics that should evaluate student’s
ability to engage in processes such as code analysis, program design, program
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124 S. HAMOUDA ET AL.

modification, and testing, as these aspects of learning are difficult to assess.
Similarly, Zingaro, Petersen, and Craig (2012) notes that it is hard to evaluate
traditional code writing exercises.

3. Building a CI

This section presents the steps that have come to be considered best practice
when building a CI, and then for measuring a CI’s reliability and validity (Goldman
et al., 2008; Herman, 2011; Herman et al., 2010; Krone, Hollingsworth, Sitaraman,
& Hallstrom, 2010; Nelson, Geist, Miller, Streveler & Olds, 2007).

(1) Choose concepts (set the scope): First a set of concepts should be chosen
by the CI developers to define the CI’s scope. To assure that the CI is a
valid assessment tool, many domain experts must acknowledge that the
tool assesses the right content, and that it does in fact assess what it
claims to assess. By involving expert opinion from the beginning of the
CI development process, we can trust that the designed CI assesses core
concepts, and that it has appropriate content validity (Allen & Yen, 2001).

(2) Identify misconceptions: Instructors and students can be interviewed to
identify the specific sub-topics that students struggle to understand. In-
structors can identify students’ misconceptions from their teaching and
exam-marking experience. Students can also be helpful in identifying their
confusion about a certain topic (Allen & Yen, 2001).

(3) Write CI items and draft the CI (write the questions): The CI developers
should use the misconceptions identified from the previous step to for-
mulate the CI questions. The questions could be multiple choice (MCQ),
or any other type of question where incorrect answers can be used to
identify the associated misconception. For the sake of reliability, the CI
would ideally test every concept multiple times (Buck, Wage, Hjalmarson,
& Nelson, 2007).
After writing questions for the initial CI, refinement and validation are done
through two feedback cycles: the student feedback cycle and the expert
feedback cycle.

(4) Student feedback cycle: CI developers should give the CI to students and
analyze the quality of the CI through interviews and statistical analysis. The
interviews should ask students about the clarity of the questions and the
answer choices (for MCQs) and find out if the students are truly solving
the questions wrongly when they have the targeted misconception. In
this step, the reliability of the CI is to be measured to assess the preva-
lence of various misconceptions and explore the data for differences in
performance between sample populations. The CI should be revised and
improved based on these analyses before repeating this cycle.

(5) Expert feedback cycle: The CI content and individual items are evaluated by
experts. The opinions from a diverse group of experts can reach consensus
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COMPUTER SCIENCE EDUCATION 125

using a Delphi process (Dalkey & Helmer, 1963), an approach that has been
used to develop previous CIs (Goldman et al., 2008; Gray, Evans, Cornwell,
Costanzo, & Self, 2003; Streveler, Olds, Miller, & Nelson, 2003).

(6) Iterate: The above sequence of steps could be repeated many times, until
a reliable and valid CI is achieved. After each iteration, the CI is revised and
modified to do a better job of evaluating student misconceptions, and the
reliability and validity are measured.

3.1. Measuring a CI’s reliability and validity

Reliability of a CI is usually estimated by three methods: test–retest reliability,
split-half reliability, and the Cronbach alpha.

In the test–retest method, the reliability of the CI is measured by giving
students the CI multiple times in close succession (Allen & Yen, 2001). Test–retest
is not usually done because it is a time consuming process and the students
can learn little by taking the instrument multiple times, so its results may not be
accurate.

Split-half reliability splits the test into two halves and treats each sub-test as a
separate instance of the instrument. An estimate of the total reliability is made by
building a correlation between the observed scores on the two sub-tests.

The most commonly used method is Cronbach alpha, which finds the average
split-half reliability of every possible set of sub-tests. The Cronbach alpha value
ranges from -1 to 1 like a correlation coefficient. A cut-off value is selected for
alpha abovewhich the CI is considered to be reliable. For example, Herman (2011)
suggests a cut-off of .70 for the alpha value, because a high level of reliability was
required. CIs need a high level of reliability to be used as a research instrument.
However, some inconsistency can be acceptable, since students are inconsistent
when they apply their conceptual knowledge.

3.2. Validity

The validity of an instrument can be estimated by correlating the observed scores
of anewly created instrumentwith theobserved scores of an accepted instrument
(Allen & Yen, 2001). If there is no currently accepted instrument to measure the
true score of a topic, statistical methods cannot be used to estimate the validity.
Statistical estimates for the reliability for the instrument can potentially invalidate
an instrument. As the reliability of an instrument decreases, the validity of the
instrument also decreases. If the CI has a Cronbach alpha value below the selected
cut-off, then it should not be considered as valid.

Validity can also be established in some cases through face validity and content
validity (Allen & Yen, 2001). Face validity exists if the typical person who is
familiar with the material believes at first glance that the instrument measures
the true score. Face validity must be done along with content validity to ensure
the instrument’s validity. Content validity is done by systematically polling the
opinions of experts to see if they believe that the instrument measures the true

D
ow

nl
oa

de
d 

by
 [

64
.1

78
.2

30
.2

8]
 a

t 0
6:

58
 1

6 
D

ec
em

be
r 

20
17

 



126 S. HAMOUDA ET AL.

score (Allen & Yen, 2001). To test the validity of an instrument, its developersmust
clearly define what the instrument measures.

The next sections document how we followed the typical steps of building a
concept inventory to build a draft basic recursion concept inventory.

4. Building the recursion concept inventory

4.1. Choose concepts

The first step in building a CI is to identify the concepts (topics) based on experts’
rating for its difficulty and importance. Previous research has determined the
most common problematic topics that lead to students’ misunderstanding of
recursion. For example, Sanders and Scholtz (2012) claimed that a key factor
in mastering recursion is understanding how the program moves from active
control, to the base case, and then to passive control in recursive functions.
The complexity of the flow-of-control mechanism makes it a difficult concept
for students to comprehend. It was found also that in most cases, students
that have some difficulty with active flow are also confused about passive flow
and have misconceptions about the base case (Scholtz & Sanders, 2010). In
addition, students are confusedwith the comparison to loop structures (Benander
& Benander, 2008) and the lack of everyday analogies.

The following is a list of previously identified common problematic topics
found in the literature for teaching recursion, ranked based on the frequency of
appearance in the literature:

• Passive/backward control flow after reaching the base case (George, 2000;
Sanders & Scholtz, 2012; Scholtz & Sanders, 2010).

• The limiting case (George, 2000; Sanders & Scholtz, 2012).
• Active flow (George, 2000; Sanders & Scholtz, 2012).
• Comparison to loop structures (Benander & Benander, 2008).
• Variable updating either due to difficulty in evaluating a conditional state-
ment or difficulty in understanding an explicit update statement (George,
2000).

We began with the topics list that we gathered from the literature. We this
extended this list and broke some of the topics into multiple parts to be more
descriptive and understandable. We also changed the wording of some topics to
be more clear. We then provided the resulting list of topics along with brief
description of each topic to 22 instructors to determine their opinions. The
extended topics list presented to the instructors is as follows:

• Backward flow (BF): Passive control flow after reaching the base case.
• Active flow (AF): Active control flow until reaching the base case.
• Recursive calls (RC): How to formulate the recursive call.
• Limiting case (LC): How to formulate the stopping condition andwhen it will
be triggered.

D
ow

nl
oa

de
d 

by
 [

64
.1

78
.2

30
.2

8]
 a

t 0
6:

58
 1

6 
D

ec
em

be
r 

20
17

 



COMPUTER SCIENCE EDUCATION 127

• Infinite recursion (INF): Wrongly write or call the recursive function so that
the limiting case is never reached.

• Confusion with loop structure (LP): Implementing recursive functions (espe-
cially tail recursion) as a loop.

• Variable updating (VU): Unawareness of how variables are updated on every
recursive call.

We asked the instructors to order the list with respect to how confusing they
think that the topics are to students.Weencouraged the instructors to add, delete,
merge, or re-word the topics if needed. Two instructors were interviewed face to
face, afterwhichweemailed the list to 20other instructors, alongwith instructions
on howwewished the list to be evaluated andmodified.We received replies from
10 out of the 20 instructors. The instructors who replied were from five different
institutions in three different countries. Overall, the twelve instructors provided
minor modifications on the names or the order of the concepts, and all agreed on
the fundamental presentation.

4.2. Identifymisconceptions

The next step in building a CI is to identify themisconceptions that students have
related to the identified topics. To find out student misconceptions, typically,
instructors and student interviews are conducted. We sent invitations by email to
ten students taking CS2114: Data Structures and Software Design (a traditional
CS2 course) during Spring 2014 at Virginia Tech. We asked them to come for
interviews. We received a positive reply and interviewed two students. Participa-
tionwas voluntary and recordswere stripped of identification after the interviews
were completed. The interview was audio recorded and the students were made
aware of that. The students solved 8 recursion tracing exercises and one code
writing exercise. Since student participation was low, it did not help us in finding
student misconceptions. The common misconception found in the answers of
both students interviewed was related to backward flow, where the students did
not understand what happens to information after the recursive call.

Our primary sources of information for deducing student misconceptions
were test answers and the research literature. We analyzed approximately 8000
responses to recursion questions given to students over three semesters in pre-
test, post-test, mid-term, or final exams of CS2114: Data Structures and Software
Design to find the most common misconceptions. Table 1 shows the number of
students and recursion questions on each test.

We have chosen to present our findings from the interviews and the analysis
of student answers as a list ofmisconceptions and difficulties, inspired by Ragonis
and Ben Ari’s work on object-oriented programming (Ragonis & Ben-Ari, 2005). A
misconception is a mistaken idea or view resulting from a misunderstanding
of something. Difficulty here means the empirically observed inability to do
something. It is possible that a student exhibits a difficulty due to an underlying
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128 S. HAMOUDA ET AL.

Table 1. Number of students and number of recursion questions per each exams.

Exam No. of students No. of questions

Pre-test spring 2014 152 10
Mid-term spring 2014 160 5
Pre-test fall 2014 178 8
Mid-term fall 2014 216 4
Post-test fall 2014 203 8
Pre-test spring 2015 166 5
Mid-term spring 2015 43 5
Final spring 2015 167 4

misconception (possibly one already listed here or one so far unidentified). A
difficulty might also result because the student lacks some skill or knowledge.

The following is the list of common misconceptions and difficulties that we
found, categorized by the topic related. We give each an identification tag for use
in our analysis presented in later sections of this paper.

4.2.1. Backward flow
(1) Misconception: No statements after the recursive call will execute. [BFnev-

erExecute]
(2) Misconception: Statements that come after the recursive call will execute

before the recursive call is executed. [BFexecuteBefore]

4.2.2. Infinite recursion
(3) Misconception: If there is a base case then it will always execute. If the

recursive call does not reduce the problem to the base case, then the base
case will return, and that will terminate the recursive method. [InfiniteExe-
cution]

4.2.3. Recursive call
(4) Difficulty: Cannot formulate a recursive call that eventually reaches the

base case. [RCwrite]
(5) Misconception: A value will be returned from a recursive call even if the

return keyword is omitted. [RCnoReturnRequired]
(6) Misconception: All recursive calls require the return keyword even if the

recursive function does not return a value. [RCreturnIsRequired]

4.2.4. Base case
(7) Misconception: The base case must appear before the recursive call. The

base case must be in the if condition, while the recursive call must be in
theelse condition or anif else condition. So the student has difficulty
recognizing whether the recursive call or the base case is executed when
tracing code. [BCbeforeRecursiveCase]

(8) Misconception: The base case action must always return a constant, not a
variable. [BCactionReturnConstant]
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COMPUTER SCIENCE EDUCATION 129

(9) Misconception: The base case condition must always check a variable
against a constant, not against another variable. [BCcheckAganistConstant]

(10) Difficulty: Cannot write a correct base case. The student is given a descrip-
tion for what a function should do, and an incomplete implementation for
the functionwith amissingor incorrect base case. The student has difficulty
coming up with a correct base case to complete the implementation.
[BCwrite]

(11) Difficulty: Cannot properly evaluate the value for the base case. In nearly all
such cases, the student believes that the recursive method executes one
more or one less time than it actually does. [BCevaluation]

4.2.5. Updating variables
(12) Misconception: Prior to the recursive call, we can (within the recursive

function) define a “global” variable that is initialized once and updates
when each recursive call is executed. [GlobalVariable]

4.3. Write CI items and draft the CI

The third step in creating a CI is to write initial CI items (questions) based on
the misconceptions generated from the previous step. We initially attempted to
create a Concept Inventory as a series of multiple choice questions, with each
question targeted to identify whether a student has a particular misconception
or not.

We quickly realized that a given multiple choice question with multiple dis-
tractors naturally relates to several misconceptions or difficulties, where each
distractor ideally relates to a specific misconception or difficulty. We also realized
that the nature of our topic lends itself to exercises where the student needs to
determine the result of executing a piece of code. It did not seem productive
to limit the student to a specific list of distractors, as this would both “lead the
witness” and also preclude discovering that students had previously unrecog-
nized misconceptions or difficulties. Thus, all the questions are cast as “fill in the
blank” (or free answer) questions, with a rubric that identifies the misconception
or difficulty that would lead to a specific answer. If in the process of evaluating the
answers to the concept inventory, it is found that some answers not in the rubric
are frequently given by students; this would suggest the need for further analysis
to discover the cause. The initial rubrics for most of the questions are created
from the answers that we have seen from approximately 8000 test responses. The
first and the second iterations of the draft CI questions and the misconceptions
measured by each question can be found in Appendix 1.

4.4. Recursion CI administration

The first administration was done using the first draft concept inventory. The CI
wasgiven to23 students as apart of themid-termexam inCS2114duringSummer
II at Virginia Tech. The mid-term exam had a total of 21 questions, of which 10
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130 S. HAMOUDA ET AL.

questions were on recursion (the first iteration concept inventory questions in
Appendix A.1).

After refining the first draft concept inventory, we came up with the second
draft CI. The second administration was done using the second draft concept
inventory. The CI was given to 111 students as a part of the mid-term exam
in another course in another institution, CSE017 during Fall 2015 at Lehigh
University. The mid-term exam had a total of 15 questions, of which 6 questions
were on recursion. The second iteration concept inventory questions are shown
in Appendix 1).

5. Reliability and validity

5.1. CI reliability

We measure CI internal consistency as a measure of reliability. The CI was given
as a test to CS2114 students during Summer II. To measure reliability, we used
Cronbach-α. The CS2114 exam had a Cronbach-α reliability rating of .8. This
preliminary finding indicates that the inventory has acceptable (above .5 is con-
sidered acceptable) internal consistency reliability after the first administration.

5.2. CI validity

5.2.1. First administration
Onour initial design of the rubric for each question,we tried to base the rubrics on
patterns that we have seen in previous student responses to recursion questions.
We checked student answers on the test administered in Summer II to see if, for
each question, all candidate answers that we had in the rubrics have been given
by the students. We found that all candidate answers in the question rubrics were
indeed given by the students. We found one answer that was not already covered
by the rubric for each of Questions 1, 8 and 9, and so we have updated the rubrics
to include those answers. We also found that Question 3 was answered correctly
more than any other question. 95% of the students solved the question correctly.
We conclude that themisconception covered by Question 3 is not widely held by
the students. We looked at each of the ten CI questions for all the 23 students. We
believe that the design of the question and rubric itemsmake a reasonable grader
agree that, given certain answers, the student holds thematchingmisconception
as listed in our rubrics. For each question, we have determined the corresponding
misconceptions from our rubric for that question. We counted the number of
student answers that express each misconception. Table 2 shows the percentage
of Summer II students who appear to hold each misconception.

We checked to see if better performance on the entire CI correlatedwith better
performance on individual questions, a process referred to as item response
analysis (Crocker & Algina, 1986). So in addition to the classical test theory (CTT),
we also used Item response theory (IRT) to evaluate the CI. CTT has the following
three problems that IRT solved for us: (An & Yung, 2014):

D
ow

nl
oa

de
d 

by
 [

64
.1

78
.2

30
.2

8]
 a

t 0
6:

58
 1

6 
D

ec
em

be
r 

20
17

 



COMPUTER SCIENCE EDUCATION 131

Table 2. The percentage of students holding each misconception based on the first CI
administration.

Misconception Percentage (%)

BFneverExecute 17.4
BFexecuteBefore 13.04
InfiniteExecution 4.35
RCwrite 0
RCnoReturnRequired 8.7
RCreturnIsRequired 8.7
BCbeforeRecursiveCase 8.7
BCactionReturnConstant 4.35
BCcheckAganistConstant 0
BCwrite 0
BCevaluation 21.75
GlobalVariable 30.43

• CTT has a limitation that the item and student characteristics, such as item
difficulty parameters and student scores, are not discernible. Depending on
the sub-population in question, item characteristics might change. If a high-
ability sub-population is considered, all test items would appear to be easy.
But when a low-ability sub-population is considered, the same set of items
would be difficult. This limitationmakes it difficult to assess individuals’ abil-
ities using different test forms. However, using IRT, the item characteristics
and the personal abilities are formulated by distinctive parameters. After
the items are calibrated for a population, the scores for subjects from that
population can be compared directly even if they answer different sub-sets
of the items.

• The definition of reliability in CTT is based on parallel tests, which are difficult
to achieve in practice. The precision of measurement is the same for all
scores for a particular sample. In CTT, longer tests are usually more reliable
than shorter tests. However, reliability in IRT is defined as a function that
is conditional on the scores of the measured latent construct. Precision
of measurement differs across the latent construct continuum and can
be generalized to the whole target population. With IRT, measurement
precision is often depicted by the information curves. These curves can be
treated as a function of the latent factor conditional on the item parameters.
They can be calculated for an individual item or for the whole test.

• Missing values in CTT are difficult to handle during both test development
and subject scoring. Subjects who have one or more missing responses
cannot be scored unless these missing values are imputed. In contrast, the
estimation framework of the IRT models makes it straightforward to analyze
items that have random missing data. IRT can still calibrate items and score
subjects using all the available information based on the likelihood; the
likelihood-based methods are implemented in the IRT procedure.
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Table 3. Item analysis for the first draft CI.

Question Difficulty index Discrimination index

Item 1 56.52 31.06
Item 2 59.48 23.51
Item 3 95 15.79
Item 4 91.3 −4.8
Item 5 91.3 47.19
Item 6 62.32 42.05
Item 7 91.23 58.28
Item 8 92.75 54.39
Item 9 60.87 22.67
Item 10 90.23 63.6

Figure 1. Item response curve for all the items in the first iteration of the CI. The ability on the
x-axis of the IRCs refers to student performance.

For these reasons, we used IRT to evaluate item quality by performing item
analysis as shown in Table 3, and by constructing item response curves (IRCs) as
shown in Figure 1.

For most of the questions, the IRC demonstrates the desired correlation
between conceptual knowledge and item performance. Student ability is mea-
sured by the sum of the scores of the ten concept inventory questions. For most
of the questions, as student ability increases, the probability to solve the question
correctly increases as well. We found that Question 4 did not show the desired
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Table 4.Misconceptions and questions matrix for the second iteration of the CI.

Misconception Q1 Q2 Q3 Q4 Q5 Q6

BFneverExecute X
BFexecuteBefore X
RCwrite X X X
RCnoReturnRequired X X
RCreturnIsRequired X X
BCbeforeRecursiveCase X X
BCactionReturnConstant X
BCcheckAganistConstant X
BCwrite X X X
BCevaluation X X X X
GlobalVariable X

behavior since student performance on the question did not vary according
to student performance on the exam. This is why this question also has a low
discrimination index.

Based on the findings from the first iteration, in the second CI version, we
dropped Question 3. Based on our investigation of previous recursion pre-tests,
we determined that students can easily spot infinite recursion using their prior
knowledge. Depending on expert feedback, we may also drop the items whose
discrimination index is less than 30% (Questions 4 and 9). Since Question 10 is a
writing question, we changed it to make it a little harder (e.g. ask the students to
implement a recursive function to find the largest element in an array, or to search
for a given number in an array). The second iteration CI questions can be found
in Appendix 1, along with the detailed rubrics and associated misconception
or difficulty indicated by each possible answer. Table 4 shows a summary of
misconceptions and difficulties associated with each question.

5.2.2. Second administration
In Fall 2015, we administered the second iteration of the CI. We found that all the
candidate answers in the questions rubric were given by the students. We did not
find any answers for any of the questions thatwere not covered by the rubrics.We
looked at each of the six CI questions for all of the 111 students. We then counted
thenumber of student answers that expresses eachmisconception. Table 5 shows
the percentage of Fall 2015 students who appear to hold each misconception.

We also evaluated the CI by performing item analysis in Table 6 and con-
structing item response curves (IRCs) in Figure 2. We can see from the IRC that
most of the questions except Question 5 demonstrated the desired correlation
between the conceptual knowledge and item performance. For all the questions,
as the student ability increases, the probability to solve the question correctly
increases as well. We foundQuestion 5 did not show the a good behavior as other
questions, it did not show as sharp difference in the probability depending on the
student ability. We will think about how Question 5 can be modified and will ask
the experts about their opinion on how to modify this question. It could be that
the misconceptions tested by this question is not widely held by students.

D
ow

nl
oa

de
d 

by
 [

64
.1

78
.2

30
.2

8]
 a

t 0
6:

58
 1

6 
D

ec
em

be
r 

20
17

 



134 S. HAMOUDA ET AL.

Table 5. The percentage of students holding each misconception based on the second CI
administration.

Misconception Percentage (%)

BFneverExecute 27.93
BFexecuteBefore 9.5
RCwrite 30
RCnoReturnRequired 20
RCreturnIsRequired 23
BCbeforeRecursiveCase 15
BCactionReturnConstant 6
BCcheckAganistConstant 23
BCwrite 42
BCevaluation 18
GlobalVariable 15

Table 6. Item analysis for the second draft CI.

Question Difficulty index (%) Discrimination index (%)

Item 1 34.45 49.16
Item 2 69.13 49.80
Item 3 63.35 78.23
Item 4 80.21 43.45
Item 5 58.64 25.18
Item 6 56.24 60.23

5.2.3. Can onemisconception hide another?
As part of validating our CI, we are interested in answering the question: Can one
misconception hide another? In other words, if a student solved a question with
a certain answer such that we believe that this student holds the misconception
corresponding to this answer on the rubric, can he also have othermisconception
thatwe cannot detect because of the first one? Since not all of themisconceptions
are covered by more than one item, if a student did not show a certain miscon-
ception on a certain question, then we need to be sure that this is not because
another misconception is hiding the first. We have designed our rubrics so that
each possible answer covered by the rubric is mapped to a misconception(s). For
the most part, the possible misconceptions that can relate to a given problem
are also associated with separate answers in the rubric, which minimizes the
chances that onemisconception is hiding another covered by the same question.
The rubrics are presented in Appendix 1. However, to answer this question more
accurately, the concept inventory could be expanded to have more questions so
that amisconception is coveredbymore thanonequestion. Thiswill require a test
that needs more time. That in turn makes administering the concept inventory
harder because instructors will only devote limited time to exams.

5.2.4. Expert content validity
In Fall 2015, in order to check content validity of the second draft of the CI, we
collected feedback from experts. We choose experts who had at least one-year
experience in teaching recursion. On individual items, the experts were asked to:
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COMPUTER SCIENCE EDUCATION 135

Figure 2. Item response curve for all the items in the second iteration of the CI.

(1) Answer the CI.
(2) Decide whether the item reflects basic recursion concepts that students

should know after completing a CS2 level course.
(3) Rate the quality of the question.

Finally, the experts were asked to provide their opinions about the CI as a
whole. The experts were asked to:

(1) Decide if the CI as a whole reflects basic recursion knowledge after a CS2
level course

(2) Comment on the topic coverage, and
(3) Indicate how confident they would be that a student who performed well

on the CI will perform well in basic recursion in a CS2 level course.

We received 6 responses from the experts contacted. All the experts agreed
that the concept inventory does a good job to identify the student misconcep-
tions on basic recursion. Three experts suggested that Question 6, the writing
question, should be clarified more. They suggested to provide the function
signature at least. One expert noted that the programming language that is
used to teach recursion may have an effect on the rubrics that we designed. He
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noted that for Scala, some of the candidate answers in the rubrics may not fit
the targeted misconception. Another expert suggested to have more questions
covering the same misconceptions. As we have discussed earlier, adding more
questions to theCI increases resistance from instructors touse it. Oneexpert asked
why we do not includemisconceptions or questions related to multiple recursive
functions. Our response is that we consider multiple recursive calls a topic for an
advanced recursion concept inventory, not a basic recursion concept inventory.
Two experts suggested that we look at student answers to the CI questions to see
if it is actually measuringwhat it is supposed tomeasure (validating the approach
that we have in fact taken). In conclusion, the second draft CI was accepted by
the experts.

5.2.5. Validity according to APA standards
We used the validity guidelines in the APA standards for educational and psycho-
logical testing (American Educational Research Association, American Psycho-
logical Association & National Council on Measurement in Education and Joint
Committee on Standards for Educational and Psychological Testing (U.S.), 2014)
to evaluate how well our Recursion CI adheres to those standards. The following
guidelines are applicable, and we provide a justification of adherence for each
one.

(1) A rationale should be presented for each recommended interpretation and
use of test scores, togetherwith a comprehensive summary of the evidence
and theory bearing on the intended use or interpretation.
The recursion CI was developed using up-to-date analysis of previous
test questions on recursion, comprehensive analysis of the literature on
recursion misconceptions, expert interviews and student interviews, and
an analysis of 8000 student responses for recursion questions.

(2) The test developer should set forth clearly how test scores are intended to
be interpreted and used. The population(s) for which a test is appropriate
should be clearly delimited, and the construct that the test is intended to
assess should be clearly described.
We designed a rubric for all possible answers to each question. We used
binary (correct/incorrect) grading to grade the CI.

(3) If validity for some common or likely interpretation has not been investi-
gated, or if the interpretation is inconsistent with available evidence, that
fact should be made clear, and potential users should be cautioned about
making unsupported interpretations.
It is made clear that the test can be generalized only to be used for C-like
languages (such as Java) at the CS2 course level.

(4) If a test is used in a way that has not been validated, it is incumbent on the
user to justify the new use, collecting new evidence if necessary.
We are still working on extending the test to other programming lan-
guages.
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COMPUTER SCIENCE EDUCATION 137

(5) The composition of any sample of examinees fromwhich validity evidence
is obtained should be described in as much detail as is practical, including
major relevant sociodemographic and developmental characteristics.
This information is described in detail in this paper.

(6) When a validation rests in part on the opinion or decisions of expert
judges, observers, or raters, procedures for selecting such experts and for
eliciting judgments or ratings should be fully described. The qualifications,
and experience, of the judges should be presented. The description of
procedures should include any training and instructions provided, should
indicate whether participants reached their decisions independently, and
should report the level of agreement reached. If participants interacted
withoneanotheror exchanged information, theprocedures throughwhich
they may have influenced one another should be set forth.
As detailed in this paper, we use expert judges to establish the validity of
the CI. This feedback is taken into account for revisions of the CI.

(7) When validity evidence includes statistical analyses of test results, either
alone or together with data on other variables, the conditions under which
thedatawere collected shouldbedescribed in enoughdetail that users can
judge the relevance of the statistical findings to local conditions. Attention
should be drawn to any features of a validation data collection that are
likely to differ from typical operational testing conditions and that could
plausibly influence test performance.
These details are described in this paper.

(8) When a test use or score interpretation is recommended on the grounds
that testingor the testingprogramper sewill result in some indirect benefit
in addition to the utility of information from the test scores themselves,
the rationale for anticipating the indirect benefit should be made explicit.
Logical or theoretical arguments and empirical evidence for the indirect
benefit should be provided. Due weight should be given to any contra-
dictory findings suggesting important indirect outcomes other than those
predicted.
We do not generally claim that there are indirect benefits of using our CI
aside from the purposes stated in this paper: As a test of the students, and
as data for evaluating the merits of various way to teach recursion.

6. Evidence-centered assessment design for the recursion CI

Evidence-centered design (ECD) is a framework that provides a more formal
understanding for procedures that we have followed (Mislevy & Haertel, 2006).
ECD organizes the work of assessment design and implementation in terms of
layers. In this section, we discuss how the process of creating the recursion CI can
be couched in terms of ECD layers.

D
ow

nl
oa

de
d 

by
 [

64
.1

78
.2

30
.2

8]
 a

t 0
6:

58
 1

6 
D

ec
em

be
r 

20
17

 



138 S. HAMOUDA ET AL.

(1) Domain Analysis: Gather substantive information about the domain of
interest that has direct implications for assessment; how knowledge
is constructed, acquired, used, and communicated. We performed the
following steps for our domain analysis:

(a) Review the literature for previous research done to find misconcep-
tions about recursion.

(b) Interview students to learn more about their misconceptions. The
interviews were audio recorded. The student was given an exam
on recursion and was asked to think aloud while solving the exam
questions. Many misconceptions were made clear in this way.

(c) Interviews with instructors who have been teaching recursion to
understand common misconceptions that students are observed to
hold on recursion.

(d) Instructor surveys for the instructors that couldn’t participate in the
interviews. The surveys had the same questions that were asked of
instructors during the interview, in addition to questions about the
amount of time dedicated for recursion in class and outside of class.

(e) Analysis of 8000 student answers on recursion exam questions.

(2) Domain Modeling: Express assessment in narrative form based on do-
main analysis. For the recursion CI, we can express it as: We need to
evaluate student understanding of recursion and test their knowledge
with regards to recursion misconceptions.

(3) Conceptual Assessment Framework: Express assessment argument in
structures and specifications for tasks and tests, evaluation procedures,
measurement models. The recursion CI was given as a part of a mid-
term exam. It is composed of few (6 to 8) questions. All of the questions
are tracing questions, except for one which asks students to write a
complete recursive function to accomplish a certain task. Our target
students should have studied basic recursion in a CS2-level course.

(4) Assessment implementation: Implement assessment, including
presentation-ready tasks and calibrated measurement models. Recur-
sion concept inventory questions are shown in Appendix 1, along with
the rubric for each question. For each question, the rubric shows all
plausible answers for that questions, based on extensive experience
with student responses. The rubrics were built through the manual
analysis of the 8000 answers to recursion questions. The few answers
given on the first administration that were not covered in rubric were
added prior to the second administration. We expect that instructors
will use a binary grading system for each question.

(5) Assessment Delivery: Coordinate interactions of students and tasks:
task-and test-level scoring; reporting. Renderings of materials; numeri-
cal and graphical summaries for individual and groups; Graphical sum-
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maries. We present tables laying out how each question, response, and
misconception relate to each other. In Section 5, for each recursion CI
administration, we show the difficulty index (which is equivalent to the
mean grade of the question). We also show a graphical representation
of the item response analysis of each question. For eachmisconception,
We show the percentage of the answers which had a this misconcep-
tion.

7. Conclusion

This paper presents our initial efforts to define a collection of misconceptions
and difficulties encountered by students when learning introductory recursion,
as presented in a typical CS2 course.Wehavepresentedfirst and second iterations
of a draft concept inventory in the form of a series of questions, with the question
rubric tagged to a specific list of misconceptions and difficulties.

This initial effort should be continued by giving the CI to more students in
different institutions and asking more experts to evaluate the CI. The reliability
and the validity of the CI should be measured each time the CI is administrated,
to confirm that the developed recursion CI measures students’ misconceptions
on basic recursion. This recursion concept inventory is meant tomeasure student
understanding of basic recursion, regardless of the instruction method used. We
have in fact continued administering the CI in more courses and at more Univer-
sities. The basic recursion CI is now available in two programming languages, C
and Java. Efforts will be made in the future to extend it to other programming
languages in order for the recursion CI to be more generalized.
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Appendix 1. CI questions and rubrics

A.1. First iteration CI questions

A.1.1. Backward flow
(1) Given the following code:

int function(int y) {

if (y == 1)

return 5;

else {

function(y - 1);

y = y + 1;

return 83;

}

}

What will be returned when function(2) is executed? Write a number, or write
“infinite recursion” if you think that this call will lead to infinite recursion.

Table A1. Question item 1 rubric.

Answer Misconception

83 Correct
5 BFneverExecute
6 RCnoReturnRequired
Infinite recursion BFexecuteBefore
Other ?

(2) Consider the following function.

void PrintArray(int[] A, int n) {

if (n > 0) {

PrintArray(A, n - 1);

System.out.print(A[n]);

}

}

What will be printed when PrintArray(A, 5) is executed, with array A initialized
so that position A[i] stores value i? Write a sequence of numbers that will be printed,
or write “nothing” if you think that it will print nothing. Write “infinite recursion” if you
think that the call will lead to infinite recursion.

A.1.2. Infinite recursion
(3) Consider the following function.

int mystery(int x) {

if (x > 0)

return 8;

else

return 2 + mystery(x - 1);

}
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Table A2. Question item 2 rubric.

Answer Misconception

12345 Correct
1234 BCevaluation
01234 BCevaluation
012345 BCevaluation
54321 BFexecuteBefore
543210 BFexecuteBefore and BCevaluation
4321 BFexecuteBefore and BCevaluation
Nothing BFneverExecute
Infinite recursion BCevaluation or ?
Other ?

Table A3. Question item 3 rubric.

Answer Misconception

Infinite recursion Correct
8 InfiniteExecution
2 or 10, 12, 14, etc. BCevaluation
Other ?

Table A4. Question item 4 rubric.

Answer Misconception

Line 5: return function(x - 1 , y) Correct
Line 2: x ! = y Correct
Line 5: return function(x , y+1) Correct
Line 5: function(x - 1 , y) RCnoReturnRequired
Line 2: x > any positive number Correct but may be
or x == any number >= 3 BCcheckAganistConstant
Line 2: x < any positive number BCwrite and

BCcheckAganistConstant
Line 5: function(x + any positive number) RCwrite
Line 5: return y- any positive number BCevaluation
Line 5: return any constant value BCcheckAganistConstant
Other ?

What value will be returned when mystery(0) is executed? Write a number, or write
“infinite recursion” if you think that the call will lead to infinite recursion.

A.1.3. Recursive call
(4) The following code leads to infinite recursion when called as function(3, 2):

1 int function(int x, int y) {

2 if (x == y)

3 return y;

4 else

5 return function(x + 1, y);

6 }

PickONE line that you think is the causeof the infinite recursionandwrite a replacement,
so that this replacement will fix the infinite recursion.

(5) Given the following incomplete code:
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Table A5. Question item 5 rubric.

Answer Misconception

return k + SumTo(k - 1) Correct
return SumTo(k - 1) RCwrite
return k + SumTo(k + 1) RCwrite
k + SumTo(k - 1) RCnoReturnRequired
k + SumTo(k + 1) RCnoReturnRequired and RCwrite
Any answer that has no recursive call BCbeforeRecursiveCase
Other ?

Table A6. Question item 6 rubric.

Answer Misconception

CountDown(x , y-1) Correct
CountDown(x , y+1) RCwrite and BCevaluation
return CountDown(x , y-1) RCreturnIsRequired
return CountDown(x , y+1) RCreturnIsRequired and RCwrite and BCevaluation
Any answer that has no recursive call BCbeforeRecursiveCase
Other ?

int SumTo(int k)

{

if (k > 0)

// missing line;

else

return 0;

}

Write something to replace the line// missing line so that when given a number
k, SumTowill return a cumulative sum of the values from 1 to k. For example, 15 will be
returned when SumTo(5) is called, 21 when SumTo(6) is called, and so on.

(6) The following incomplete code is meant to print the numbers going from y down to x,
where x < y. For example, if CountDown(3, 7) is called then the following should
be printed: 76543

void CountDown(int x, int y) {

if (x <= y) {

System.out.print(y);

// missing recursive call

}

}

Write a recursive call that should replace // missing recursive call.

A.1.4. Base case
(7) Given the following two methods:

int function1(int x, int y) {

if (x == 1)

return y;

else

return function1(x-1, y) + y;

}
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Table A7. Question 7 rubric.

Answer Misconception

6 and 6 Correct
Two different values BCbeforeRecursiveCase
The same value, but not 6 BCevaluation or ?
Infinite Recursion for both BCevaluation or ?
Other ?

Table A8. Question item 8 rubric.

Answer Misconception

a==b and return a Correct
a==b and return b Correct
a==b and return constant BCcheckAganistConstant
A condition like a==constant or b==constant
and return a BCwrite and BCcheckAganistConstant
Other ?

int function2(int x, int y) {

if (x > 1)

return function2(x-1, y) + y;

else

return y;

}

What values are returned by the calls function1(2,3) and function2(2,3)?
Write a number for each return value, or write “infinite recursion” if you think either will
eventually lead to infinite recursion.

(8) Given the following incomplete recursive method:

int Sum(int a, int b) {

if ( //Missing Case// )

//Missing Action//

else

return Sum(a, b-1)+ b;

}

Write something to replace //Missing Case// and //Missing Action// so
that when this recursive function is passed 2 numbers, it will return the sum of all the
integers between them. For example, given 2 and 5, add 2 + 3 + 4 + 5 and return 14. If
the two numbers are equal, then return that value.

A.1.5. Variables updating
(9) The following function is intended to find the minimum value in an array.

int recursiveMin(int[] array, int index) {

int min = array[0];

if (index == 0)

return min;

else {

if (array[index] < min)
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Table A9. Question item 9 rubric.

Answer Misconception

10 Correct
2 GlobalVariable
8 ?
Infinite Recursion ?
Other ?

Table A10. Question item 1 rubric.

Answer Misconception

83 Correct
5 BFneverExecute
6 RCnoReturnRequired
Infinite recursion BFexecuteBefore
583 BCbeforeRecursiveCase
Other ?

min = array[index];

return recursiveMin(array, index-1);

}

}

What will be returned by recursiveMinwhen the following lines are executed?

int [] array = {10, 20, 2, 30, 8};

int var= recursiveMin(array, array.length);

Write a number, or write “infinite recursion” if you think that the call will lead to infinite
recursion.

A.1.6. Writing question
(10) Write a recursive function to compute x to the power y. Assumes that y is positive or

zero and both x any y are integers.

A.2. Second iteration CI questions

(1) Given the following code:

int function(int y) {

if (y == 1)

return 5;

else {

function(y - 1);

y = y + 1;

return 83;

}

}

What will be returned when function(2) is executed? Write a number, or write
“infinite recursion” if you think that this call will lead to infinite recursion.
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Table A11. Question item 2 rubric.

Answer Misconception

return k + SumTo(k - 1) Correct
return SumTo(k - 1) RCwrite
return k + SumTo(k + 1) RCwrite
k + SumTo(k - 1) RCnoReturnRequired
k + SumTo(k + 1) RCnoReturnRequired and RCwrite
Any answer that has no recursive call BCbeforeRecursiveCase
Other ?

Table A12. Question item 3 rubric.

Answer Misconception

CountDown(x , y-1) Correct
CountDown(x , y+1) RCwrite and BCevaluation
return CountDown(x , y-1) RCreturnIsRequired
return CountDown(x , y+1) RCreturnIsRequired and RCwrite and BCevaluation
Other ?

(2) Given the following incomplete code:

int SumTo(int k)

{

if (k > 0)

// missing line;

else

return 0;

}

Write something to replace the line// missing line so that when given a number
k, SumTowill return a cumulative sum of the values from 1 to k. For example, 15 will be
returned when SumTo(5) is called, 21 when SumTo(6) is called, and so on.

(3) The following incomplete code is meant to print the numbers going from y down to x,
where x < y. For example, if CountDown(3, 7) is called then the following should
be printed: 76543

void CountDown(int x, int y) {

if (x <= y) {

System.out.print(y);

// missing recursive call

}

}

Write a recursive call that should replace // missing recursive call.

(4) Given the following two methods:

int function1(int x, int y) {

if (x == 1)

return y;

else

return function1(x-1, y) + y;
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Table A13. Question item 4 rubric.

Answer Misconception

6 and 6 Correct
Two different values BCbeforeRecursiveCase
The same value, but not 6 BCevaluation or ?
Infinite Recursion for both BCevaluation or ?
Other ?

Table A14. Question item 5 rubric.

Answer Misconception

a==b and return a Correct
a==b and return b Correct
a==b and return constant BCcheckAganistConstant
A condition like a==constant or b==constant
and return a BCwrite and BCcheckAganistConstant
a==b and return a+b ?
Other ?

}

int function2(int x, int y) {

if (x > 1)

return function2(x-1, y) + y;

else

return y;

}

What values are returned by the calls function1(2,3) and function2(2,3)?
Write a number for each return value, or write “infinite recursion” if you think either will
eventually lead to infinite recursion.

(5) Given the following incomplete recursive method:

int Sum(int a, int b) {

if ( //Missing Case// )

//Missing Action//

else

return Sum(a, b-1)+ b;

}

Write something to replace //Missing Case// and //Missing Action// so
that when this recursive function is passed 2 numbers, it will return the sum of all the
integers between them. For example, given 2 and 5, add 2 + 3 + 4 + 5 and return 14. If
the two numbers are equal, then return that value.

(6) Write a recursive function to search for a given value in a given array.
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