
Algorithm to expand
regions represented by

linear quadtrees

Clifford A Shaffer and Hanan Samet”

An algorithm is presented that changes to ‘black’ those
‘white’ pixels within a specified distance of any ‘black’
pixel in an image represented by a linear quadtree. This
function is useful for answering queries in a geographic
information system such as ‘Find all wheat fields within

five miles of a flood plain.’ The algorithm works by com-
puting the chessboard distance to nearby black pixels for
large white nodes, and either leaves them white, changes
them to bIack or repeats the process on each subquadrant,
as required. Small white nodes are a priori within the
given radius and require no further calculation. Thus only
a small percentage of the nodes of the quadtree need
extensive processing. The algorithm is easily applied to
multicoloured images by treating all nonwhite coiours as
‘black ‘.

Keywords: Iinear quadtrees, hierarchical data structures,
cartography, geographic information systems, region
expansion

A useful feature for a geographic information system
is the ability to generate a map which is ‘black’ at all
pixels within a specified distance of the black regions
of an input map. For the sake of discussion, the ‘black’
pixels of the input map are defined as those pixels
initially within the regions of interest, while those pixels
outside such regions are defined as ‘white’. In the case
of a multicoloured image, consider that all ‘nonwhite
pixels are in the regions of interest and that those white
pixels within a specified distance of a nonwhite pixel
will be set to black. The process which performs this
task is sometimes referred to as region dilation or
expansion. In this paper, the process will be referred
to as the Within function. This function is important
for answering queries such as ‘Find all wheat fields
within five miles of a flood plain.’ Such a query would

Computer Science Department, Virginia Polytechnic Institute and
State University, Blacksburg, VA 24061, USA
*Center for Automation Research and Computer Science Department,
University of Maryland, College Park, MD 20742, USA

be processed by applying the Within function to a map
whose black regions represent flood plains and then
intersecting the result with a map representing the wheat
fields. To simplify the presentation, it is assumed in the
remainder of this paper that the function is performed
on a binary image.

The quadtree data structure has proved useful for
representing cartographic data. Today, the term
‘quadtree’ is used in a general sense to describe a class
of data structures whose common property is that they
are based on the principle of recursive decomposition
of space. This paper is concerned with the ‘region quad-
tree’ as defined by IClinger” and will use the term quad-
tree to refer to it. Figure 1 is an example of a region
and its corresponding quadtree. For a comprehensive
survey of quadtrees and related hierarchical data struc-
tures, see Samet2.

Quadtrees are of interest, in part, because they enable
the solution of problems in a manner that focusses the
work on the areas where the information is of the
greatest density. The Within algorithm presented in this
paper takes advantage of the quadtree structure to
decrease the number of nodes for which expensive pro-
cessing must be performed. This is accomplished by
recognizing that only white nodes need processing (black
nodes will not be modified) and that sufficiently small
white nodes will always be within a given distance of
a black pixel.

The linear quadtree technique3s4 has become quite
popular since it allows the storage of quadtrees in such
a way that they may be manipulated efficiently as disc
files. The technique is currently being used to store maps
in an experimental geographic information system at
the University of Maryland, USAS. In the linear quad-
tree, leaf nodes are represented by use of a locational
code corresponding to a sequence of directional codes
that locate the leaf along a path from the root of the
tree. This collection is usually stored as a list sorted
in increasing order of locational codes. Such an ordering
is useful because it is the order in which the leaf nodes
of the quadtree would be visited by a depth-first traversal
of the quadtree. The Within algorithm described here,

162

0262~8856/88/03162-07 $03.00 @ 1988 Butterworth & Co. (Publishers) Ltd

image and vision computing

~

a

Level 3 - - - - -

b C

Level 2 ---

d

Figure 1. a, A region; b, its binary array; c, b~#ck
~~ecorn~~~~it~o~ qf the region in a ~block~ it? the region are
shadedj ; d, qu~dtree representation of the bi~cks in c

while easily modi~able for use with pointer-based
quadtrees, is designed for use with the linear quadtree.
Therefore it is important for the reader to realize that
in the algorithm presented here there is a distinction
made between functions that manipulate node addresses
and functions that manipuIate the node list that repre-
sents an actual quadtree.

The next section presents necessary definitions and
notation. Following this, an algorithm for computing
the Within function is presented.

DEFINITIONS AND ROTATION

The Iinear quadtree is implemented by first 1a~lIing
each pixel of the quadtree with an address. The address-
ing schemes most commonly used are variations on one
suggested by Morton6 for use in indexing maps in the
Canada Geographic Information System7. Such schemes
will be referred to as ‘Morton sequencing’. Their applica-
tion to quadtrees was realized independently by
Gargantini3 and Abel and Smith4. Morton sequencing
makes use of an addressing scheme which is equivalent
to interleaving the bits of the binary representations of
the s and f coordinates (each represented by a fixed
number of digits) of a representative pixel in the node’s
block. In Figure 2, for example, 3-bit binary representa-
tions of the row and column coordinates are indicated
along the bottom and right sides of an 8 x 8 array.
The locational code of each pixel is formed by inter-
leaving the bits so that the y bit precedes the x bit
at each position. In Figure 2, these pixel addresses are
represented with base-4 digits (i.e. each pair of x and
J’ bits corresponds to a single base-4 digit). When the
addresses of the pixels are sorted in increasing order,
the result is equivalent to a depth-first traversal such

110 220 221 230 231 320 321 330 331

111 222 223 232 233 322 323 332 333
i

Figure 2. Norton code address scheme for 1abe~Ii~g pixels

that quadrants are visited in the order NW, NE, SW
and SE.

Several linear quadtree variants have been proposed
that differ in terms of what specific leaf nodes will be
stored. For example, the original formulation3 observes
that the white nodes of the quadtree may be regenerated
from the positions of the black nodes. There are various
space/time tradeoffs involved*. In this paper, the linear
quadtree is delined to explicitly store all leaf nodes.

Given the above method for addressing pixels, node
addresses can in turn be generated by stipulating that
each node will be given the address of the least valued
pixel contained within the block that it represents. Figure
3 shows the block decomposition for the image in Figure
1 with each block given the address (in base 4) of the
least valued pixel contained within that block. Note that
the node in the NW quadrant of the image in Figure
3 has a 0 value in the most signi~cant position (indicating
a NW branch), all nodes in the NE quadrant have a
I value in the most signi~cant position, etc. This method
of addressing blocks is incomplete as there is no
indication of the block size. However, there are a number
of ways to remedy this, one of which is to append to
the address the level at which the block is found. Regard-
less of the method used to address quadtree blocks, the
list of quadtree blocks is kept sorted in increasing order
of locational code.

Figure 3. Morton code addre~ses.~~r the blacker of Figure I

YO! 6 no 3 august 1988 163

Given this sorted list of quadtree blocks, some means
must be found to organize it so that insertions, deletions
and node searches may be performed efficiently. In addi-
tion, it is important that the organization method lends
itself to offline storage of large images. The B-tree9 is
a data structure that meets these requirements. B-trees
are very efficient in that the number of accesses necessary
to retrieve a given key from secondary storage is kept
low. This is partly because the tree is always balanced,
and partly because the branching factor is very high.
Both Abel and Smith” and Samet et ~1.~ use a linear
quadtree encoding in conjunction with B+-trees to store
images.

Throughout, this paper will use the ‘chessboard dis-
tance metric” O, which is defined as max(d,, d,.) where
d, and dy are the horizontal and vertical distances, respec-
tively, between two points. Thus, the locus of points
within chessboard distance R of a point will form a
square of side length 2R. In the authors’ algorithm, the
‘distance between two nodes’ refers to the minimum
chessboard distance between their borders. Although the
Euclidean distance might be considered to be more
accurate, the chessboard distance metric is more suited
to the quadtree representation. Therefore only the latter
will be treated in this paper.

procedure WlTHIN(INTREE, OUTTREE, RADIUS);
p Create a map OUTTREE which is BLACK for all WHITE pixels of INTREE wthm

RADIUS units of B non-WAITE pnxl. */
begin

global node list INTREE, OUTTREE; /* input and output quadtrees */
global integer RADIUS; /* radius value */
node pointer ND; /* pointer to current node */

for ND in INTREE do

if TYPE(ND) = ‘BLACK’ then INSERT(OUTTREE, ND),
else 1’ WHITE node *;

if width < (RADI~S~I)~~ then l~S~~T(O~l~R~E, ND);
else ;” A large M’IIITE node *j

DOLARGE(
end,

procedure DOLARGE(
/’ Process a large WAITE node */
begin

node pointer ND;

global node list INMAP, OUWAP;
global integer RADIUS;
integer D; !’ chessboard distance *!
quadrant I,

D - Chessboard distance from the center of N to the border of
the nearest BLACK node in the direction of N’s nelehbors
in the 8 principal directvans;

if D+WIDTH(ND)/I? < RADIUS then INSERT(OUTTREE, SET(ND, ‘BLACK’)),
efse if D-~~71DTH(ND)/Z > RADIUS then INS~RT(OU~REE, ND),

for I in {‘h’W’,~NE’,‘SW’,‘SE’} do
WITHIN(SON(NI),I));

end.

Figure 4. Outline of an algorithm to compute the Within
function.

‘WITHIN’ ALGORITHM

The Within function changes to black those white pixels
of an image which are within distance R of a black
pixel. The authors have previously reported’ l an
algorithm for computing the Within function which
works by expanding each black block of the input image
by R units (where R is the radius) and inserting all
the nodes making up this expanded square into the out-
put tree. This leads to many redundant node insertions.
In addition, many of the nodes inserted are small, and
are eventually merged to form larger nodes. A polygon
dilation algorithm has recently been presentedi which
traverses the image in two passes, modifying the values
of white nodes based on the values of the nodes seen
previously during the current pass through the node
list.

The new algorithm presented here is based on the
chessboard distance transform algorithm of Samet*“. An
outline of the algorithm is given in Figure 4, and a
more detailed encoding is given in Appendix 1. The
difference between the two algorithms is that the detailed
version shows how many of the calculations can be
performed in an efficient manner. This is crucial in
obtaining satisfactory performance.

The algorithm does the following for each node N
of the input quadtree. If N is black, then it is inserted
into the output tree. If N is white, and its width is
less than or equal to (R + 1)/2, then it must lie entirely
within R pixels of some black node. This is true because
one of the siblings of N must contain a black pixel whose
distance to the border of N is at most (R - 1)/Z. Thus
N is made black and inserted into the tree. If N is white
and has a width greater than (R + 1)/2, then the distance
from the border of N to the borders of nearby nodes
(i.e. a subset of those nodes within radius R) is computed.
If this distance is such that N is completely within radius
R of a black pixel, then N is inserted as a black node

into the output tree. If N is completely outside that
radius, then it is inserted as white. Otherwise, portions
of N will be inserted as black and portions as white.

When N is a white node of width greater than
(R + 1)/Z, the distance computation is performed as
follows. First, consider the horizontal and vertical
neighbours of N. The diagonal neighbours of N will
be considered later. For each direction d in {N,E,S,W},
the address of the equal sized neighbouring block D
in that direction is computed, and the actual block in
the linear quadtree node list (say 0’) is then located.

If the d-direction equal sized neighbour of N does
in fact exist (i.e. N is not on the d edge of the image),
then there are three cases to consider: D is white, grey
or black. If D is white, then normally there will be no
black pixels in direction d that are within distance R
of N. A special case occurs when the width of N is
less than R (but greater than (R + 1)/Z>. In this case,
if the actual neighbouring node D’ also has width less
than R, it is possible that the neighbour of D’ in direction
d will contain black pixels which are closer to some
parts of N than any other black pixels (e.g. the upper
rightmost pixels of node N in Figure 5). Thus the neigh-
bour of D’ in direction d must also be visited if the
widths of N and D’ are equal and are less than R and
if d is white.

If D is grey, then its subquadrants are visited to deter-
mine whether they contain black blocks within distance
R of N. ‘Grey’ means that the equal sized neighbour
of N is actually made up of more than one leaf block.
For each black subquadrant of D (say D’) within distance
R of N, N will be decomposed as necessary, with those
portions within distance R of D’ inserted as black.

If D is black, then the distance from N to D is 0.
In such a case, if the width of N is less than R, then
N is inserted as black into the output tree. Otherwise,
each quadrant of N is compared in turn against D. If

164 image and vision computing

Figure 5. ~uad~ree block decomposition for an image
whose pixeIs 1, 2 and 3 are black, with all other pixels
being white. The shaditig shows all pixels within a distance
c!J‘Jire pixels qf the black nodes. Note that the rightmost
pixels at the top qf‘node N are within ,fi:ve pixels distance
elf nodes 2 and 3, but not within ,five pixels distance qf
rlode I

the quadrant is entirely within distance R of D, then
it is inserted as black. If the quadrant is both partially
within and partially outside of distance R from D, then
N is subdivided further.

In a similar manner, the neighbours of N in each
direction d in {NW, NE, SW, SE} must also be visited.
As with the adjacent neighbour case, if the equal sized
neighbour D is white, then normally D will not affect
N. However, if N and D have widths less than R, and
D is white. then neighbours of L) may contain black

Table 1. Execution times for the Within function

pixels within distance R of certain pixels of N. These
neighbours must also be visited. As an example, if D
is the NW neighbour of N, then the N, W and NW
neighbours of D may need to be visited. Grey corner
neighbours of N must have their subquadrants examined
to locate any black pixels within distance R of N, again
possibly causing a decomposition of N. When D is black,
it will be at distance 0 from the border of iv, thereby
possiblv causing a decomposition of N.

Table 1 compares execution times for new and old
algorithms on the images shown in Figures 6 and 7. Both
images are represented by 512 x 512 pixel quadtrees.
The quadtree of Figure 6 contains 4693 nodes while that
of Figure 7 contains 3253 nodes. The times in Table
1 represent the number of CPU seconds required to
execute the algorithms on a Vax 1 l/785 running BSD
4.3 Unix. Each algorithm is applied to the two images
for radius values ranging between 1 and 16.

The new algorithm is an improvement over the old
one for two reasons. First, only large white nodes need
excessive computation; since most nodes in a quadtree
are small, very few nodes generate much work. Secondly,
although input nodes may be visited several times when
neighbouring nodes compute their chessboard distances,
the number of duplicate insertions for a newly created
black node will be greatly reduced.

In certain extreme cases, it is possible for the old
algorithm to perform more efficiently than the new
algorithm. This occurs when the image contains rela-
tively few black nodes, and these nodes are spaced well
apart. For such images, the numbers of merges and
duplicated insertions required by the old algorithm are
minimized, while the number of large white nodes requir-
ing additional computation by the new algorithm is
maximized. This can be seen in Table 1 for radius 2
expansion on the ‘ACC’ land use image. In this case,
the old algorithm is slightly faster than the new
algorithm. However, as illustrated by the remainder of
the test data, such situations are rare and are significant
only for smalf radius values.

Distance
Figure 6 time (seconds) Figure 7 time (seconds)

New algorithm Old algorithm New algorithm Old algorithm

1 14.5 32.9 10.9 15.4
2 19.4 23.7 14.7 13.7
3 18.5 53.0 14.7 28.5
4 22.7 30.3 17.6 20.0
5 34.0 68.5 26.9 39.3
6 35.1 49.6 28.9 30.2
7 29.1 90.2 27.0 53.4
8 30.3 52.6 26.4 36.3
9 43.3 103.1 39.3 63.9

10 41.7 75.2 37.0 46.8
11 53.4 126.1 49.7 77.4
12 49.0 76.3 44.4 53.1
13 67.2 138.8 63.1 87.4
14 60.2 98.3 54.7 65.7
15 51.3 161.7 52.1 101.9
16 45.2 94.9 44.9 68.9

~016 no 3 august 1988 16.5

Figure 6. FIoodp~~~n map

Figure 7. ‘ACC’ land use class map

A new algorithm has been presented which computes
the Within function for a linear quadtree. This algorithm
is a considerable improvement over an earlier naive
algorithm which simply expanded each black node and
inserted the result as a series of quadtree nodes. Given
a distance R for which the Within function is being
computed, the new algorithm computes the chessboard
distances to nearby black nodes only for white nodes
larger than (R -I- 1)/2, changing subquadrants to black
as required.

ACKNOWLEDGEMENTS

The authors are grateful to D C Mason for pointing
out a long standing error in an earlier version of this
algorithm, and to Chuang Heng Ang for suggesting the
necessary modifications to fix this error. The support
of the US National Science Foundation under Grant
DCR-86-05557 is gratefully acknowledged.

REFERENCES

1

2

3

4

5

6

7

8

9

10

1 1

Klinger, A ‘Patterns and search statistics’ in Rustagi,
J S (ed.) Optimizing methods in statistics Academic
Press, New York, NY, USA (1971) pp 303-337
Samet, H ‘The quadtree and related hierarchical
data structures’ ACM Cornput, Surv. Vol 16 No
2 (June 1984) pp 187-260
Gargantiui, I ‘An effective way to represent
quadtrees’ Commun. ACM Vo125 No I2 (December
1982) pp 905-910
Abel, D J and Smith, J L ‘A data structure and
algorithm based on a linear key for a rectangle
retrieval problem’ Comput. Vision, Graphics, Image
Process. Vol 24 No 1 (October 1983) pp l-13
Samet, H, Rosenfeld, A, Shaffer, C A and Webber,
R E ‘A geographic information system using quad-
trees’ Pattern Recogn. Vol 17 No 6 (1984) pp 647-
456
Morton, G M A computer oriented geodetic data
base and a new technique in file sequencing IBM,
Ottawa, Canada (1966)
Comeau, M A ‘A coordinate reference system for
spatial data processing’ CLDS Tech. Bull. No 3
(November 198 1)
Shaffer, C A, Samet, H, and Nelson, R C ‘QUILT:
a geographic information system based on quad-
trees’ Computer Science TR 1885 University of
Maryland, College Park, MD, USA (July 1987)
Comer, D ‘The ubiquitous B-tree’ ACM Comput.
Surv. Vol 11 No 2 (June 1979) pp 121-137
Samet, H ‘A distance transform for images repre-
sented by quadtrees’ ZEEE Trans. Pattern Anal.
Mach. Intell. Vol4.No 3 (May 1982) pp 298-303
Samet, H, Rosenfeld, A, Shaffer, C A, Nelson, R
C and Huang, Y-G ‘Application of hierarchical data
structures to geographical info~ation systems,
phase III’ Computer Science TR 1457 University
of Maryland, College Park, MD, USA (November
1984)

APPENDIX 1: FULL VERSION OF THE
‘WITHIN’ ALGORITHM

The Within algorithm presented here assumes the
existence of a number of functions for accessing the
linear quadtree and manipulating quadtree nodes. The
edges of a block in the quadtree are labelled N, S, E
and W for north, south, east and west respectively. The
quadrants are named NW, NE, SW and SE. NIL is
the null pointer (in this algorithm, a value of NIL is
returned by neighbour-finding functions if the desired
node does not exist). INSERT(TREE, NODE) inserts

166 image and vision computing

NODE into node list TREE at the correct position,
splitting or merging nodes as necessary to maintain a
region quadtree. FIND_NEIGHBOR(TREE, NODE,
D, ABUT) returns the actual existing neighbour of
NODE in direction D (which may be of any size), specifi-
cally at the corner where side D meets side ABUT.
DIAGONAL(NODE, QUAD) manipulates the address
field of NODE to return the address of the equal sized
neighbour in the diagonal direction QUAD.
FIND(TREE, NODE) returns the actual node in TREE
which contains the address of NODE. FIND_
DIAGONAL(TREE, NODE, QUAD) is equivalent to
performing a FIND operation on the node created by
DIAGONAL. NODETYPE(NODE) returns the type of
the node (e.g. the colour). FATHER(NODE) modifies
the address field of NODE so as to return the address
for the father of NODE. SON(NODE, QUAD) modifies
the address field of NODE so as to return the address
for the son of NODE in quadrant QUAD. WIDTHOF
(NODE) returns the width of NODE (always a power
of two). XOF(NODE) and YOF(NODE) return the x
and 1’ coordinates for the upper left corner of NODE,
respectively. COPY_FIELDS~ODE 1, NODE2)
copies all fields of NODE1 to NODE2, and returns
a pointer to NODEZ. SETNODE(ND, X, Y, DEPTH,
VALUE) sets the descriptor for ND to have upper left
corner (X, Y), depth DEPTH and value VALUE.
QUAD(D1, D2) returns the quadrant bounded by sides
Dl and D2; CSIDE(D) returns the side in the clockwise
direction with respect to side D; and CCSIDE(D) returns
the side in the anticlockwise direction with respect to
side D. log(N) returns the base 2 logarithm of N.

When reading the following algorithm, it is important
to keep in mind that the algorithm operates on a linear
quadtree. Thus most node operations manipuIate the
address or value fields of a node template without
actually querying or modifying the node list. Only
INSERT modifies the node list; only FIND, FIND_
NEIGHBOR and FIND-DIAGONAL query the node
list.

The full listing of the Within algorithm is as foIlows.

global node list INTREE 01ITTREE: ; i* tnpur snd output qu:*dtrws ‘;’
global integer RADIUS; * radms value r;
value node point.er ND- * pcmtcr to large L\‘HlTE node being prowsed *,
value integer X. Y, WID: I* posltton and width of current nitir *;
node pointer Q, DNEIGH DREAL. DPTR, ,‘* local node pomters *:
direction D II* current nrlghhor dlrertion * 1

Q - create(nodei: DRl:AL - create(nade),
for D in {‘N’. ‘E‘. ‘9‘, ‘W} do
begin ‘* fur each cardcnal d,r.sr,on *i

COPY_FIELDS(ND, (2). ,‘* make a copy for temporary “sag? *
DNEIGH + FIND_NElGHBOR(INTREE, Q, D, CCSIDE(D)),
if (DNEIGH neq NIL) and (NODETYPE(DNEIGH) = WHITEi and

(RADIUS->W~DTHOF(DNEIGH)) and (WID=WIDTIIOF(~,NEI~~~~~~~ then
‘* must v,s,t DNEIGH’s D directron seiahboi *,

DNEIGH - FlND_NElGHBOR(lNTRE~. DNEIGH. D. CCSfDE(D)).
CHE~~_NOD~l~D, DNEIGH, S. Y, WID).

:* visit dmggonal nezghhoi in dirertmn QU/\D(D. Ci;lDE(D)) *
COPY_FIELDS(ND.QI; * make a copy for trmporarv llsag~ *
DNEIGH + DIAGON.4I,(Q. QUAD(D, CSIDE(D)))
if DNEIGH neq NIL then
begin Al* DNElGll IS in lhe trer *’

COPY_FIELDS(DNEIGH, DREAL), : * WP want to pr*s<we DNEICH *
DPTR - FINDJINTREE. DREAL): I* f tn< f e WB/ nrighhor block in tree *: J h
CHEfli_NODE(ND. DPTR. X, Y, WIDi.
if (RADIUS 1~ \~lDTllOF(ND)) and ~~~OD~FYl’l;(Dl’TK) I iVlllTE1 then
begin :* DPTR 1s small - must wit DPTR’s nmghhors *,

COP>-_FIELDS(DNElGH. DREAL).
DPTR - FlND_NEIGHBOR(lNTREE, DREAL. D. rCSlDC(D));
CHECK_iiODE(ND. DPTR. X. Y, WID,.
COPY_FlELDS(DNElCH. DREAL),
DPTR - FIND_DIAGONAL(INTREE, DRE.4L. Q~AD(D. C’SfD~(Dil).
CHECK_NODE(ND, DPTR, X, Y, WID).
COPY_~lELDS(DIIEIGH. DREAL),
DPTR - Fl~D_~~lCHBOR[lNTREE.DRE:-\L.CSlnE(D),~~Sl~E(~~~lD~(D))),
~HEC~N~D~(ND, DPTR. X. Y, WID).

end,
end;

end,
end,

procedure CHECK_NODE(ND, Q, X, Y, WID);
:’ Examine Q, 8 node within RADIUS p,xcls of ND. ND has upper left corner (X, Y)

and width WlD. If Q 1s GRAY, then apply DIST_NODE to the ancestor of Q which
is an equat-sized neighbor of ND. If Q is non-WliITE, change the appropriate par-
tions of ND’s blork to BLACK. l ;

begin
value node pointer ND, (1,
value integer X, Y, WID,

if(Q neq NIL) then
begin

if ~VIDTHO~(ND) > ~VIDTHOF(Q) then
begin j* Q is GRAY - be.. composed of subblccks smaller than ND *:

while WiDTHOF > WIDTHOF da Q - FATHER(Q),
DIST_NODE(Q, WlDTHOF(Q). X, Y. WID);

end,
else if NODETYPE neq WHITE then i* Q IS non-WHITE leal node */
begin 1: compute distance, and either insert 01 spht ND */

T - SCOMPARE(XOF(Q), YOF(Q), WIDTHOF(X, Y, WID);
if T + WIDTHOF 5 R then i* node uithm radios *!
begin

NODETYP~(ND~ - BLACK, lNSERT(OUn-f~EC,Nt,!:
end,

eise if T c. R then i* node beyond radius *i
SPLlTDIST(X. Y. \+‘lD. XOF(Q). YOF(Q), \VlDTllOF(Q)l.

end.
:I* else 0. is a ‘LVIIITC node - do nothlng *,

end.
end.

procedure DIST_NODE(Q, WID, X, Y, W):
‘* Find the dtstance from node Q with width WID to the b!ock wrth upper left corner

(X, Y) and width W *
begin

global node list OIITTREE, /* output quadtrer *
global integer RIZDIUS, !I* radius value * ’
value node pointer Q, * current node *.
value integer WlD, X, Y. W; /* width of Q and hlork drscriptor *
node pointer QSON, :* loccal node pointer * ’
integer SDIST. i* dritarrce lo QSON *:

QSO?; - create(node).

COPY(ND. QSON),
if WIDTHOF(QSON) neq 1 then /* not a plXeI-siZed node *:

FIND(lNMAP, QSON - SON(QSOU, SW)),
else FIND(INMAP, QSON).
if \ClDTHOF(QSON) = WID then i* found the leaf nod? *’

if NODETYPEJQSONI neq WHITE then
begin

SDIST - S~~~.Lrf’AI~C(XOF(QSO~),YOfJQSON).\”;lnT~;
if SDIST + W < RADICS then

INSERT(OI ‘ITREE. CREATE_NODE(X, Y, log(WlD), Bti\CK));
else if SDI.ST c: R then

SPLITDIST(S. Y, \V XOF(QSOr), YOF(QSO91, WlDTHOF(QSO~i).
return.

end,
else

return:
\VID t WlD !‘), ,-.
if SCOh~P,4RE(~OF(ND), YOF(ND), WID, X. Y, %‘] ~: R then

DiST_NODE(SON(C#PY_Fl~l,~S(ND, QSOU), St%?, WlD. 1, %I’, \Vl.
if SCO~lPAR~(~_OF(~D)+~~D~Y_OF(ND~,~~lD,X,Y.~V) c R then

DlST_NODE(SON(COPY_FlELDS(ND, QSON), SE). WlD. X, Y. I+‘);
if SCOMPARE(X_OF(ND).Y_OF(ND)+WlD,WlD,X,Y W) i R then

DlST_NODE(SON(COPY_FlELDS(ND, QSON), NW), M’ID. X. Y. W),
if SCOMPARF~(X_OF(ND)+WID,Y_OF(NDiWID,WII~,~,Y,~V) ‘: 1~ then

DlS’~_NODE(SON(C0PY_FlELDS(ND, QSON). N\‘E:i, %?I). x. \i, w);
end,

vol6 no 3 uugust I988 167

procedure SPLITDIST(CX. GY, GW, FX, FY, FW);

:* Change to BLACK that part of the block described by GX, GY, and GW that 1s
within RADIUS of the block represented by FX, FY, and F\V */

begin
value integer GX, GY. GW, FX, FY, FW.
integer M’ID, T,
node pointer ND;

HD - createjnode);
\vm _ nw/3

T -: SC;M&RE(GX, GY, WID, FX, FY, FW);
ifT+WID<Rthen

INSERT(O??TTREE, SETNODE(GX, CY. log(WID), BLACK));
else if T < R then SPLlTDlST(GX, GY, WID, FX, @Y. F’W),
T +-. SCO~PAREiG~+WlD. GY. WID. FX. F-i. FWI: , ,.
iFT + WID < R then

INSERT(OUTTREE, SETNODE(ND,GX+WID,GY,LOG(WID),BC.4CK));
else if T < R then SPLITDIST(GXi-WID, GY, WID, FX, FY, FW),
T - SCOMPARE(GX. GY+WID. WlD, FX. FY. FWI,
ifT+WIff <Rt‘hen

1NSERT~OVTTREE,SETNODE(~D,GX,GYiWIL1,1));

else if T < R then SPLITDIST(GX, GY-tWlD, WID, FX, FY, FW),
T - SCOMPARE(GX~WlD, GYiWID, WID, FX, FY, FW);
ifT+WlD~Rthen

INSERT(OUTTREE, SETNODE(ND,CX+WlD,GY+WID,LOG(WlD),BLACK)),
ele.e if T c R then SPLITDlST(GX+WID, CY+WID, WID. FX, FY. FW);

end;

integer procedure SGOMPARE(X1. Yl, Wi, X2, Y2, WP);
,i* Find the chessboard distance between two squares (closest approach) *!
begin

value integer Xl, Yl, WI, /* descnplm for square 1 */
value integer X2, Y?, W2; I* descnptmn for square 2 */
integer SDIST, YDlST;

if X1 < X2 then XDIST +- X2 - (XI + WI);
else XDIST + XI - (X2 i W2);
if Yl < Y2 then YDIST - Y2 - (Yl -+ Wl);
else YDIST - Yl - (Y2 , W?),
retura(max(XDIST. YDIST));

end;

168 image and vision computing

