JSAV: The JavaScript Algorithm Visualization Library

Ville Karavirta
Dept. of Computer Science and Engineering
Aalto University
ville.karavirta@aalto.fi

ABSTRACT

Learning abstract concepts in data structures and algorithms
(DSA) courses is often difficult for students. To improve
understanding of DSA topics, numerous algorithm visual-
ization (AV) systems and stand-alone AVs have been de-
veloped, supporting a wide range of algorithms and differ-
ent engagement strategies. Prior studies show that active
engagement of students is necessary to make AVs educa-
tionally effective. In this paper, we introduce JSAV, a new
JavaScript framework for creating engaging algorithm visu-
alizations with active learning features. JSAV is meant to
be used with HTML5-based online learning materials. We
describe the special features of JSAV that support active
learning, and discuss its potential for use in online educa-
tion projects.

Categories and Subject Descriptors

E.1 [Data Structures]; E.2 [Data Storage Represen-
tations]; K.3.2 [Computers and Education]: Computer
and Information Science Education

General Terms
Algorithms, Design

Keywords

Data Structure and Algorithm Visualizations, Algorithm An-
imation, Interactive Courseware, HTML5, Active Electronic
Textbooks, Hypertextbook, JSAV

1. INTRODUCTION

Algorithm Visualization (AV) has a long history of success
in the classroom [1, 2, 20]. Nonetheless, many advocates of
AVs have been disappointed at how the lack of overall class-
room adoption does not match the reported support by stu-
dents and instructors for AVs on surveys [12, 19]. Based on
survey feedback, impediments to adoption include difficulty

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

ITiCSE’13, July 1-3, 2013, Canterbury, England, UK.

Copyright 2013 ACM 978-1-4503-2078-8/13/07 ...$15.00.

159

Clifford A. Shaffer
Dept. of Computer Science
Virginia Tech
shaffer@cs.vt.edu

of finding or using AVs, and the difficulty of “fitting them in”
as add-ons to existing lecture material. The second problem
can be mitigated by providing complete units of instruc-
tion, whether at the single-topic, chapter, or semester level.
Multiple initiatives have tackled this by integrating visual-
izations into learning material [13, 15, 18]. The OpenDSA
Project [3, 21] seeks to provide complete instructional ma-
terials for a data structures and algorithms course.

Technical difficulties in using AVs stem in part from their
historical context [20]. The earliest AV systems were imple-
mented to run first under X Windows and then on propri-
etary operating systems like Microsoft Windows. Since the
late 1990s, the dominant mode of implementation for AVs
has been with Java, whether presented as a standalone ap-
plication, a web applet, or using web-start. In any of these
modes, Java has made AVs more portable between operat-
ing systems. However, Java is currently losing standing on
the Internet, with its support becoming more problematic
for instructors.

In contrast, HTML5 (with programming support via Java-
Script) has quickly become an Internet standard, and is
now supported by all major browsers with relative consis-
tency. This makes it easier than ever before for imple-
menters to create content that they can expect will run on
any user’s computer with little effort. Indeed, unlike Java,
HTML5 even runs on most tablets and many mobile de-
vices. HTML5/JavaScript includes all necessary computa-
tional, graphical, and interface support to create the most
sophisticated of visualizations.

In this paper we present JSAV: The JavaScript Algorithm
Visualization Library. JSAV is written in JavaScript, and is
meant to support development of AVs for HTML5. A reader
knowledgeable with the history of AVs might question the
need for yet another AV support system, given that so many
already exist. The two primary motivations for JSAV are:

1. There is little existing support for AV development in
JavaScript. To our knowledge, the only other major
AV development effort in HTML5/JavaScript is the
collection of AVs and associated support environment
by Galles'.

2. JSAV includes a specific set of features designed to
support development of AV-based exercises that in-
volve active learning techniques, and visual content
that can be easily integrated into online tutorials. In
particular, the JSAV API supports special features for
creating visual algorithm simulation exercises as first

'Data Structure Visualizations Website: http://www.cs.
usfca.edu/"galles/visualization/Algorithms.html

implemented in the TRAKLAZ2 system [10], as well as
support for creating slideshows for presenting instruc-
tional visualizations within a tutorial.

JSAV represents the collective experience of three major
AV development groups: Aalto University (the developers
of TRAKLAZ2), Virginia Tech, and the JHAVE community.
Each group has written many widely used AVs, and the
differing perspectives of the developers have ensured that
JSAV is able to support the needs of a broad community
within a development environment (HTML5) that will prove
most significant to the future of online education.

Key features of JSAV include automated layout for a num-
ber of traditional data structures, support for presentation
slideshows, and support for TRAKLA2-style “proficiency ex-
ercises” that require the student to demonstrate proficiency
with an algorithm by simulating its key steps. JSAV is
the development library for the OpenDSA project, which
seeks to provide a complete open-source resource for teach-
ing Data Structures and Algorithms courses.

The rest of this paper is organized as follows. Section 2
presents some background and related research. Section 3
presents JSAV in detail. Section 4 presents a discussion
of lessons learned so far. Finally, Section 5 presents our
conclusions.

2. BACKGROUND

Since there is more previous research on algorithm visu-
alization than can fit into the pages of this article, we will
focus here on the research themes of recent years and the
general requirements for an AV system. Overviews for the
history of AVs can be found in [1, 2, 20].

One recent trend in AV research has been integrating
interactive visualization components with hypertext tuto-
rial content. Early work on this topic was done by Ross
and Grinder [13]. They defined the term hyperteztbook to
mean more than hyperlinked documents. They saw that it
should include visualizations and active learning objects. An
ITiCSE working group in 2006 provided guidelines on how
to integrate visualizations into hypertext and course man-
agement systems [15], coining for such systems the acronym
VizCoSH for Visualization-based Computer Science Hyper-
textbook. Since then, there have been other attempts to
merge visualization with tutorial content. The ANIMAL vi-
sualization system has been integrated into hypertext as a
Moodle module [18]. In that project, visualizations were
launched from the hypertext using Java Web Start. An-
other proposed solution is JSXaal, a visualization system
implemented in HTML5 and JavaScript [5]. Finally, there is
the already mentioned OpenDSA project [3, 21]. OpenDSA
uses the term active eBook to refer to a merging of content,
AV, and exercises with automated assessment. The visual-
izations in OpenDSA are written using JSAV.

Increasing evidence confirms the hypothesis that student
engagement is the key to educational effectiveness of AVs [4,
12]. The different types of engagement encountered in AVs
have been categorized in the Engagement Tazonomy [12].
The taxonomy defines five levels of engagement between a
student and an AV:

e Viewing - The student passively views a visualization,
perhaps with the ability to control the animation speed
or move step-by-step backward and forward. Most AV
systems support this minimal level of engagement.

160

e Responding - The student must respond to questions
about the content while viewing an AV. These are most
often pop-up questions where the student is required
to select or type the correct answer. This type of en-
gagement is used, for example, in ANIMAL [14] and
JHAVE [11].

e Changing - The student must change the visualization
by, for example, providing input data to the algorithm.
For example, the JHAVE system supports this in some
visualizations.

e (Constructing - The student must construct a visu-
alization. A variation on this approach is taken in
MA&DA [9] and TRAKLA2 [10], where the student
is given a data structure and an algorithm and is ex-
pected to simulate the algorithm. That is, they need
to imitate the steps of an algorithm by controlling the
visualization. This approach is also called visual algo-
rithm simulation [8].

e Presenting - The student is presenting a visualization
to others.

The hypothesis of the taxonomy is that the higher the level
of engagement, the more educationally effective the AV is.
Therefore, the possibility for creating engaging material can
be considered the most important feature of an AV system.

Over the years, more proposals on the required features
of an AV system have been introduced [5]. Most of the re-
quirements have been introduced by Ro8ling and Naps [16,
17]. Their first requirement is that the AV system should
support as wide a target audience as possible. Since the
mid-1990s, this has meant implementing the systems in Java
and has led to Java being the most common implementation
technology [20]. However, since the widespread adoption of
HTML5 the importance of Java on the web is continually
diminishing, and browser support is becoming more diffi-
cult for instructors to maintain. In contrast, HTML5 and
JavaScript are rapidly gaining in popularity.

This shift in technology has not yet been widely reflected
in the technologies used in AV systems. Work by Galles al-
ready mentioned is probably the first large-scale JavaScript-
based algorithm visualization collection. However, those vi-
sualizations are geared towards viewing the algorithms and
offer no engaging content. JSXaal is a viewer for visual-
izations in the XAAL algorithm animation language [5]. In
terms of engagement, it supports pop-up questions, changing
input data, and student annotations. JSXaal does not, how-
ever, support algorithm simulation exercises. Furthermore,
it is not intended for creating visualizations, but merely
viewing visualizations created in existing systems.

To summarize, there is a clear need for a system that
seamlessly integrates AVs with hypertext learning material,
supports multiple levels of engagement through the use of
exercises and simulations, and is implemented with HTML5
and JavaScript.

3. JSAV

JSAV has adopted what we consider to be the best fea-
tures from the large number of existing AV systems that
we are familiar with. What makes it different from other
libraries for building AVs is the ease with which it can be
integrated into hypertext and its support for creating engag-

ing exercises. In the following, we will present JSAV’s most
innovative features.

Levels of Engagement.

JSAV supports different types of visualizations on mul-
tiple engagement levels. The simplest are static images of
data structures. JSAV allows easy generation of figures un-
der programmatic control for use in illustrating learning ma-
terial. The main advantage of such images compared to im-
age formats like PNG is the ease in changing visual appear-
ance and the data presented. Since the images are generated
programmatically (often representing state of an algorithm
run to a particular point), it is easy to adjust the algorithm
or associated input to generate a new image at another spec-
ified point in the algorithmic process.

The second type of visualization we call slideshows, which
show a series of steps to animate the behavior of an algo-
rithm. The student is merely viewing the AV. Students can
control the slideshow by moving a step backward or for-
ward, to the beginning or the end. They can change the
speed of transition animations. Implementing a slideshow
using JSAV feels much like writing a presentation using a
script-based slideshow package such as Beamer. Again, pro-
grammatic control makes for powerful integration of the vi-
sualization with the algorithm being visualized.

While important as visual aides to accompany tutorial
presentations, both static images and slideshows represent
only the viewing level of the engagement taxonomy. View-
ing is the lowest level of engagement and therefore does not
represent the most effective use of AVs. A simple way to
increase engagement is through pop-up questions that can
be used in slideshows. These require the student to respond
during the AV. JSAV supports questions that can be either
true/false, multiple-choice, or multiple-select questions. A
question is shown as a popup to the student. When a ques-
tion is answered, the correctness of the answer is given. If
the answer was incorrect, the student is allowed to try again.
While not strictly a part of JSAV, we have also successfully
integrated JSAV displays with the Khan Academy exercise
infrastructure?, thereby gaining access to the ability to cre-
ate a wide range of interactive exercises that can allow stu-
dents to directly manipulate the data structures as part of
specifying the answer.

Finally, JSAV supports algorithm simulation exercises on
the engagement level known as constructing. We refer to
these as proficiency exercises, since the student has to show
his/her proficiency with the algorithm by simulating the
steps taken by the actual algorithm. In JSAV proficiency
exercises, simulation of the algorithm is mainly done by
clicking the data structure visualizations or buttons. JSAV
supports versatile feedback modes for proficiency exercises,
as will be explained later.

Visual Components.

On all levels of engagement, visualizations can be com-
posed from the same selection of objects. The building
blocks used in creating JSAV visualizations are similar to
many existing AV systems. There are essentially three types
of objects: data structures, graphical primitives, and code.

The data structures supported are array, linked list, tree,

’https://github.com/Khan/khan-exercises

161

binary trees, and graphs.®. Examples for all these structures
are shown in Figure 1. The structures support operations
that one would expect, like set/get values of array elements,
add/remove/get children of a node in a tree, set/get the
next node in a linked list, or add/remove nodes and edges
in a graph. There are also methods to change the visual
appearance for parts of a structure. Calls to any operations
that change the state or visual appearance of the objects
are recorded and can be undone and redone by the student
when in slideshow mode. Default visual appearance for all
visual elements can also be specified using CSS. Finally, all
data structures support automatic layout of their elements
as well as allow manual positioning.

The graphical primitives supported are text, line, circle,
ellipse, rectangle, polygon, polyline, and a general path.
The general path allows drawing arbitrary shapes made of
lines and curves®. In addition, multiple graphical primitives
can be combined into a set. The visual appearance can be
changed through method calls on the objects, or their de-
fault appearance can be specified using CSS. Furthermore,
the objects can be scaled, rotated, and moved. Again, all
changes are recorded to the animation.

To tie the visualization with code for the algorithm, JSAV
supports visualizing pseudocode and variables. The pseu-
docode element can read a piece of code from a file and
display it as shown in Figure 2. The code object has meth-
ods for highlighting specified lines or the current line. It
can also automatically indicate the previous line when the
currently highlighted line is changed. Variables can be used
to track and visualize variable values in an algorithm.

Insertion Sort Visualization

D About

1" to use random values

Run | [Reset | Listsize: [8 ¢ | Your values: Type space-sepa

4137

ated values, or just hit 'ru

Move the blue record to the left until it reaches the correct position

901 525 910 464 556 389 894 399
0 1 2 3 4 5 6 T

void inssort(int[] A) {
for (imt i=1; i<A.length; i++) // Insert i'th record
for (imt j=i; (3>0) && (A[]] < A[I-11); j--)
swap(d, 3, 3-1);

G w o

Figure 2: Example of a JSAV visualization that in-
cludes the pseudocode component.

For all the visual components, positioning can be defined
in three ways. First, elements can be added to the HTML
document tree before or after certain elements. This leaves
the exact positioning to the browser’s layout engine. Second,
the objects can be positioned using absolute pixels relative
to the left, right, top, and bottom of the AV canvas. Finally,
components can be positioned relative to other components.

3The graph support is new, and so AVs built with graphs
have not yet been used in a course.

4JSAV can draw anything that is possible with the
SVG path element http://www.w3.org/TR/SVG/paths.
html#PathData.

34 27 | 90 17 | 22

C)

0 1 2 3 4 5 6

27 90 12 4

4 3 2 1

0000.0

Figure 1: Examples of JSAV data structures array, bar layout for array, linked list, tree, and graph.

Proficiency Exercises.

One of JSAV’s most innovative aspects is its support for
algorithm simulation, which we call proficiency exercises.
Proficiency exercises require the student to simulate the
workings of an algorithm by, for example, clicking on ar-
ray indices or tree nodes to swap the items. The student
is essentially constructing their own algorithm visualization,
within the constraints that the exercise developer has pro-
vided to allow student control. This student visualization
can be automatically assessed by comparing it to a model
solution. The model solution is also available for student
view as a JSAV slideshow. Figure 3 shows an example of
the Heapsort exercise.

Instructions

i)

Reproduce the behavior of heapsort for the maximum heap below. You can swap keys by clicking the first one and
then the second one in either of the representations (array or binary tree). Begin by swapping the last key with the
largest key, and reducing the size of the heap by one (by clicking the "Decrement heap size" button). After that
restore the heap property again.

Decrementheap size

(=

Score: 5 /32, Point remaining: 27, Points lost: 0

3

39 635 46 20 135 22

40‘10

Figure 3: Example of a JSAV proficiency exercise
for Heapsort.

JSAV proficiency exercises provide three different peda-
gogical modes. They are:

e Limited feedback: In this mode, the student is given
only the number of steps correct so far in the student
solution, and only when the student requests it.

e Continuous feedback with incorrect steps un-
done: The student gets feedback after (almost) every
operation he/she does. If the latest step the student
took is incorrect (that is, it does not match the corre-
sponding step in the model answer), then it is undone
to the last correct step and the student can try that
step again.

162

e Continuous feedback with incorrect steps fixed:
Like in previous mode, feedback is given after each
operation the student does. If the step is incorrect,
however, the state of the solution is automatically cor-
rected to the one in the model solution. The student
does not get a chance to redo that step, and does not
get a point for that step.

Developing proficiency exercises requires the AV author to
first write JavaScript to generate random input data for the
exercise and initialize the data structures used. The second
required task is to write the model solution similarly to how
JSAV slideshows are written. The model solution needs to
be annotated to mark the steps which are to be graded.
Finally, the author needs to add the student interaction, that
is, attach the needed event handlers to the data structures
so that changes are made when students interact with them.
The continuous feedback with step fixing mode requires the
author to supply a function that will take a state of the
model solution and fix the student solution to match that
state.

Technology.

The user interface of JSAV is all HTML with the function-
ality implemented in JavaScript and the appearance speci-
fied with CSS. This makes integrating JSAV visualizations
within hypertext simple and flexible. The visualizations can
be written/loaded directly into the hypertext material, or be
implemented within their own HTML documents and em-
bedded with iframe HTML elements.

JSAV takes advantage of some existing, high quality Java-
Script libraries. It uses jQuery to help in solving differences
in browsers and working with the DOM. jQueryUI imple-
ments animation effects and element positioning. Finally,
Raphaél eases using SVG to display and animate changes to
the graphical primitives.

Officially, JSAV supports all modern versions of Chrome,
Firefox, and Safari browsers. For each of these, the library
has been tested and used by students. Furthermore, the
library should work in IE and Opera as well as Mobile Safari
on iOS and the default browser on Android 4. JSAV is open
source and released under the MIT license. Source code is
available from a public GitHub repository®.

Shttp://github.com/vkaravir/JSAV/

Extending and Customizing.

The technologies used makes customizing JSAV easy and
flexible. By changing CSS styles, the visual appearance of
the AV can be changed. JSAV aids CSS styling by using
hierarchic HTML class attributes when styling objects of
different types. For example, all nodes in list, trees, and
graph have CSS class jsavnode. They also have more spe-
cific classes with binary tree nodes having additional classes
jsavtreenode and jsavbinarynode. When many JSAV vi-
sualizations are used together in a document or project, they
should all use a common stylesheet to allow changing the ap-
pearance of all the AVs simultaneously.

Customizing and extending the behavior is made easy
with the dynamic nature of JavaScript. As JSAV exposes
all of the types used for its visual components, adding or
changing functionality is straightforward. For example, a
visualization of the binary search tree insert operation could
add a function for the BST insert to the binary tree com-
ponent without changing the JSAV source code. New core
functionality can also be added outside of JSAV. In fact,
most of the functionality in JSAV itself is implemented us-
ing the extension mechanism to add new functionality in in-
dependent modules. This makes it possible to build smaller
versions of JSAV with only the features needed by a specific
AV or hypertextbook.

Finally, browser events can be used to change or control
JSAV functionality. JSAV triggers many events whenever a
user interacts with it. For example, both successfully and
unsuccessfully completing steps in a proficiency exercise ex-
poses scoring events. Such events can be used to, for exam-
ple, change displayed student progress in HTML surround-
ing the visualization (as is done in OpenDSA). Furthermore,
JSAV listens to some events on its container. These events
can be used, for example, to move backward or forward in
the animation, enabling building of different kinds of stu-
dent controls in addition to the default ones provided by
JSAV. An example of customizing the UI is shown in Fig-
ure 4. Here, the events have been used to add AV controls
and a progress bar to the bottom of the iPad view.

Both values would still be in same quadrant, split again PRQuad tree

Figure 4: Example of a JSAV visualization on iPad
which uses graphical primitives and Google Maps.

4. DISCUSSION

The development of JSAV began at the same time as the
OpenDSA project. OpenDSA’s goal is to build a complete

163

open-source, online eTextbook for DSA courses, that inte-
grates textbook quality text with algorithm visualizations
and a rich collection of interactive exercises. All exercises
are assessed automatically. As a result, students gain far
more practice by working on OpenDSA exercises than is
possible with normal paper textbooks.

Since JSAV is the framework for building visualizations
within OpenDSA, there already exists a significant set of
visualizations built with JSAV. OpenDSA already has com-
plete chapters on sorting and hashing®. These chapters in-
clude over thirty AVs ranging from static images to profi-
ciency exercises. By Fall 2013, a full semester DSA course
will have been developed for OpenDSA using JSAV.

Many JSAV visualizations have already been used by stu-
dents in large courses. In Spring 2012 around 80 computer
science majors used four binary heap proficiency exercises”
in a DSA course at Aalto University. Results of the stu-
dents were in line with results from previous years using
TRAKLA2. Furthermore, the student opinions were highly
positive with negative comments on some technical bugs
that have since then been fixed. More details can be found
in Karavirta et al. [7].

OpenDSA was used to replace three weeks worth of stan-
dard lecture materials on sorting and hashing during Octo-
ber 2012 by around 60 students in a DSA course at Virginia
Tech. Students in the treatment section using OpenDSA
scored slightly higher on the resulting exam than the con-
trol group, but not significantly so. Student evaluations were
highly enthusiastic, with mean scores on preference for inter-
active online tutorials over standard lecture going up after
actual use of the materials. More details on this evaluation
for the OpenDSA project can be found in Hall et al. [3].

Most existing visualizations in OpenDSA are on sorting
and hashing, which can be considered simple topics to visu-
alize. The majority of the JSAV AVs created thus far use
only the array data structure. The Quicksort AV shows the
hierarchical decomposition of the array partitionings, and
linked lists are used in both the Radix Sort visualizations
and the Open Hashing visualization. A few AVs on more
complex topics have been implemented, such as Huffman
coding and dynamic programming. Furthermore, there are
AVs on spatial algorithms (namely, the PR QuadTree and
the kd-Tree) which visualize both a tree data structure and
an area using a map [6]. These AVs use the location of the
student to initialize the exercise with local data point and
they use Google Maps to show a map (see Figure 4 for an
example). Thus, they give a good indication on the flexibil-
ity of JSAV as well as the ease of which it can be integrated
with other web technologies and libraries. Given this body
of existing content, we are certain that JSAV is suitable for
visualizing even more complex algorithms.

The main obstacle in creating more AVs with JSAV is the
learning curve for the library. With the existing Java AV
systems, most potential AV developers were already famil-
iar with the Java language and needed only to learn an API
for the specific AV system. With JSAV being HTML5/Java-
Script based, a potential AV developer will need to first learn
JavaScript, HTML5, and CSS to be able to take full advan-
tage of the library. This can currently put off some devel-

SThis material is available from http://algoviz.org/
OpenDSA/.

"The exercises were heap insert, heap delete, build-heap al-
gorithm, and heapsort.

opers, but we argue that as web technologies further gain in
popularity, more and more educators will know or be mo-
tivated to learn the technologies needed. Roughly a dozen
graduate and undergraduate students have successfully im-
plemented JSAV-based AVs or exercises, mostly as part of
independent study courses or as volunteers.

5. CONCLUSIONS

The major contribution of this paper is the introduction of
a new educationally oriented algorithm visualization frame-
work called JSAV. JSAV has been built based on years of
research on developing both AVs and AV systems, and com-
bines features of several well-known AV systems. We have
explained the main features of JSAV, and discussed exist-
ing materials and early experiences with using the materi-
als in teaching. JSAV is the first AV development system
implemented in HTML5/JavaScript with support for both
animated slideshows and engaging automatically assessed
exercises. The collection of visualizations and exercises is
growing continuously. We hope that more teachers will use
the material and join the community effort to continue de-
velopment of the framework and the materials.

6. REFERENCES

[1] S. Diehl. Software Visualization. Number 2269 in
Lecture Notes in Computer Science. Springer, 2002.
E. Fouh, M. Akbar, and C.A. Shaffer. The role of
visualization in computer science education.
Computers in the Schools, 29:95-117, 2012.

S. Hall, E. Fouh, D. Breakiron, M. Elshehaly, and
C.A. Shaffer. Education innovation for data structures
and algorithms courses. In Proceedings of ASEE
Annual Conference, Atlanta GA, June 2013.

C.D. Hundhausen, S.A. Douglas, and J.T. Stasko. A
meta-study of algorithm visualization effectiveness.
Journal of Visual Languages and Computing,
13:259-290, June 2002.

V. Karavirta. Seamless merging of hypertext and
algorithm animation. ACM Transactions on
Computing Education, 9(2):1-18, 2009.

V. Karavirta. Location-aware mobile learning of
spatial algorithms. In Proceedings of the IADIS
International Conference on Mobile Learning 20183,
pages 158-162, Lisbon, Portugal, March 2013.

V. Karavirta, A. Korhonen, and O. Seppilé.
Misconceptions in visual algorithm simulation
revisited: On UI’s effect on student performance,
attitudes, and misconceptions. In Proceedings of
Learning and Teaching in Computing and
Engineering, Macau, 2013.

A. Korhonen. Visual Algorithm Simulation. Doctoral
dissertation (tech rep. no. tko-a40/03), Helsinki
University of Technology, 2003.

M. Krebs, T. Lauer, T. Ottmann, and S. Trahasch.
Student-built algorithm visualizations for assessment:
flexible generation, feedback and grading. In
Proceedings of the 10th annual SIGCSE conference on
Innovation and technology in computer science
education, pages 281-285, New York, NY, USA, 2005.
L. Malmi, V. Karavirta, A. Korhonen, J. Nikander,
O. Seppilé, and P. Silvasti. Visual algorithm

2]

3]

[10]

164

(11]

(12]

(13]

(14]

(15]

(16]

(17]

(18]

(19]

(20]

(21]

simulation exercise system with automatic assessment:
TRAKLA2. Informatics in Education, 3(2):267-288,
September 2004.

T.L. Naps. Jhavé: Supporting algorithm visualization.
IEEE Computer Graphics and Applications, 25:49-55,
September 2005.

T.L. Naps, G. Rossling, V. Almstrum, W. Dann,

R. Fleischer, C. Hundhausen, A. Korhonen, L. Malmi,
M. McNally, S. Rodger, and J.A. Velazquez-Iturbide.
Exploring the role of visualization and engagement in
computer science education. In Working Group
Reports from ITiCSE on Innovation and Technology
in Computer Science Education, pages 131-152, 2002.
R.J. Ross and M.T. Grinder. Hypertextbooks:
Animated, active learning, comprehensive teaching
and learning resources for the web. In S. Diehl, editor,
Software Visualization, number 2269 in Lecture Notes
in Computer Science, pages 269-284. Springer, 2002.
G. RoBling and B. Freisleben. ANIMAL: A system for
supporting multiple roles in algorithm animation.
Journal of Visual Languages & Computing,
13(3):341-354, 2002.

G. Ro8ling, T. Naps, M.S. Hall, V. Karavirta,

A. Kerren, C. Leska, A. Moreno, R. Oechsle, S.H.
Rodger, J. Urquiza-Fuentes, and J.A.
Veldzquez-Iturbide. Merging interactive visualizations
with hypertextbooks and course management. In
Working Group Reports from ITiCSE on Innovation
and Technology in Computer Science Education, pages
166181, 2006.

G. Rofling and T.L. Naps. A testbed for pedagogical
requirements in algorithm visualizations. In
Proceedings of the 7th annual conference on
Innovation and technology in computer science
education, pages 96—-100, New York, NY, USA, 2002.
G. Ro8ling and T.L. Naps. Towards intelligent
tutoring in algorithm visualization. In Proceedings of
the 2nd International Program Visualization
Workshop, pages 125-130, Aarhus, Denmark, 2002.

G. RoBling and T. Vellaramkalayil. First steps towards
a visualization-based computer science hypertextbook
as a Moodle module. In Proceedings of the 5th
Program Visualization Workshop, volume 224 of
Electronic Notes in Theoretical Computer Science,
pages 47-56, 2009.

C.A. Shaffer, M. Akbar, A.J.D. Alon, M. Stewart, and
S.H. Edwards. Getting algorithm visualizations into
the classroom. In Proceedings of the 42nd ACM
Technical Symposium on Computer Science Education
(SIGCSE’11), pages 129-134, 2011.

C.A. Shaffer, M.L. Cooper, A.J.D. Alon, M. Akbar,
M. Stewart, S. Ponce, and S.H. Edwards. Algorithm
visualization: The state of the field. ACM
Transactions on Computing Fducation, 10:1-22,
August 2010.

C.A. Shaffer, V. Karavirta, A. Korhonen, and T.L.
Naps. OpenDSA: Beginning a community
hypertextbook project. In Proceedings of the 11th Koli
Calling International Conference on Computing
Education Research, pages 112-117, Koli National
Park, Finland, November 2011.

