LARGE SCALE EDITING AND VECTOR TO RASTER CONVERSION
VIA Dd>U.Hw.HH SPATIAL INDEXING

Clifford A. Shaffer

Department of Computer Science
<=.m55 Polytechnic Institute and State University
Blacksburg, VA 24061-0106 USA

Mahesh T. Ursekar

_ Mapping Science Division
Intergraph, IW17A3
Huntsville, AL 35894

Abstract

We describe the use of various quadtree data structure variants for map edit-
ing and vector to raster conversion of large scale databases (e.g., millions of line
segments).” The PMR guadiree is a representation for line segments that supports

- fast detection of line segment intersections and gaps in polygon boundaries. These
capabilities allow quick processing of the database to detect most topological in-
consistencies. The data structure also supports interactive editing operations such
as displaying relevant areas, modifying line segments to correct errors, and wm&bm
new line segments to separate e.g. seas from oceans. Techniques for minimizing line
segment endpoint duplication are also discussed. Finally, a novel approach for con-
verting the database from vector to raster format is presented. This technique first
converts the vector database to a line quadtree (similar to a region quadtree with
the addition of rectilinear polygon boundary information) and then uses a flood-fill
algorithm to tag quadtree nodes associated with Ho%n& polygons Aooﬁuaﬂ@n. islands
and lakes). In the final stage, the line quadtree is converted to a region quadtree.

Introduction

As GIS technology progresses, users will wish to store ever larger geographic
" databases. Depending on the application, geographic databases today are com-
monly stored either in vector (i.e., boundary) or raster (i.e., areal) format. It is
commonly recognized that each type of representation has advantages and disad- .
vantages, and traditional algorithms for converting between them are well known
(see, for example, Burrough, 1986; Franklin, 1979; Peuquet, 1981). Recent advances
in hierarchical data structures warrants study of their %w:g»mou to the vector to
raster conversion process. In particular, indexing data via a hierarchical represen-
tation effectively sorts the <on»on.m. which is at the heart of traditional algorithms.
So far as we know, this paper is the first report of an attempt to apply hierarchical
data structures to the coriversion process.

505

We present data structures and algorithms to support editing and rasterizing
extremely large vector databases. We also discuss methods for minimizing duplica-

“tion of vector endpoints, a topic relevant to any boundary representation. We have

implemented our algorithms for use with the CIA World Data Bank II (WDB2)
(CIA 1977), a public domain vector database of the entire world to one second
resolution. We successfully rasterized that portion of the WDB2 consisting of all
country, coast, and lake boundaries — approximately two million line segments.

The WDB2 is a typical “spaghetti” file in that it is simply a collection of
chains*, where each chain is a series of connected data points (vertices) with spec-
ified position. There is no required organization or relationship between various
chains. Prior to rasterization, we discovered that many errors are contained in
the WDB2 such that it does not form a collection of well-formed polygons. Typi-
cal problems included small gaps along a polygon boundary (probably undershoots
during digitization), and line segments that stick out past the polygon boundary —
in particular for country boundaries crossing coastlines (probably overshoots during
digitization). In both cases, such problems can be determined by finding vertices of
degree one. We also would like to remove intersections between line segments not
at a vertex point. The spatial indexing method described below supports efficient
location and removal of such errors.

Before discussing the various algorithms, we first describe several quadtree
representations that we used. For further details on these variants, see the books by
Samet (1990a, 1990b). The region quadtree is the simplest and best known form of
quadtree, and is most appropriate for storing raster images containing homogeneous
regions. The region quadtree represents a homogeneous array of 2" x 2" pixels
as a single block, corresponding to a leaf node in the quadtree. Arrays whose
pixel values are not all the same are subdivided into four equal-sized sub-arrays
represented by an internal node with four children (labeled NW, NE, SW, and SE
as in Figure 1d), each representing a corresponding sub-array. These sub-arrays are
recursively divided into smaller sub-arrays until each such block is homogeneous.
Figure 1 illustrates the quadtree representation for a raster image.

The line quadiree (Samet and Webber, 1984) is similar to the region quadtree,
except that each leaf node of the tree is augmented by a field of 4 bits, one bit for
each edge of the block represented by that node. A bit is on if the corresponding
edge of the block is part of the region boundary. Otherwise, the bit is off. Note
that the entire block edge must be part of the boundary, or else the block must
be decomposed. Figure 2 illustrates the line quadtree representation for the re-
gion quadtree in Figure lc. In order to save space and processing time, we have
modified the line quadtree to minimize boundary duplicates. Most line segment
boundaries fall between two nodes. We store such boundaries only with the eastern
and southern nodes of such pairs. .

The PM quadiree (Samet and Webber, 1985) is used to store a collection of

* These chains are called segments in the literature. We use the term chain so as not to confuse it with

a line segment, a single line connecting two endpoints.

506

“line segments.” If all line segments in the database adhere to some decomposition
criteria, then the line segments are simply stored in a leaf node corresponding to
the entire image. If the line segments fail to meet the criteria, then the region is
subdivided into quadrants, and each quadrant recursively tests the line segments
contained within it against the decomposition criteria. Figure 3 illustrates a variant
of the PM quadtree (as described by Nelson and Samet, 1986) which during the
insertion process splits a node once whenever a new line segment added to the node
brings the total number of line segments within that node above some threshold (in
Figure 4, the threshold is 2).

Vector Indexing and Editing

Our first task was to create a spatial index for the vector database that would
support efficient detection of inconsistencies and allow their correction. We decided
to use a variant of the PM quadtree for this purpose. Since the database is so large,
the index (and the database) must be maintained on disk, with sections brought
into memory when required. To simplify disk management, we determined that
our tree representation should have fixed sized nodes. We also decided to use a
pointer based representation (i.e., we explicitly store pointers from a node to its
four children) rather than representing the tree via a linear quadtree (Gargantini,
1982). The various merits of pointer vs. linear quadtrees are beyond the scope of
this paper; we chose the pointer version for simplicity and because a related research
project will create file management software for disk-based pointer quadtrees that
is more efficient than disk-based linear quadtrees (Brown, et al, 1991). As a result
of these decisions, our tree is represented on disk as a series of fixed-size nodes, with
the nodes maintained roughly in order of a preorder traversal of the quadtree. Once
the initial index for the database is built, all other processing does little to disrupt
this order (although the order is disrupted somewhat during editing), so our simple
disk buffering scheme did not negatively affect performarice.

Our requirements that quadtree nodes be of fixed size fits well with the PM
quadtree paradigm of decomposing any set of line segments that is “too compli-
cated”. Line segment endpoint coordinates (at one second resolution) are stored
as 48 bit quantities, which includes the = and y coordinates as well as some bits
available for various flags. Our initial node representation simply stored up to five
line segments (10 endpoints) in each node. This approach requires that no more
than five line segments meet at a single vertex. This is an undesirable limitation,
but one not exceeded in our test data (rarely do five polygons meet at a single point
in real maps). The major objection to simply storing the line segments within the
node is that endpoints are frequently duplicated — in particular, all endpoints are
duplicated for a polygonal chain. Note that not all endpoints stored with a node
actually fall within that node. We store in each node both endpoints for any line
segment passing through that node.

Our second node representation attempts to minimize the amount of endpoint

*
; .AES stands for Polygonal Map, although to date nobody has reported using it to represent polygons
as distinct from a collection of line segments).

507

duplication by reserving one bit from each 48 bit endpoint descriptor to be used

as a continuation flag. If the flag is set, then the current endpoint is connected .

to the next endpoint in the node. Thus, a chain of n line segments requires only
n+ 1 endpoint descriptors. Using this method, an endpoint of degree five requires
only eight endpoints (described by two chains of two line segments n@.@&&dm three
endpoints each, and another line segment requiring two endpoints, as _Emanwn.& by
Figure 4b). Thus, the node representation that we implemented stores a maximum
of eight endpoints and their flags. Figure 4 illustrates our H@ﬂn@magma_wb. This
representation does a good job of minimizing repeated storage of endpoints, and
reduces the total storage required by about 50the naive method of storing both end-
points of all line segments. This method still requires some duplication of endpoints
within a node, and we are studying other methods to achieve further compression.

The PM quadtree for our database, using the second node represenation de-
scribed, required approximately 50 Mbytes of disk space. Of this amount, about
38 Mbytes can be attributed to overhead of the indexing scheme {as opposed to
approximately 12 Mbytes required to store the line segments).

Our next step was to locate all illegal intersections (intersections between two
line segments other than at their endpoints) and all “orphan” line segments (a line
segment with a vertex of degree 1). Removing orphans does not guarentee that
the resulting collection is well formed, (as illustrated by Figure 5), but for our
database it probably resolves all inconsistencies. If not, the rasterization process
will still generate “reasonable” polygons, even for the example of Figure 5. Locating
orphans/intersections was combined with the building process.

Building the tree and locating the intersections/orphans for the two million
line segment database required approximately 37 hours on a Mac II running A/UX
(Apple’s UNIX). If this appears excessive, we urge the reader to consider the follow-
ing points. 1) The machine used was an original Mac II (Motorola 63030 processor
at 16 Mhertz). 2) The algorithm is inefficiently coded since we created it to run only
once. Code tuning can greatly improve the running time; compacting the represen-
tation (for example by storing the endpoints in 40 bits instead of 48, or reducing
the duplicate endpoints further) will also improve performance by minimizing disk
fetches. 3) The tree construction needs to be done (once) anyway to provide an spa-
tial index for many other operations. 4) Given the tremendous number of vectors
and an O(nlogn) algorithm, this is really not so slow, 2000 line segments should
require only about one minute with our current program.

We also created a display and editing program that read the file of inter-
sections/orphans. Approximately 5000 intersections /orphans were found. For each
such inconsistency point in turn, the area around that point was displayed. We then
hand modified the database to correct the problem by removing, adding, or chang-
ing line segments. While automatic. programs exist to resolve such inconsistencies,
it is a very complicated, heuristic process. Our approach required approximately
one week of editing, and allowed for human judgement in the process. We note
that the PM quadtree performed so well as a data index that the bottleneck for
displaying portions of the database was not time to fetch data from disk, but rather

508

time for the Mac’s relatively poor graphics capabilities to display the lines on the
screen.

Rasterization

After the database had.been indexed and all inconsistencies removed, we per-
formed rasterization. Franklin (1979) and Peuquet (1981) each present a variety of
algorithms for vector to raster conversion. Most of these algorithms process either
the vector set or the raster in strips if insufficient memory is available for the en-
tire process. Our approach is to process the vector database by traversing the PM
quadtree and rasterizing each line segment in turn. In order to save space and to
minimize disk fetches, we rasterize to a line quadtree rather than to an array. In
effect, our algorithm assumes random access to both the input PM quadtree and
the -output line quadtree. While we use our own buffer pool to manage quadtree
node pages, this is similar to relying on virtual memory to handle main memory
limitations. By processing the PM quadtree in preorder traversal, we build the line
quadtree in approximately preorder traversal as well. Thus, our algorithm requires
little swapping of pages. The line quadtree allows for simply rasterizing each vector
and marking borders in the appropriate nodes of the line quadtree.

One advantage of this method is that we can rasterize the vector database
at any scale (given sufficient disk space). Storing a complete array at one second
resolution would require nearly 1000 gigabytes of disk space if only one byte of
information were required. at each pixel. The region quadtree can reduce this re-
quirement by perhaps two or three orders.of magnitude, but this still requires more
disk space than we had available. For our tests, we scaled by a factor of 150 in each
dimension. This lead to a problem of mismatched resolution between the input line
segments and the output rasterization which showed itself in the form of spurious
small polygons-as illustrated by Figure 6. Proper generalization and filtering of the
line segments to match the scaling factor should eliminate this problem. Note that

‘these spurious polygons inflate both the time required for all remaining steps and
the space required.

The next step is to assign a polygon label to each block of the line quadtree. We
simply traverse the line quadtree in preorder, and for each leaf node encountered
with no polygon value, we perform a standard floodfill algorithm (modified for
quadtrees) using that node as the seed point. The final step is to convert the line
quadtree to a region quadtree, in order to save space. In our test, the line quadtree
required 4.8 Mbytes of space, while the corresponding region quadtree required 3.6

Mbytes. Building the line quadtree required approximately 81 minutes of CPU
time.

For further details on all aspects of this project, see Ursekar (1991).

509

References

1. Brown, P.R., Shaffer, C.A. and Webber, R.E. 1991. A paging scheme for pointer-
based quadtrees, Proceedings of the Nineteenth Annual ACM Computer Science
Conference, San Antonio, TX, March 1991, 687.

2. Burrough, P.A. 1986. Principles of Geographical Information Systems for Land
Resources Assessment, Clarendon Press, Oxford.

3. Central Intelligence Agency, 1977. World Data Bank II General Users Guide,
PB-271 869, July 1977.)

4. Franklin, W.R. 1979. Evaluation of Algorithms to Ummv._p% Vector Plots on Raster
Devices, Computer Graphics and Image Processing 11, 4(December 1979), 377-397.

5. Gargantini, I. 1982. An effective way to novummoun quadtrees, Communications of
the ACM 25, 12(December 1982), 905-910. _

6. Nelson, R.C. and Samet, H. 1986. A consistent hierarchical representation for
vector data, Computer Graphics 20, 4(August 1986), 197-206.

7. Peuquet, D.J. 1981. An examination of techniques for reformatting digital car-
tographic data/part 2: The vector to raster process, Cartographica 18, 3, 21-33,
1981. .

. 8. Samet, H. and Webber, R.E. 1984. On Encoding Boundaries with Quadtrees,

Pattern Analysis and Machine Intelligence 6, 3(May 1984), 365-369.

9. Samet, H. and Webber, R.E. 1985. Storing a collection of polygons using quad-
trees, ACM Transactions on Graphics 4, 3(July 1985), 182-222.

Ho.mvnﬁfm..uooo?.»3:.3&38e\%ﬁa&&b&a.ﬁga?ﬂa,>m&mo=<<8_m$
Reading MA. : .

11. Samet, H. 1990b. The Design and Analysis of Spatial Data Structures, Addison
Wesley, Reading MA. :

12. Ursekar, M.T. 1991. Rasterizing the CIA World Data Bank II, Master’s Project
Report, Computer Science Department, Virginia Tech, Blacksburg VA.

510

ojol ojofolo}jo0}0 |
gjolojojojoloio F
gjojojof1f1y1i1

ORI n
0 111 1 ”
DO _m
o[o[1[1[1[1]o[0
ofof1l1]1{0l0l0

(a) (®) ©
A

11 12 13 14

T 8810 15 16 17 18

(d)

B

Figure 1. A region, its binary array, its maximal blocks, and" the corresponding
quadiree. (a) Region. (b) Binary array. (c) Block decomposition of the image in
(a). Blocks within the region are shaded. (d) Quadtree representation of the blocks
in (c). . .

511

AN
N WA
35 / 1

A

| | A

i i im- Figure 3. The PMR aﬁem».uom for a set
MMM_.MM wmwm.m“au_..so n:v&now for the i of line segments inserted in the order |
of their Iabels. Figure 5. An example of illegal topology that won't be caught by local operations.
However, the rasterization of this example would yield a reasonable set of polygons,
equivalent to removing the centermost line segment.
Y B

Line 1
L1 "
‘\
|t _ —\
e e
Line 2 - .,
B \\
\ 1

Artifact polygon

Figure 4. A set of five line segments meeing at a point. The naive method of
dpoint st uld store five ate line segments, and .thus t, dpoints: . . Lo,
A0, BO, CO, DO snd A0, Ous revied method stores chains 40T, GOD and Figure 6. An example of the formation of undesirable polygons due to high resolu-
a. for w, »o»u.m of eight endpoints. ’ o tion line segments overlayed on a low resolution grid.
513

512

