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Abstract

We have developed an automated detection algorithm that identifies severe external defects on the surfaces of barked hard-
wood logs and stems. To summarize the main defect features and to build our defect knowledge base, we measured, photo-
graphed, and categorized hundreds of real log defect samples. Three-dimensional laser-scanned range data captured the external
log shapes and showed bark pattern, defective knobs, and depressions. Severe defects were identified via the analysis of 3-D log
data using decision rules derived from analysis of the knowledge base. Defects were detected by examining contour curves
generated from radial distances determined by robust 2-D circle fitting to the log-data cross sections. There were a total of 68
severe defects, of which 63 were correctly identified. There were 10 nondefective regions falsely identified as defects.

Automatically locating and classifying log defects helps
to improve lumber yield, in terms of both volume and quality.
Traditional defect inspection consists of a very brief visual
inspection by the sawyer. Visual inspection has a high error
rate and is easily influenced by the operator’s physical and
mental conditions. Thus, researchers have been developing a
variety of computerized defect detection and classification
systems to assist the sawyers’ decision-making process
(Chang 1992).

Computerized tomographic/x-ray technology has been
used to locate internal hardwood log defects in the laboratory
(Zhu et al. 1991, Li et al. 1996). Log defects exist both exter-
nally and internally. As CT/x-ray technology is capable of
penetrating material, the resulting images display internal de-
fects through density variations. While CT/x-ray-based detec-
tion approaches generate successful experimental results with
a 95 percent detection accuracy (Li et al. 1996), several ob-
stacles have prevented them from being used in industrial ap-
plications. First, the data collection speed is extremely slow
because of the large data volume, varying anywhere from 5
minutes to 4 hours per log. Second, variation in MC in the log
causes the intensity of scanned images to vary, making detec-
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tion results unstable. Third, the technology presents an envi-
ronmental hazard, as penetrating such a large object requires a
tremendous amount of x-ray energy. Finally, the high cost of
the scanning equipment—on average 1 million, or more, U.S.
dollars—is beyond most sawmills’ reach and thus has little
practical value.

In contrast, 3-D laser scanner technology uses relatively
low-cost equipment (US$250,000 to US$400,000 ) that is
more affordable to sawmills. Laser scanning equipment col-
lects the external log shape information using triangulation
technology. Since only surface data are collected, data collec-
tion speed is much faster and the equipment can operate at line
speed (seconds per log). The system employs low-energy la-
ser-scanning units, which are safe to operate. MC does not
interfere with 3-D profile data.

The laser-scanning system used in our research is a com-
monly available industrial system manufactured by USNR,
Inc.! The scanner generates high-resolution profile images of
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the log surface in three dimensions. The scanner was primar-
ily developed for the softwood industry, where the scanner is
used to determine the shape and size of the log being sawn in
three dimensions. Ideally, an optimizer would take the scan
data and determine the optimal sawing pattern for the log. The
system’s resolution is high enough such that defects can be
manually located in the scan data by the human eye. The ob-
vious question then is how to get the computer to see the de-
fects too.

Most severe log defects are associated with a localized, sig-
nificant height rise. Severe defects are those that significantly
degrade the value and/or strength of the boards that would be
sawn from the log (Carpenter et al. 1989). To detect severe
defects, we developed an automated defect detection algo-
rithm using laser-scan profile data. To begin, circles were fit
to data cross sections and the radial distances between the fit-
ted circle and the data calculated (Thomas and Mili 2006).
From the radial distances we generated a grayscale image
showing the height changes of the log surface. This image is
then used to determine a contour plot of the log surface from
which the large and/or protruding defects are determined.
However, some types of severe defects do not present signifi-
cant height change against the surrounding bark, and thus are
not detected by the algorithm presented in Section 3. We hope
to develop pattern-based methods to identify these kinds of
defects in future work. For this paper, we examine only those
defects with a significant height rise.

The main disadvantage of the laser scan method is that it
only provides external defect information, which might prove
insufficient for lumber processing. To address this problem, a
sister study (Thomas et al. 2006) to determine the correlation
of external and internal defects is ongoing at our partial spon-
sor, the USDA Northern Research Station in Princeton, West
Virginia. Strong correlations have been found to exist be-
tween external indicators and internal characteristics. For the
most severe defects, the models can predict internal features
such as total depth, midway point defect width and length, and
penetration angle, with a low measurement error. For less se-
vere defects such as adventitious knots and medium and light
distortions, the correlations are somewhat weaker. To the best
of our knowledge, we are the first group investigating detec-
tion methods for defects on the surface of hardwood logs and
stems using laser-scanned 3-D Cartesian coordinates (Thom-
as et al. 2003, Thomas et al. 2004).

Objectives and methods

We obtained log data from two commercially important
northeastern American hardwood species: yellow-poplar and
red oak. More than 160 log data samples were collected, each
consisting of a series of cross sections along the log length at
0.8-inch intervals (Fig. 1). Each cross section comprises ap-
proximately 1,000 3-D coordinates with adjacent points
roughly 0.05 inches apart, so the data are much denser around
the logs circumference than along the length. Typically a log’s
length ranges between 8 and 16 feet. Thus, one log data
sample has between 120,000 to 240,000 points.

The frame of the log scanner blocked the laser signal wher-
ever the log was supported. This is the cause of the white
bands shown in Figure 1, where 5 to 7 data circles are incom-
plete for those two places. In addition, the frame produced
severe outlier issues on all logs. Calibration problems with the
scanning units and log diameters also caused missing or du-
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Figure 1. — Dot cloud projection of 3-D log data. Shown is
part of the data for one log sample. A bump-like external
defect (lower left), missing data, and outliers caused by loose
bark (upper-middle left) are visible.

plicated data. The nature of the log data, with the large overall
quantity and small percentage of severe outliers, calls for
modeling the data using robust curve-fitting methods rather
than conventional least-squares fitting. This leads us to the
application of robust statistics and the development of our 2-D
circle-fitting Generalized-M Estimator (GME) (Hampel et al.
1986, Thomas et al. 2003, Thomas and Mili 2006).

Actual defect locations, sizes, types, etc. were measured
manually on the log samples. Color digital images of the log
surface, four images per log (at 90° intervals), were taken as
well. About 500 samples of external defects were studied,
measured, and photographed. These defect samples were ana-
lyzed to provide indicators and classification of external de-
fect characteristics. Statistics for these defect classifications
are used to define our defect-detection algorithm and to im-
prove it through comparing its simulated data generated by
the algorithm against the actual defect statistics.

Detection algorithm

The procedure for detecting external defects consists of two
major steps. The first step is to obtain the radial distances by
fitting 2-D circles to log-data cross sections using a robust
GM-Estimator (Thomas et al. 2003). The circle-fitting algo-
rithm is written in Java. Original log data points are processed
by removing outliers using the fitted circles with a threshold
of 2 inches for their radial distances. Then the data points (x
and y coordinates and radial distance) are sorted according to
the angles of vectors passing through the circle center and
points. The approach described here requires that there be no
missing data. Thus the algorithm “fixes” regions with missing
data in the matrix of radial distances by using a linear inter-
polation. The final product of this step is a grayscale image
with pixel values indicating radial distances from the fitted
circles to the actual log data (see Figure 2). The second step is
to determine the locations of severe defects on the log surface.
Our current implementation for this phase is in Matlab 7. The
detection program incorporates expertise obtained through
measuring, photographing, and analyzing approximately 500
external-defect samples.

Before describing our detection algorithm, we must first de-
fine the “defects” we are looking for. The resolution of the
laser scanner (0.8 inch along log length) restricted the size of
defects that can be reliably detected to 5 inches and greater in
diameter. Our current detection algorithm only detects defects
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Figure 2. — A grayscale image of radial distances of a log
sample. The bright regions illustrate large radial distances,
and thus indicate protruding defects. The dark areas show
small distances with respect to the reference fitted circles, and
thus might indicate defects such as holes, splits, and gouges.
This image reflects height changes on the log surface.

with a minimum 1-inch surface rise, because it is height (sur-
face rise) based. Thus, we define “severe defects” to mean
those with at least 1-inch surface rise, 5 inches in diameter,
and a width to length ratio between 0.5 and 2. From the 160
logs scanned, 14 representative samples were selected. From
these samples we observed a total of 60 severe defects. An
additional 8 less severe defects were observed on the 14 logs.
Less severe defects are those without significant height
change (0.5 to 1 inch) and have a distinctive bark pattern and
a diameter of 3 to 5 inches. Below is an overview of the de-
tection process in pseudo-code:

1. Find severely protruding (=1 inch in height) and large
(=5 inches in diameter) defects. Using radial distance
data, obtain contours at six evenly spaced levels from
radial distances. A contour or contour curve in a plot is a
curved line connecting points with the same surface rise.
The first contour level is the lowest, and sixth is the high-
est. The algorithm retains only level 6 contours. From
this point, most processing is on the bounding boxes (re-
gions) (Fig. 3).

a) Eliminate regions whose area is less than 5 in®. A
rectangular region, or simply a region, is a solid rect-
angle enclosed by the bounding box for a contour.

b) Sort regions in descending order of area.

c) Eliminate long and narrow regions as these do not
correspond to typically defective areas.

d) Adjust bounding boxes for contours by determining
whether each box encloses entire sawn tops of branch
stubs; we refer to these as adjusted regions. Remove
adjusted regions with severe missing data, and re-
move adjusted regions that are too small.

e) The remaining regions are reported as possible

defects.
2. Find the less protruding (=1 inch in height) and smaller

(=5 inches in diameter) defects:

a) Using the original 3-D log data, determine gradients
parallel to the long axis of the log.

b) Find the areas with gradients within the defined
range for this defect class. These areas are reported as
defects.

A built-in Matlab function converts the grayscale image to
a contour plot. The function inputs and analyzes radial dis-
tances generated by the circle-fitting procedure to locate areas
where surface defects might exist. First, it obtains the contour
curves based on the radial-distance data. The original 3-D log
data are then read in. Depending on the scanner calibration
and the diameter of the log, the original log data may contain
some replicated points. The algorithm removes the replicates.
For each data point, a line is drawn from the point to the cross
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Figure 3. — lllustration of contour curves at 6 different levels.
Currently, we process only the sixth, or highest, level.

section’s fitted circle center. The angle between this line and a
horizontal line is computed. The points on a cross section are
then sorted by their angle values. Second, for each contour
curve, the algorithm determines its borders. The width,
length, area, width/length ratio, and length/width ratio are
computed. Presently, we only analyze the highest (sixth) level
contours, which enclose the highest regions and the most pro-
truding defects. Typically, each log has anywhere from a few
dozen to a few hundred contour curves at the highest level.

The key objective in the remainder of the algorithm is to
identify possible defect regions through a series of steps to
eliminate non-defective regions from the potential candidates.
This is achieved by using statistics from measured and calcu-
lated log data and log feature expertise in a stepwise fashion.
The algorithm removes the regions whose area is less than 5
in? because the data resolution (0.8 inch between cross sec-
tions) means the regions cannot be recognized as defects.
Next, we sort the remaining regions in order of their areas. We
do this so that it is efficient to determine whether a smaller
region is nested inside a bigger one. Any contour nested
within another is removed from consideration because there
can only be one defect in a given location.

To obtain an estimation of potential defect locations at the
beginning of the algorithm, only the widths and lengths of
contour bounding boxes are used. However, this is not com-
pletely accurate, to know if a contour really covers an external
defect, the algorithm must examine and adjust the width,
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length, and width-length ratio of the region. To accomplish
this, for each selected candidate rectangle, an extended region
surrounding the curve is analyzed. The top and bottom bound-
aries of the enclosing rectangle are expanded each by a length
of 10 cross sections (8 inches) along the log length. The reason
an extended region surrounding the curve is analyzed is be-
cause often a curve only encloses the most-protruding portion
of the defect, not the entire defect. Next, we determine the
widest consecutive segment of each cross section within the
region whose data points have radial distances greater than the
contour level. Here a segment refers to a set of lines connect-
ing the adjacent log-data points in the same cross section and
enclosed in the contour curve. This step yields precise shape
information about the potential surface-defect regions.

Using the shape information, some regions are identified as
small, long strips of bark. All of these are rejected from further
consideration if they are more than 25 in* and long and narrow
(i.e., at least 75 percent of the segments in the contour have a
ratio less than 0.8 between their widest consecutive segments
and the total width of the region). Our expertise in external
defect characteristics indicates that regions with such features
are unlikely to be defective.

Because of limitations of our original data collection pro-
cess, small regions that are too close to the top or bottom of a
contour plot image are too ambiguous for analysis and thus
are rejected as well. They either enclose partial defects, which
the algorithm is incapable of detecting, or a small defect that
cannot be accurately detected because of the current data reso-
lution. This is likely an artifact of the original scanning pro-
cess, and we do not identify defects near or outside the
scanned area for testing purposes. For the remaining regions
to be examined, we identify segments that are wide enough
(width of the widest consecutive segment greater than 1/4 the
width of the bounding rectangle). Thus, we can determine
whether the top or bottom of an enclosed region is a narrow
and long fragment, indicating bark, instead of being part of the
actual defect. If such a fragment exists, the top or bottom
boundary for the region is adjusted to remove the bark artifact.
Then based on the adjusted width/length ratio and the adjusted
size, the region might be rejected as being long and narrow,
and thus not a defect.

Regions that are smaller than 50 in” and are located near
larger candidates (less than 3.5 inches apart horizontally or
vertically) are excluded. In such cases, the larger candidates
more likely indicate the true defects, while the smaller ones
are likely continuations of the same defect. Among candidates
with good length (less than 7 inches), or length longer than 7
inches and width/length ratio greater than 0.2, those less than
50 in?, and less than 3.5 inches apart from the selected larger
ones, are excluded. Regions with areas less than 8 in?, or less
than 15 in” with a width/length ratio that is out of range (less
than 0.5 or greater than 2), also are removed as they are too
small to be recognized as a defect.

Next, candidates are then checked for missing data. If there
are more than 20 points missing in a segment, that is, in the
data cross section there is a gap wider than 1 inch, the segment
is classified as corrupted. If there are more than 50 percent
corrupted segments enclosed in the contour, the region is clas-
sified as severely missing data and is rejected.

A sawn top, or sawn branch stub, is a type of external defect

where the tree limb was cut by loggers in the woods (Fig. 4).
Therefore, the surface is often not completely leveled with
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Figure 4. — Graphically rendered view of log surface data
showing a large branch stub.

R

Figure 5. — I, connects the first and fifth points, P, and Pg,
respectively. I, connects the fifth and tenth points, P5 and P,
If the angle o between |, and |, is < 25 degrees, then the lines
form a relatively straight line.

respect to the log surface but tilted at an arbitrarily small
angle. The sawn top is often not completely flat and some-
times ridges are present from the sawing process. Typically,
part of the sawn branch stub will fall below the highest con-
tour level, and this section of the defect needs to be recog-
nized. Our algorithm is able to locate such regions using a
“straight-line” segment technique described below and is ca-
pable of adjusting the boundaries to identify the entire flat-top
region.

For remaining regions with an area less than 25 in?, the al-
gorithm examines the angle changes between lines connect-
ing log data points at an interval of five points along the cross
sections (Fig. 5). If the changes are small enough (less than
25°), the corresponding segments are recorded as relatively
straight. Then the range of “straight” segments is determined.
If more than half of the segments contain straight parts, this
region is identified as a sawn top, either sound (not rotten) or
unsound (rotten). The boundary of the identified region is ad-
justed to surround all the regions containing these “straight”
segments, so as to capture that portion of the sawn top that
falls below the contour level.

Some regions may be falsely identified as a sawn top, be-
cause they contain severe missing data causing the algorithm
to generate an incorrect result. Thus, they are rejected depend-
ing on the amount of missing data. Since the process of iden-
tifying sawn tops is often accompanied by adjustment of the
defect region boundaries, which affects the geometric rela-
tionships among the detected regions, we again check for and
remove regions that are completely nested or partially over-
lapped. To this point, those candidates that have survived are
considered to be the most obvious and severe defect regions.
Their rectangular borders are plotted on the contour image
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and are labeled with their rank number in decreasing order of
region areas.

So far, the algorithm has attempted to locate the most obvi-
ous defect types (Part 1 of the pseudo-code description).
These defects comprise large bump-like knots, either old
(healed broken stubs) or new (sawn at harvest). They may be
large (20 inches diameter) or relatively small (4 inches diam-
eter), protruding (at least 3 inches high) or with a more gentle
rise, and sound or unsound. There is another group of severe
defects with a medium rise (0.5 to 1 inch) and a medium di-
ameter (3 to 5 inches). Because of these characteristics, the
defects are not enclosed in the highest contour curves and thus
are not identified by the procedure described so far. However,
they have a distinctive pattern (surface rise and diameter).
Thus, we provide an algorithm explicitly designed to identify
these defects, which we refer to as less severe defects. In our
sample of 14 logs, we observed eight such defects.

Next, the detection algorithm searches for the existence of
upward slopes and downward slopes that meet the criteria
composing a certain range of the gradient. A slope here refers
to a group of adjacent data points whose radial distances in-
crease or decrease along the log length in a general trend,
similar to a slope in a mountain. During the process, a group of
adjacent data points along the log length (z-axis) are exam-
ined. In this procedure, the type of defects we are looking for
are not large or protruding—those defects should have been
detected earlier. If the gradient falls within a certain range
(high enough, but not so high as to represent a protruding de-
fect that should have been detected in the first stage), it is
tagged. Note that the predominant surface feature of a log is
bark, which has an uneven texture. Therefore, the data points
on a slope usually do not form a strict straight line. Our algo-
rithm detects such slopes by judging their tendency, either go-
ing up or down, and an appropriate tolerance threshold is ap-
plied.

Based on the results from slope detection, those regions
with: (1) width and length of 3 to 5 inches, (2) height of 0.5 to
1 inch, and (3) sufficient number of upward slopes and down-
ward slopes are determined, and less severe defects identified.
This kind of defect can also include rotten and non-rotten,
sawn, or naturally formed defects. The detected less-severe
defects are plotted in the same contour image with the severe
defects previously identified. This completes the algorithm.

Simulation results and discussion

Fourteen log data samples were chosen based on their data
characteristics and analyzed using the defect detection sys-
tem. The defect diagrams of all external defects present on log
samples were collected manually by our sponsor, the USDA
Forest Service in Princeton, West Virginia. Since logs are
heavy (1,000 to 5,000 pounds) and vary in form (taper, sweep)
and size (diameters at the two ends), accurately measuring the
defect locations, sizes, and classifying defect types proved
challenging. Consequently the diagrams are often erroneous,
ambiguous, and inaccurate. Further, the diagrams often only
record the width and length of a defect, but not its height or
surface rise. External defects may not always be visible in the
color images of a sample log, and the order of the color pho-
tographs were often incorrect. Among the 160 or so scanned
log data samples, 45 of the logs were in poor quality and not
usable.

54

*Figure 6. — Digital images of the same log sample as in
Figures 2 and 3, at 90° per side. These images are used, in
part, to determine the correctness of the machine generated
defective regions.

The defect diagrams illustrate not only the defects visible in
the radial-distance gray images, but also those undetectable as
a result of the methods we adopted and/or the data resolution
limits. We combined the information from the diagrams as
well as from the color images (Fig. 6) and marked the ob-
served defects in grayscale images that illustrate surface
height variations (Fig. 7, right) and refer to them as ground
truth. The coordinates of the marked rectangles are measured
and recorded, which are then automatically overlaid on the
contour plot (Fig. 7, left). In the contour plot, the observed
defect regions are marked in solid crossed rectangles, while
the automatically detected regions are marked in dashed
crossed rectangles. The locations, widths, and lengths of au-
tomatically detected regions are reported by the program. To
determine whether a marked region in the contour plot cor-
rectly indicates an external defect, we compare it with the
ground truth. Among the 14 log samples, there are a total of 68
observed defects based on the grayscale image of radial dis-
tances, where 63 were correctly identified by the detection
algorithm. Most non-identified defects are small (less than 5
inches in diameter) and/or relatively flat (less than I inch in
surface rise). There are 10 non-defective regions falsely iden-
tified as defects. Nine of 10 false positive regions contain
high-rise bark regions that are enclosed in the highest contour
curves. Their widths and lengths range from 6 to more than 20
inches. The algorithm fails to remove them from the true de-
fects using the criteria described in the previous section.

Table 1 gives a breakdown for each log sample of observed
defect counts, detected defect counts, falsely identified defect
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Figure 7. — Left: a contour plot automatically generated by
the defect detection programs. Dashed rectangles mark the
possible defective regions, while solid rectangles are overlaid
on observed defective regions. Right: The corresponding
grayscale image with manually marked defect regions. Using
the contour method, our algorithm finds five of six defects,
where a match is defined when the center of an automated
region falls inside the corresponding observed region, and
vice versa.

counts, and missed defect counts. Table 2 gives a summary
for each log sample of the surface area, detected defect area,
falsely identified defect area, and missed defect area, all in
square inches. The majority of the samples are red oak. There
were no missed defects with the yellow-poplar samples. How-
ever, the number of samples for yellow-poplar is low. From
Tables 1 and 2, we found that the average size of a correctly
detected defect is 162 inch?, but the average size of a missed
defect is 51 inch?. This tells us that the missed defects tend to
be relatively smaller.

We used two methods to evaluate the performance of the
detection algorithm. The first method counts the number of
defects automatically detected out of the total number manu-
ally identified. In our experiments, there are a total of 68 se-
vere defects of which 63 were correctly identified (Table 1).
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Table 1. — Counts for observed defects, detected defects,
falsely identified defects, and missed defects for each log
sample.

Log False

number Species Total Correct positive Missed
444 Red Oak 4 4
448 Red Oak 9 8 1 1
450 Red Oak 4 3 1
453 Red Oak 7 6 1
468 Red Oak 3 3 1
480 Red Oak 6 6
493 Red Oak 6 5 1
501 Red Oak 3 3
508 Red Oak 5 5 1
521 Red Oak 6 6 1
537 Red Oak 5 4 2 1
441 Yellow-Poplar 2 2
485 Yellow-Poplar 6 6
520 Yellow-Poplar 2 2
Total 68 63 10 5

Table 2. — Log surface and surface areas for observed de-
fects, detected defects, falsely identified defects, and missed
defects for each log sample.

Observed Detected False  Missed
Log Surface  defect defect  positive defect
number  Species area area area area area
-------------------- (71 T
444  Red Oak 5,797 456 456
448 Red Oak 7,284 1,196 1,105 30 91
450 Red Oak 7,278 570 553 17
453 Red Oak 6,301 1,732 1,671 61
468 Red Oak 5,453 959 959 122
480 Red Oak 7,486 1,256 1,256
493 Red Oak 8,551 364 314 50
501 Red Oak 3916 445 445
508 Red Oak 4,031 573 573 243
521 Red Oak 8,560 493 496 113
537 Red Oak 6,414 390 356 178 34
441 Yellow-Poplar 4,645 297 297
485 Yellow-Poplar 9,352 1,385 1,385 309
520 Yellow-Poplar 6,188 358 358 218
Total 91,256 10,474 10,224 1,213 253

There are 10 non-defective regions falsely identified as de-
fects. Most non-identified defects are small (less than 5 inches
in diameter) and/or relatively flat (less than 1 inch of surface
rise). Nine of 10 falsely identified regions contain high-rise
bark regions that are enclosed within the highest contour
curves. Their widths and lengths range from 6 to over 20
inches. The algorithm fails to remove them from the true de-
fects using the criteria described in the previous section.

The other way to evaluate the performance of the detection
algorithm is to calculate the surface area of the detected de-
fects against that of the ground truth. This is similar to the
analysis used by Kline et al. (1998). We first estimate the total
surface area of: log samples (LSA), which is 91,257.06 in?;
observed external defects (ODA), 10,474 in?; automati-
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Figure 8. — A 3-D rendering of the log data with automatically
detected defects marked by patches. Such an image might be
used by sawyers to maximize the value of wood products.

cally identified defects that match the observations (MDA),
10,224 in?; automatically identified defects that do not
match the observations (FPA), a false positive, with a total of
1,213 in>. We also define ADA as the total area of all de-
fects determined by the detection algorithm, which equals
11,435.21 in?, and FNA, the total area of all observed defects
that are NOT identified by the detection algorithm—false
negative, 253.39 in’.

When the centerpoint of a detected region falls inside the
bounding box of an observed defect, and vice versa, we de-
clare it a match and use the defect area given by the ground
truth in calculation. Now we obtain the detection statistics: the
percentage of observed clear region is 88.52 percent ((LSA-
ODA)/LSA x 100%). The percentage of automated clear re-
gion is 87.47 percent, given by (LSA-ADA)/LSA x 100 per-
cent. That the latter is smaller than the former implies that the
algorithm identified more defective surface area than the ac-
tual observed area. The percentage of false positive or the
falsely identified defect regions from clear surface is 1.50 per-
cent (FPA/(LSA-ODA) x 100%). The percentage of false
negative, indicating how much the algorithm missed the de-
fective regions, amounts to 2.42 percent (FNA/ODA x
100%). Finally, 97.58 percent is the detection rate for our de-
fect detection algorithm with respect to observations, given by
MDA/ODA x 100 percent. Since the total of FNA and MDA
is equivalent to ODA, the false negative rate and the detection
rate add up to 1.

Future work

The Matlab code that detects defects will be converted to
Java and integrated with the scanning and sawing equipment.
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The detection results will be displayed in graphical formats to
assist sawyers who can rotate, zoom, and move the virtual log
marked with defects (Fig. 8). We implemented the method to
compute the false-detection rate as discussed in the previous
section, which demonstrated a reasonably good algorithm
(87.47% automated clear region vs. 88.52 % observed clear
region, and a 97.58% detection rate). Many defects were not
identified mainly because they do not have a significant
height change. Thus, our contour approach is not effective for
these defects. Among them there is a group of defects that are
severe, e.g., heavy distortions and flat knots. These defects
often have a distinctive ring-like bark pattern. Edge detection,
a computer vision technique, may help in identifying such de-
fects. This will be investigated in the second phase of this
research.
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