
Information Processing Letters 24 (1987) 369-375 6 April 1987 
North-Holland 

DIGITIZING THE PLANE WITH CELLS OF NONUNIFORM SIZE * 

Hanan SAMET and Clifford A. SHAFFER 

Computer Science Department and Center for Automation Research, University of Maryland, College Park, AID 20742, U.S.A. 

Robert E. WEBBER 

Computer Science Department, Rutgers University, Busch Campus, New Brunswick, NJ 08903, U.S.A. 

Communicated by Alan Shaw 
Received 12 February 1986 
Revised 29 July 1986 

A central problem in the field of geometric algorithms is to compare algorithms that process vector-type data specified in 
the continuous plane with algorithms that process raster-type data specified in the digitized plane. A set of criteria is proposed 
that a digitization of a collection of line segments should satisfy in order to be said to represent the same structure as their 
continuous plane counterpart. These criteria insure that the digitized collection has the same number of distinct features as the 
original data. In particular, attention is focussed on the correspondence of the precision with which the locations of endpoints 
on a continuous plane are specified to the number of grid cells in the appropriate digitized plane. It is shown that these criteria 
cannot be satisfied by grid cells of uniform size. The result leads to a reformulation of the digitization process that 
corresponds closely to a quadtree decomposition. 
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1. Introduction 

Algorithms for manipulating geometric data 
come in two flavors: (a) those that assume vector- 
type data which is specified in a continuous plane, 
and (b) those that assume raster-type data which 
is specified in a digitized plane. It is hard to 
compare these two types of algorithms because of 
the difficulty in establishing strong analogies be- 
tween the geometries of the two planes in which 
their data is specified. In this paper we focus on 
the type of analogies that should hold between the 
continuous and digitized plane [10] representa- 
tions of a two-dimensional geometric object. In 
particular, we restrict ourselves to a consideration 
of what it means to have a digitized representation 

* This research was supported by the National Science Foun- 
dation under Grant DCR-86-05557. 

of a collection of straight-line segments and iso- 
lated vertices. (Note that the endpoints of the line 
segments are also referred to as vertices.) These 
line segments are said to form a planar polygonal 
map in the sense that they only intersect at their 
endpoints. 

In recent years there has been a considerable 
amount of interest in the use of hierarchical data 
structures for handling both vector and raster 
data. They have been used in applications in com- 
puter graphics, solid modeling, image processing, 
geographic information systems, etc. (see the 
survey of Samet [11] for more details). Typical 
hierarchical data structures include the quadtree 
[7] and the octree [5,6,8]. They recursively decom- 
pose objects until all of the parts are homoge- 
neous. One of the deficiencies of such area decom- 
position rules is that they lead to many small parts 
in the neighborhood of the object boundary. In 
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addition, if the object does not  have rectilinear 
boundaries, then an exact representation is impos- 
sible. 

In order to overcome the above deficiencies, 
alternative decomposit ion criteria have been in- 
vestigated that are based on the notions of points, 
edges, and faces. For example, see the various PM 
quadtree solutions for two-dimensional data such 
as polygonal maps [15,9], and for three-dimen- 
sional data such as machine part  diagrams [1,2,3]. 
In each of these approaches it is desirable to know 
how many levels of decomposi t ion are necessary 
for an exact representation (not an approxima- 
tion). In the rest of this paper  we show that an 
exact representation is possible for two-dimen- 
sional data and derive the number  of levels of 
decomposit ion that are necessary as a function of 
the precision with which the vertices of the po- 
lygonal map are specified. Our approach is from 
the s tandpoint  of seeking an 'appropr ia te '  digiti- 
zation of a polygonal map. The extension of our 
results to three-dimensional data  is straightfor- 
ward. 

Of course, even data specified on a continuous 
plane must  be represented by coordinates of 
limited or fixed precision. Let d denote the num- 
ber of bits used to represent the fixed-point coor- 
dinates of the endpoints of the line segments. We 
also associate a measure of accuracy with the 
digitized plane. Let g denote the number  of bits 
required to specify the locations of the grid cells 
that compose the digitized plane, i.e., the digitized 
plane will consist of 2 g × 2 g grid cells. Conceptu- 
ally, we will view these grid cells as forming closed 
square regions that are referred to by the integer 
coordinates of their lower lef thand corner. In the 
rest of this paper  we derive an upper  bound  on g 
as a function of d. Normally, a digitization pro- 
cess is defined that maps grid cells in the digitized 
plane into congruent square regions in the con- 
tinuous plane. As will be demonstra ted  in the next 
section, this requires us to modify the digitization 
process to permit  grid cells to be of varying sizes 
resulting in a decomposit ion similar to that im- 
posed by a quadtree [11]. 

Our goal is to devise a digitized representation 
for a collection of line segment s that is based on 
the not ion that  the digitized collection should have 

the same number  of distinct features as the origi- 
nal data. Alternatively, with each grid cell we 
want  to associate either a vertex or a portion of a 
single line segment. Recall that we assume that 
line segments do not  intersect at any points other 
than their endpoints. The digitized representation 
of such a collection of line segments is termed a 
well-formed digitization and is defined as follows. 

1.1. Definition. A well-formed digitization of a 
collection of line segments satisfies the following 
three criteria: 

(1) Vertices with different coordinates do not 
occur in the same grid cell. 

(2) A grid cell containing a portion of a line 
segment does not  also contain a vertex that is not  
on that line segment. 

(3) Except in the cell at which they meet, two 
different line segments must  not  occupy the same 
grid cell. 

These criteria establish an analogy between 
points  in the continuous plane and ceUs in the 
digitized plane. Criterion (1) indicates that, for a 
given accuracy, two distinct points will not map to 
the same cell. Criteria (1) and (2) imply that if a 
point  and a line segment are disjoint in the con- 
t inuous plane, then their digitizations are also 
disjoint. Criterion (3), which states that two line 
segments cannot share the same grid cell unless 
they share a vertex within that grid cell, has as an 
immediate  consequence that if two line segments 
share two different grid cells, then they must share 
two distinct vert ices--which in turn implies that 
the two lines are the same. This is equivalent to 
saying that if two Euclidean lines share two dis- 
tinct vertices, then they are the same lines. Alter- 
natively, these criteria can be summarized as fol- 
lows: if two line segments share a cell in the 
digitized plane, then they intersect in the continu- 
ous plane in the region of the inverse image (with 
respect to the digitization process) of that cell. 

It  is interesting to note that criterion (3) is 
impossible to satisfy if the grid cells are not  de- 
fined as closed regions in the topological sense. In 
particular, suppose two lines pass through a cell 
and meet at a vertex, say V, on the border of that 
cell such that V fails to be 'within '  the cell because 
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the cell is open on that side. In such a case, 
criterion (3) cannot  be satisfied no mat te r  how 
small the cell is made.  Of course, this is avoided at 
the cost of  nonuniqueness  in the sense that line 
segments that  intersect a specific grid point  can be 
associated with one of four different  grid cells 
depending on their slope. Similarly, each segment 
of a line that  coincides with the horizontal  or 
vertical lines that  are parallel to the x and y axes 
and that pass through grid points is associated 
with two grid cells. 

2. Analysis 

In the following sections we expand on the 
notion of a well-formed digitization and  its effect 
on the interact ion between g (the size of the grid 
cell coordinates)  and d (the precision of  the con- 
t inuous plane coordinates).  

A B 

Fig. 1. Example illustrating the worst-case decomposition when 
only criteria (1) and (2) need to be satisfied. 

2.1. The digitized plane with uniform cell size 

If only the first two criteria need to be satisfied, 
then it is necessary to calculate how close a line 
segment connect ing  two points on a 2 d ×  2 d grid 
can lie to ano ther  point  on the grid without  actu- 
ally touching that  point. Note  that  the grid points 
all lie on the c o m e r  of grid ceils. 

2.1. Lemma. For a 2 d × 2 d grid with all gridpomts 
separated by 1, the minimum horizontal (or verti- 
cal) separation between a grid point and a line 
segment joining two other grid points satisfying 
criterion (2) is bounded from below by 2 -(d+l) 

Proof. This distance can be asymptot ical ly  at- 
tained by the following construction.  Consider  a 
subset of  a 2 d × 2 d grid as shown in Fig. 1. Let A 
be at (0, 0), B at (1, 0), C at (0, 2 a - 1), and D at 
(0, 2 d - 2). The  distance from A to B and f rom C 
to D is 1, and  the distance f rom A to C is 2 d - 1. 
We claim that  this represents a worst-case situa- 
tion and, in particular,  that the closest approach 
for this grid will be the distance f rom D to the line 
BC. A demons t ra t ion  that this is indeed the 
worst-case si tuation can be found in [14]. [] 

Problems arise when we try to take into account  
criterion (3). 

2.2. Theorem. For a well-formed uniform digitiza- 
tion imposed on a 2 d x 2 d grid with all grid points 
separated by 1, g is unbounded. 

Proof. Consider a subset of  a 2 ° × 2  d grid as 
shown in Fig. 2. Let A be at (0, 0), B at (1, 2 d - -  1 ) ,  

and C at (1, 2 d - 2). Since both  lines AB and AC 
intersect the upper border  of  the cell containing A 
(i.e., at B' and C'  respectively), they will both exist 
in the cell immediately above A, which contradicts 
criterion (3). Thus, we have to increase the resolu- 
tion of  the grid. However,  as we increase the 
resolution, the size of  the cell containing A shrinks 
and the intercepts of  AB and AC with the upper 
border  of that cell become even closer thereby 
forcing a further  increase in resolution. It is clear 
that this increase in resolution can continue indef- 
initely without  ever satisfying criterion (3) since a 
segment of the upper  border  of  a cell is always 
smaller than the entire upper  border  of the cell. 
[] 
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Such decomposition processes result in variants of 
the quadtree data structure. In particular, criteria 
(1)-(3) above correspond to the three properties 
that define the PM 1 quadtree [15]. An example of 
a polygonal map and its corresponding PM1 
quadtree is shown in Fig. 3. The PM 1 quadtree 
assumes a 2 5 × 2 5 grid. 

In the next section we show that the 
'quadtree'-style digitization approach is consistent 
with criteria (1)-(3). We also derive an upper 
bound on the corresponding value of g as a func- 
tion of d. Note that, in terms of the quadtree data 
structure, g corresponds to the maximum depth of 
the tree. 

B, 

Fig. 2. Example illustrating the problems that arise .when 
attempting to satisfy criteria (1)-(3) with a grid of uniform cell 
sizes. 

This leaves us in the position of having three 
reasonable criteria for an appropriate digitization 
of a polygonal map that are inconsistent with the 
traditional definition of a digitized plane. In par- 
ticular, note that our poblems with criterion (3) 
follow immediately from the expectation that each 
cell of the digitized plane be the same size. Instead 
of abandoning the criteria that forced the digitized 
features to correspond to the features of the con- 
tinuous object that they represent (i.e., criteria 
(1)-(3)), we propose to permit the cells of the 
digitized plane to have different sizes. Thus, we 
replace the traditional digitization process with an 
adaptive digitization process. 

The adaptive digitization process creates a col- 
lection of grid cells that are collectively termed the 
adaptive digitized plane. Initially, the adaptive pro- 
cess represents the entire plane by one grid cell. 
Each grid cell that fails to satisfy criteria (1), (2), 
and (3), is decomposed into four subcells (each of 
width one half of the width of the original cell). 
This process results in an arrangement of grid cell 
sizes that adapts to the structure being digitized. 
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Fig. 3. (a) Example polygonal map and (b) its corresponding 
PM x quadtree embedded in a 2 ~ × 25 grid. 

372 



Volume 24, Number 6 INFORMATION PROCESSING LETTERS 6 April 1987 

2.2. The adaptive digitized plane 

The situation that leads to the maximum value 
of g for the adaptive digitization process as a 
function of d is derived in the following manner.  
Observe that all the points that can be specified 
with d bits of precision form a 2 d × 2 d grid. Recall 
that criterion (3) of the digitization criteria stipu- 
lates that no cell can contain two fine segments 
unless they meet at a common  vertex in the region 
of that cell. Thus, the problem reduces to how 
small a cell can be and still fail to satisfy this 
criterion. This situation is at its worst in the cells 
immediately adjacent to a cell containing a vertex. 
Note  that the width of the smallest cell that fails 
to separate two lines originating at a vertex within 
a neighboring cell decreases monotonical ly with 
the angle between the two fines. Actually, we are 
not  looking for the smallest angle between two 
line segments that emanate  from the lower lefthand 
comer  of a cell of a given size. Instead, we are 
seeking the min imum horizontal (or vertical) sep- 
aration between these two line segments, i.e., they 
subtend the smallest por t ion of a particular side of 
a cell. 

2.3. Lemma. Let P be a grid point in a 2 d × 2 d grid 
with all grid points separated by 1. Let w be the 
width of P's grid cell. Let d a and d 2 be two lines 
that emanate from P and that exit from the same 
side of P's grid cell. The minimum horizontal or 
vertical separation between dl and d 2 satisfying 
criterion (3) is bounded from below by w / ( ( 2  d - 1) 
× (2 d - 2)). 

Proof. F rom Fig. 2 we observe that the closest 
approach between two intercepts, say B' and C' ,  
of line segments with the border of a cell of a grid 
point  occurs when the cell has its lower left comer  
A at (0, 0) and the line segments extend from A to 
B at (1, 2 d - 1) and C at (1, 2 d - 2). A n  argument  
based on similar triangles demonstrat ing that  this 
is indeed the worst-case situation is given in [14]. 
[] 

We now turn to the question of what  is the 
worst-case value of g as a function of d when all 
three criteria are met. 

2.4. Theorem. The maximum level g needed by a 
well-formed adaptive digitization of a polygonal map 
whose vertices lie on a 2 d X 2 d grid is bounded from 
above by 4d + 1. 

Proof. Our proof develops from an ordered con- 
sideration of the impact of the various criteria for 
a well-formed adaptive digitization on the worst- 
case value of g. Criterion (1) has the least impact 
on the value of g. Since all vertices are restricted 
to fie on the points of a 20 × 2 d grid, criterion (1) 
will be satisfied by any value g >~ d + 1. The bound 
is d + 1 instead of d because we assume that each 
cell of an adaptive digitization has a closed 
boundary; hence, at level g = d, two neighboring 
grid points would be comers of a common  cell. 

As analyzed in Lemma 2.1, criterion (2) is 
independent  of, and more restrictive than, crite- 
rion (1). By ' independent  of' we mean that there is 
a worst-case map that attains its worst cases with 
respect to criteria (1) and (2) simultaneously. Thus, 
criterion (2) raises the upper bound  on g to 2d + 1. 

Criterion (3) can be thought  of as being applied 
after the adaptive digitization process has pro- 
ceeded far enough to satisfy criteria (1) and (2). 
Note  that any further decomposi t ion of the adap- 
tive digitization will continue to satisfy criteria (1) 
and (2). For a given cell c, in order for criterion 
(3) to be relevant, at least two line segments must 
intersect cell c without intersecting within cell c. If 
the line segments do not intersect at all, then their 
closest approach would be between the endpoint  
of one fine segment and some por t ion of the other 
fine segment. This situation has been analyzed 
with respect to criterion (2). Thus, although crite- 
rion (3) might force further decomposi t ion in the 
neighborhood of non.intersecting line segments, 
the worst-case situation for nonintersecting line 
segments would be no worse than the criterion (2) 
bound.  

Therefore, any increase in the upper  bound on 
g due to criterion (3) must  be the result of the 
occurrence of line segments with a common  vertex 
that cause a grid cell to contain two fine segments 
that are closer than the closest approach between 
any vertex and a line segment not  containing that 
vertex. Let c be the cell of smallest width, say w, 
resulting from criteria (1) and (2) and let T be a 
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grid point on the lower lefthand comer of that 
cell. The only way to create a cell smaller than the 
one containing T is to have two or more line 
segments pass through one of the sides of the cell. 
Once these line segments exit the cell c, criterion 
(3) requires that they occupy separate grid cells. 
The analysis of criterion (3) performed in Lemma 
2.3 did not set an absolute upperbound on g. 
Instead, it indicated a minimum separation of line 
segments, t, relative to the width of the cell con- 
taining the vertex from which the lines emanated. 
Applying Lemmas 2.1 and 2.3, we have that 
2 -(d+l) is a lower bound on w, resulting in a 
minimum cell width, t, of 2 -(3d+1). Since we as- 
sume that all sides of the cell are closed, we need 
to halve this minimum cell width to insure that a 
cell containing a single line segment does not even 
contain a comer point of another line segment. 
Thus, the minimum cell width is 2 -(3d+2) which 
means that 4d + 2 is an upper bound on g. (Recall 
that we started with a 2d×  2 d grid with a l l  grid 
points separated by 1.) Also note that no further 

interactions are possible between criteria (1)-(3) 
that could force t to be smaller. [] 

The bound obtained in Theorem 2.4 is suffi- 
cient to show the superiority of the adaptive digiti- 
zation process over the uniform digitization pro- 
cess with respect to the representation of 'features' 
in the continuous plane (as defined by criteria 
(1)-(3)). Recall that there was no bound in the 
case of uniform digitization (as discussed in Sec- 
tion 2.1). An interesting question, although irrele- 
vant to the central thesis of this paper, is whether 
or not the bound obtained in Theorem 2.4 is 
attainable. While the bounds dictated by criteria 
(2) and (3) are individually attainable (see the 
proofs of Lemmas 2.1 and 2.3), the constructions 
used to derive them were mutually incompatible. 
However, observe that the digitization of the lines 
WK, KZ, and ZL in Fig. 4 asymptotically ap- 
proaches the bound of Theorem 2.4. In particular, 
W is at (1, 2 d - 1), K is at (0, 1), Z is at (1, 2 d - 2), 
and L is at (0, 0). For a more detailed analysis of 
this construction, see [14]. 

Q W Z" 
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/ 
/ 

/ 
/ 

/ 

Z 

Fig. 4. Example polygonal map with a value of grid depth g 
very close to the worst case. 

3. Applications 

Our results are useful when implementing 
quadtrees without pointers, e.g., a linear quadtree 
[4]. In this case, the quadtree is treated as a 
collection of its leaf nodes so that each leaf node 
is represented by a pair of numbers (termed a 
locational code) that corresponds to the level of 
the block and a concatenation of base 4 digits 
corresponding to directional codes (i.e., NW, NE, 
SW, and SE) that locate the node along a path 
from the root of the quadtree. The value of g 
indicates the maximum number of bits necessary 
to specify the locational code. For example, the 
segment quadtree [13] is a scheme based on the 
linear quadtree for storing a PM 1 quadtree and its 
maximum depth is given by g as a function of d, 
the precision with which the vertices have been 
specified. 

Of course, many polygonal maps can be dig- 
itized meeting our three criteria without requiting 
g to be as large as 4d + 2. For example, Fig. 5 is a 
roadmap from a cartographic database with which 
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Fig. 5. The roadmap. 

we have been working [12]. Its vertices rest on a 
512 × 512 grid and thus each vertex would require 
18 bits of information (two 9-bit coordinates), to 
represent its address. The map has 685 vertices 
and 764 line segments. For the adaptive digitiza- 
tion described above, g had a value of 12 whereas 
our analysis indicated that g was bounded from 
above by 38. Incidentally, the PM: quadtree corre- 
sponding to this adaptive digitization required 
2701 cells. 

The analysis performed here is also of use in 
computer graphics and solid modeling. In particu- 
lar, it enables us to model arbitrary polyhedral 
solids in an exact manner. The extension of our 
analysis to three dimensions is straightforward. 
This impacts the use of octree variants such as 
those described in [1,2,3]. 
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