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ABSTRACT

We describe some persistent software infrastruc-
ture problems encountered by scientists and engineers
who work in application domains requiring extensive
computer simulation and modeling. These problems
may be mitigated by use of a Problem Solving En-
vironment (PSE), but not all of them are currently
being addressed by the PSE research community. We
then discuss an approach to designing a toolkit for
building PSEs. We argue that PSEs can best be im-
plemented using a component-based approach. We
present Sieve/Symphony, our initial efforts at creat-
ing a component-based collaborative framework for
building Problem Solving Environments.

INTRODUCTION

Many scientific and engineering research groups de-
pend on simulation and modeling as the core of their
research effort. There exist research groups in diverse
disciplines such as aircraft design, materials science,
biological modeling, hydrology, wireless communica-
tions systems design, and manufacturing processes
for wood-based composites, to name only a few, all
with roughly the same operating paradigm. This op-
erating paradigm is to design and implement com-
puter models and simulations of complex physical
phenomenon, from which are inferred new discover-
ies about the real-world process being modeled, or to
create new materials and products. While the form
and application of the models may vary in significant
ways, the approach and problems of these researchers
as it relates to software development and infrastruc-
tural needs are surprisingly similar.

We describe a complex of problems that appear to
be universal within academic research labs conduct-
ing this sort of software model-based research. Many
researchers are now engaged in developing Problem
Solving Environments (PSEs) whose purpose is to
aide research in computational science (see for ex-
ample Akers et al. 1997; Allen et al. 1999; Catlin et
al. 1994). Our goal is to explicitly list the problems
being encountered by the domain scientists and en-
gineers, not all of which are being addressed by the
current PSE efforts. We argue that these persistent
problems should be guiding PSE research efforts.

The second purpose of this paper is to describe
our architecture for a PSE-building environment. We
argue that PSEs can best be implemented using a
component-based approach. We present Sieve/Sym-
phony, our initial efforts at creating a component-
based collaborative framework for building Problem
Solving Environments.

THE PROBLEM IN COMPUTATIONAL
SCIENCE

For many scientists and engineers today, the most
annoying computing challenge is not creating new
high-performance simulations or visualizations. Of-
ten the scientists feel competent to develop such soft-
ware, and funding to support model development is
widely available. Rather, many scientists and engi-
neers are expressing frustration that their software
and computing resources are a heterogeneous mix
of incompatible simulations and visualizations, often
spread across differing computer hardware. The spe-
cialized software that drives a given lab’s research
is typically incompatible with that of potential col-
laborators. Thus, researchers today generally do not
make the most of their existing software and comput-
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ing resources. Nor does their computing environment
yet support on-line, real-time collaboration between
researchers seeking to do multidisciplinary work.

The researchers typically voice the following com-
plaints.

1. It is difficult to integrate software from multiple
disciplines developed by a diverse group of peo-
ple on multiple platforms located at widespread
locations.

2. It is difficult to share software between potential
collaborators in a multidisciplinary effort — dif-
ficult even for a team to continue using research
software once the author has left the group.

3. Current tools for synchronous collaboration are
inadequate.

These issues are of concern throughout a wide re-
search community, as evidenced by numerous NSF
workshops and conferences on topics such as Problem
Solving Environments, Workflow, and Process Man-
agement for scientific and engineering environments.
The field of Computer Supported Cooperative Work
also has much to offer in solving the communications
problems involved in multidisciplinary efforts.

Integrating codes from different disciplines raises
both pragmatic and conceptual issues. A pragmatic
concern is how best to support the interoperabil-
ity of independently-conceived programs residing on
diverse, geographically distributed computing plat-
forms. Another pragmatic concern is that large, com-
plicated codes now exist that cannot simply be dis-
carded and rewritten for a new environment. How-
ever, interoperability is best achieved by adhering
to common protocols of data interchange and using
clearly identified interfaces. The notions of inter-
faces and protocols lead directly to the domains of
object-oriented software and distributed computing.
The key pragmatic issue becomes how to unify legacy
codes, tied to specific machine architectures, into an
effective whole. The key conceptual issue is how to
foster coordinated problem solving activities among
multiple experts in different technical domains, and
leverage existing codes and computer hardware re-
sources connected by the Internet.

PROBLEM SOLVING ENVIRONMENTS

A Problem Solving Environment (PSE) provides
an integrated set of high-level facilities that sup-
port users engaged in solving problems from a pro-
scribed domain (Gallopoulos et al. 1994). PSEs allow
users to define and modify problems, choose solution

strategies, interact with and manage the appropri-
ate hardware and software resources, visualize and
analyze results, and record and coordinate problem
solving tasks.

Based on experiences with the various disciplines
listed above, the following is a list of particular issues
that should be addressed by a PSE for any Compu-
tational Science application.

Internet Accessibility to Legacy Codes The
initial reason why a computational scientist or en-
gineer approaches our research group is that they
would like to make their legacy modeling code Web-
accessible. We typically make legacy code Web-
accessible by creating a Java applet that allows the
user to fill in a form. The contents of this form are
passed to a server on the host computer that stores
the legacy code. The server, typically by means of
a Perl script, invokes the legacy code with the pa-
rameters and input files defined by the user’s form.
WBCSim (Goel et al. 1999) is a typical example of
this, though there are many other similar efforts.

Visualization Users of these models typically wish
to visualize the output, rather than simply analyze
the numbers and text produced by the program.
Sometimes the visualization may be generated by a
generic tool, but more often an ad hoc visualization
tool has been produced along with the modeling code.
Regardless, the researcher would like to integrate the
visualization process with invocation of the model.

Experiment Management The focus of the re-
search can often be cast as an attempt to solve an
optimization problem. A given run of the model is
typically an evaluation at a single point in a multi-
dimensional space. In essence, the goal is to supply
to the model that vector of parameters that yields
the best result under an objective metric. It is not
unusual for members of the research team to spend
considerable time in the following loop:

• run the model using a certain parameter vector;
• observe the results;
• generate a new parameter vector based on judg-

ment and past history;
• repeat until exhaustion sets in.

Under this operating procedure, the user would like
to have the results of the simulation runs be stored
automatically in some systematic way that permits
recovery of previous runs along with the parameters
that initiated the run. Ideally, a mechanism for anno-



tating the results, and a method for searching based
on inputs, results, or annotations, would be provided.

Multidisciplinary Support An eventual goal of
PSE research is to support the ability of researchers
to combine together to form larger, multidisciplinary
teams. In practice, this means that the models from
the various disciplines involved should be combinable
in some way. Perhaps this would be done by linking
individual PSEs for the disciplines, or perhaps the
various models would operate within the same PSE
environment.

Collaboration Support Researchers would like to
work together, when initiating/steering the computa-
tion or when analyzing the results. While the ability
to save and restore prior results can be used to pro-
vide asynchronous collaboration, ideally a PSE would
allow multiple users at multiple workstations to work
together in the PSE at the same time.

Optimization We have noted these research efforts
are often cast in the form of an optimization problem.
Thus, the process can often be improved by applying
automated optimization techniques, rather than have
someone manually try a large number of parameter
sets. In some disciplines, this is well known and op-
timizers are an integrated part of the model. But
many other disciplines do not typically use optimiza-
tion techniques. A PSE would ideally allow various
models to be combined with various automated opti-
mization techniques. (See Czyzyk et al. 1997 for an
example of optimization over the WWW.)

High Performance Computing Often, simula-
tions used by computational scientists require access
to significant computing resources, such as a parallel
supercomputer or an “information grid” of comput-
ing resources. In such cases, the PSE should inte-
grate a computing resource management subsystem
such as Globus (Foster and Kesselman 1997) or Le-
gion (Grimshaw et al. 1997).

Usage Documentation An aspect of providing
improved interfaces for simulation codes is implicit
and explicit documentation for use of the code, specif-
ically with respect to parameters and other inputs.
The interface could provide advice on reasonable in-
teractions of parameters, or which submodels to use
in particular circumstances. At the PSE creation
level, PSE-building tools could provide a convenient
mechanism for adding and accessing such documen-
tation. Documenting is in part a matter of discipline

for the developers. Conceivably, PSE implementation
tools could enforce good documenting discipline.

Preservation of Expert Knowledge Just like
books in libraries, computer programs codify and
preserve expert knowledge about the application do-
main. A PSE can serve two important roles in this
regard. First, by using and preserving legacy code,
the expert knowledge embodied in the legacy codes
continues to be (indirectly) employed. Second, state-
of-the-art codes are often nearly impossible for non-
experts to use productively, and by providing advice
(via an expert system shell) the PSE can make the
legacy codes and knowledge usable by non-experts.
For multidisciplinary work this expert advice for non-
expert users is indispensable.

Recommender Systems Most existing PSEs as-
sume that the choice of method (algorithm) to solve
a given scientific problem is fixed a priori (static)
and that appropriate code is located, compiled and
linked to yield static programs. The user (scientist)
still needs to select suitable software for the problem
at hand in the presence of practical constraints on
accuracy, time and cost. A recommender system for
a PSE serves as an intelligent front-end and guides
the user from a high level description of the prob-
lem through every stage of the solution process, pro-
viding recommendations at each step (Ramakrishnan
et al. 1998). Recommenders will also help scien-
tists and engineers achieve increased levels of inter-
activity as they work together to solve common prob-
lems (Ramakrishnan 1999). Further, they will enable
and hence encourage an increased flow of information
and knowledge among these scientists, their organi-
zations, and professional communities.

Integration While each feature described in this
list is important in its own right, the important as-
pect of a PSE for computational science research
such as we have described would be the synergy
that should result from integrating these features
into a single system. In particular, a collaborative
system that provides Internet-based access (perhaps
through a Web browser) to an integrated set of mod-
els, optimizers, visualizations, and experimental re-
sults database, would be a powerful tool indeed.

COMPONENT FRAMEWORKS AND PSES

Readers familiar with components and distributed
internet-based applications will recognize that many
goals of the PSE described above are also goals of



other distributed applications. While the details dif-
fer, the fundamental goals of integrating various com-
ponents in an application, and access to a database
(in this case the database of experimental runs) are
not unique to computational science. While support-
ing legacy code is often central to computational sci-
ence applications, this need is by no means novel.

However, the combination of issues embodied in the
PSE presents novel problems. These include the fact
that individual runs of a simulation can take hours;
the extensive use of visualization; the inherently dis-
tributed nature of the computation (i.e., certain sub-
models may need to run on differing systems for rea-
sons related to resource needs, or simply because they
are legacy codes written for differing systems); the de-
sire for synchronous collaboration; and the needs of
multidisciplinary users, no one of which is an expert
in all aspects of the larger system.

Most component technology today is aimed at “vi-
sual programming,” that is, helping programmers to
build programs faster and with fewer bugs through
greater code reuse. The motivation is that users will
be given better applications, but the component re-
search community is only now considering how com-
ponents will otherwise affect users. An application
programmer using component technology generally
develops as though these better programs would oper-
ate within the same non-component environments as
we have today. This view misses much of the poten-
tial benefits of a component-based paradigm. Com-
ponents could more directly support users, in that
the user might be linking components together them-
selves to create new capabilities. This approach is
already being used by some visualization programs
such a Khoros (Young et al. 1995) and AVS (Up-
son et al. 1989). See also (Gannon et al. 1998) for
another discussion regarding the use of component
frameworks for designing PSEs.

A PSE FRAMEWORK

Our own research efforts have been aimed at de-
veloping an environment in which to create PSEs
much as described in the section on goals (Isenhour
et al. 1997; Shah and Kafura 1999). We embody
the PSE in a (collaborative) visual workspace, in
which the user places various objects. These ob-
jects are components that represent individual sim-
ulations, optimization tools, visualization tools, etc.
These components are linked together by the user to
form networks that indicate the flow of data or con-

trol. The links between components are often rep-
resented by arrows. For example, a component rep-
resenting an input file on some computer might be
linked by an arrow to another component represent-
ing a model/optimizer combination. Another arrow
links the model/optimizer combination to a visual-
izer. The intent is that the PSE will cause the input
file to be moved to the machine storing the model and
optimizer, and the model/optimizer will then be in-
voked. The output of this process will then be passed
to the visualization, (perhaps on another machine)
with the results displayed on the user’s screen. The
fundamental interface design is similar to that of a
Modular Visualization Environment or the Khoros
image processing system.

Our PSE framework is known as Sieve/Symphony,
from the names of the two parts that make up the
framework. The implementation is based on Java-
Beans (Hamilton 1998). Sieve provides a collabora-
tive workspace within which users may place the com-
ponents that make up the PSE. Sieve also provides
a specific collection of JavaBeans for producing and
visualizing data. Symphony is a collection of Java-
Beans which serve as surrogates for describing and
manipulating remote resources (files and executable
codes). Sieve/Symphony provides the foundation for
constructing PSEs, as their combination creates a
collaborative environment for controlling distributed,
legacy resources.

Sieve provides an environment for collaborative
component composition that supports the following:

• A Java-based system compatible with standard
WWW browsers

• A convenient environment for generating visual-
izations through linking of data-producing mod-
ules with data-visualization modules

• Collaboration between users through a shared
workspace, permitting all users to see the same
visualizations at the same time

• Support for annotating the common workspace,
visible to all users

• A convenient mechanism for linking in new types
of components

Sieve presents the user with a large, scrollable
workspace onto which data sources, processing mod-
ules, and visualization components may be dropped,
linked, and edited. Figure 1 shows a Sieve workspace
containing a simple data-flow network.

Our design for Sieve allows processing and visual-



Figure 1: Example of a Sieve workspace with dataflow
and annotations.

ization modules to be generic, with all data-source–
specific details hidden by the source modules. Data-
flow modules implement an API which allows data to
be viewed by adjacent modules in the network as a
two-dimensional table containing objects of any type
supported by the Java language. Source modules
simply convert raw data into a table representation.
Processing modules can manipulate these data and
present an altered or extended table. Visualization
modules can then produce visual representations of
the data in a table. Visualization modules can serve
as an interface for data selection, in which case they
may also present an altered or extended table to ad-
jacent modules.

Symphony is a collection of JavaBeans designed to
permit the representation, composition, and manip-
ulation of remote resources. Each Symphony bean
serves as a surrogate for some actual resource. This
resource may be physically located on a machine
other than the one on which the surrogate bean it-
self resides. Symphony includes Program beans that
represent executable entities on some machine, and
several beans for representing sources or destinations
of data including a File bean, a StandardInput bean,
a StandardOutput bean, and a Socket bean.

Symphony requires that a Symphony server be
running on each machine containing remote exe-
cutable resources. Beans that represent these re-
mote resources communicate with and control those
resources through their interaction with the Sym-
phony server. The interaction between the bean and
the server is via the Java Remote Method Invocation
(RMI) service. The set of Symphony servers and the
beans will collaborate to transport files between ma-
chines, execute programs, and connect data streams

Figure 2: Interaction of a Symphony bean network with
Symphony servers and remote resources.

as needed to realize the computation specified in the
network of beans. An illustration of the interactions
between Symphony beans and the remote Symphony
servers is shown in Figure 2.

A bean that serves as a surrogate for a specific re-
source (i.e., a particular executable program) is cre-
ated by customizing that bean’s properties. A prop-
erty is a changeable attribute of a bean. For example,
the customization of a Program bean allows the user
to specify such properties as the hostname of the ma-
chine where the actual executable program or script
resides, the pathname of the directory where the pro-
gram or script can be found on its host, and the file-
name of the executable program within its directory.

Individual customized Symphony beans may be
composed to describe complex computations. For ex-
ample, Figure 2 shows how a set of Symphony beans
could be logically composed to describe a computa-
tion involving two programs and several files. Di-
rected arcs between the individual beans represent
the logical flow of data between the actual resources
for which the beans are surrogates. For example, the
directed arc from a Program bean to a File bean de-
notes that the actual file for which the File bean is a
surrogate will contain the data produced by the ex-
ecution of the program for which the Program bean
is a surrogate. Another flow not shown in Figure 2



allows data generated by one program on its stan-
dard output stream to become the data stream seen
by another program on its standard input.

Work is also underway to use the PYTHIA rec-
ommender kernel in the context of runtime appli-
cation composition systems. Specifically, PYTHIA
can monitor a computational process, detect state-
changes, and make selections of solution components
dynamically, thus aiding knowledge-based applica-
tion composition at runtime. Such a facility is im-
portant in many problem domains because: (i) the
nature of the problem being solved changes as the
computations are being performed, (ii) the under-
lying computing platform or resource availability is
dynamic, or (iii) information about application per-
formance characteristics is acquired during the actual
computation rather than before.

CONCLUSIONS

The computational science problems described in
this paper are real, serious, and widespread. A
PSE as described herein is not a panacea for all the
problems faced by computational science researchers.
Aside from issues related to constructing PSEs them-
selves, there will still remain problems of translating
incompatible data formats, the common occurrence
of poor software engineering practices, and the nat-
ural inertia that results in poor or outdated docu-
mentation. Nonetheless, there is an opportunity here
for component frameworks and distributed Internet-
based applications to play an important role in ad-
vancing the state of the art in computational science.
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