Learning to Coordinate
with Coordination Graphs in Repeated
Single-Stage Multi-Agent Decision Problems

ICML 2018 - Vrije Universiteit Brussel and DeepMind

Shengzhe Xu, Machine Learning Group, MSRA

Background

Coordinate between multiple agents is an important problem.
Key: Exploiting loose coupling.

Loose coupling is an approach to interconnecting the components in a system or network so that those
components, also called elements, depend on each other to the least extent practicable.

Background

Fully cooperative games, multi-agent multi-armed bandits (MAMABs)

Target is to prove a regret bound that is logarithmic in the number of arm pulls and only linear in the
number of agents.

Research Problem

What: To prove aregret bound that is logarithmic in the number of arm pulls and only linear in the
number of agents. Also the regret bound depends on the harmonic mean of the local upper confidence
bounds, rather than their sum.

How: They propose multi-agent upper confidence exploration (MAUCE), a new algorithm for MAMABs
that exploits loose couplings.

In the experiments section, it performs better than sparse cooperative Q-learning and a state-of-art
combinatorial bandit approach.

Definition 1. A single-agent multi-armed bandit (MAB)
ResearCh PrOb"em (Thompson, 1933) is a tuple (A, F') where

o A is a set of actions or arms, and

e F'(a), called the reward function, is a random function
taking an arm, a € A, as input. Specifically, for each
a € A, F(a) is a random variable associated with
a probability distribution P, : R — [0, 1] over real-
valued rewards r.

We refer to the mean reward of an arm as i, = Ep,[r] =
oo .

f_,_)o rP,(r)dr, and to the optimal reward as the mean re-

ward of the best arm 1 = max, [iq.

The goal of an agent interacting with a MAB is to minimize
the expected regret.

Definition 3. A multi-agent multi-armed bandit (MAB) is a
tuple (A, D, F') where

Research Problem

e D is the set of m enumerated agents,

o A=Ay x---x A, is a set of joint actions, which is
the Cartesian product of the sets of individual actions,
A, for each of the m agents in D, and

e F(a), called the global reward function, is a random
function taking a joint action, a € A, as input, but
with added structure. Specifically, there are p possibly
overlapping subsets of agents, and the global reward
is decomposed into p local noisy reward functions:
F(a) = Y_%_, fe(a®) where f¢(a®) € [0,75.x] A
local function f¢ only depends on the joint action a®
of the subset D¢ of agents.

We refer to the mean reward of a joint action as jta, which

in turn is factorized into the same local reward components
O e S i S e

as F(a): pa =Y P_, p(a®). For simplicity, we refer to an

agent 1 by its index.

Challenge

Naive approach of considering the regret of full joint action is exponential in the number of agents.
Naive approach considering a super agent whose action space could be prohibitively large.

How to balance exploration and exploitation in the joint action taken by the agents, such that the loss due
to taking suboptimal joint actions during learning is bounded.

Key Concept

While learning MAUCE leverages the graphical properties of the MAMARB. It treating both exploration
and exploitation as separate objectives.

MAUCE selects the action that best balances exploration and exploitation according to the joint overall
mean reward plus (upper confidence) exploration bound.

They proven aregret bound for MAUCE that is only linear in the number of agents rather than
exponential.

Experiments

Baselines: uniformly random action selector; sparse cooperative Q learning; learning with linear rewards.

Games: 0101-Chain; Gem Mining; Wind Farm

Experiments - 0101-Chain

The 0101-Chain is a simple MAMARB, with a known optimal
action. The problem consists of n agents, and n — 1 local
reward functions. Each local reward function f*(a;, ;1)
is connected to the agent with the same index, ¢, and to 7z + 1.

The optimal action in the 0101-Chain problem is a; = 0 if ¢

is even, and a; = 1 is 7 1s odd. The reward tables for each
local group are given in Table 1.

Experiments - 0101-Chain

1 1S even @iy =0 | mep=Jd
a; = 0 f(suc;0.75) 1
n—1 n—1
. f(suc;0.25) f(suc;0.9)
a; — 1
n—1 n—1

Table 1. The reward table for 0101-Chain. n is the number of
agents in the problem. f(suc;p) is a Bernoulli distribution with
success probability p, i.e., f(1;p) = pand f(0;p) = 1—p. The
table for odd agents is the same but transposed.

Results - 0101-Chain

Experiments - Gem Mining

Mining Day Problem (2015)

Figure 1. Gem Mining example. Each village represents an agent,

while the mines represent the local reward functions.

In Gem Mining, a mining company mines gems from a set
of mines (local reward functions) located in the mountains
(see Figure 1). The mine workers live in villages at the foot
of the mountains. The company has one van in each village
(agents) for transporting workers and must determine every
morning to which mine each van should go (actions), but
vans can only travel to nearby mines (graph connectivity).
Workers are more efficient when there are more workers
at a mine: the probability of finding a gem in a mine is
x-1.03%¥~1, where z is the base probability of finding a gem
in a mine and w is the number of workers at the mine. To

Experiments - Wind Farm

A state-of-art simulator (2016)

(1,2,3) &

(3) | -jgk
(3,4,5,6) b

(6)

(6,7,8,9)
(9)

T
w T

Figure 2. Wind farm setup. The incoming wind is denoted by
an arrow. Each local group is denoted by a different color and
line type. Groups are listed explicitly on the left. Note the three
single-agent groups on the left to handle per-agent rewards.

We vary the wind speed in the simulator at each timestep,
following a truncated normal distribution with mean 8.1 m/s.
The overall reward is normalized to a [0, 1] interval using
the maximum possible overall reward at the highest wind
strength and the minimum possible reward per turbine at
the minimum wind strength. While this makes it impossible
to compute the true regret, as choosing the optimal action
does not result in a O regret in expectation, it avoids having
to calculate the true expected reward for all actions in this
scenario, which is non-trivial.

Results - Gem Mining & Wind Farm

Gem Mining: rewards in this setting s are obtained by a group

Wind Farm: rewards in this setting s are obtained per-agent from the simulator

Results - Gem Mining & Wind Farm

00000

16000
1000
14000

12000 chl — | soo.Squ _
w“simauce _Imauce

gl - ~— |rnd
6000 ”r — , _g— a 4oo-||r —

200
2000

(¢) Gem Mining (d) Wind Farm

0 0
0%10° 1+104 2%¥10% 3*104 4x10% 0%10° 1*104 2+¥10% 3104

4%10%

Approach - MAUCE Algorithin I MAUCE

1: Input: An MAMAB with a factorized reward function,
F(a) =3%""_, f¢(a®), atime horizon T

2: Initialize 1°(a®) and n°(a®) to zero.

3: fori =1to71 do

MAUCE executes a joint action at every timestep that maxi-

mizes the estimated mean reward for a given factorization 4: a; = arg max, ,L"l.t (a) + c¢(a) where,

of the reward function, ji(a), plus an exploration bonus, '[L;-‘-(a) = 5_1 f1:(a®) and.

c¢(a), that is computed using the same factorization. To do ' —

50, it keeps mean estimates of local rewards /i°(a®), and c(a) = \/% (Zgzl n(ac)~1(re.. J2)loz(tA)

local counts n§(a®) for each subset of agents. These local
estimates depend only on the subset of actions a® C a for
this group of agents D¢ C D. Not all joint actions have to

re=>_"_,ri(a®) (execute a, obtain local rewards)
Update /5 (a®) using 7§ (a®) for all a° C a;
Increment n§ (a®) by 1 for all a® C a;

end for

N

o0 N4 O

Approach - MAUCE

Al

gorithm 1 MAUCE

®» 39w

: Input: An MAMAB with a factorized reward function,

F(a) =)>"_, f¢(a®), a time horizon T’
. Initialize /1°(a®) and n°(a®) to zero.
s fori=1to7 do
a; = arg max, ftz(a) + c¢(a) where,
pg(a) =37, i(a®) and,

ci(a) = /4 (T0o; 7§ (a°) 1 (105)?) log(tA)

P_,ri(a°) (execute a, obtain local rewards)
Update /5 (a®) using r¢(a®) for all a® C ay
Increment n§ (a®) by 1 for all a° C a,

end for

Pp=

be selected often, or even at all. Note that the counts ng(a®)
used to compute the bonus for an action a can change over
time, even if the joint action a has never been selected, be-
cause MAUCE observes and uses the local rewards, ry(a).
This enables the algorithm to exploit the graphical structure
to compute tighter exploration bonuses while guaranteeing
a tight regret bound. Despite not guaranteeing to explore all
joint actions, the algorithm achieves guaranteed logarithmic
regret. The proof for this regret bound is given in Section 5.

Besides the local counts, the exploration bonus also depends
on the maximum value of the local rewards 7, ... the time
index ¢, and A. We note that A is exponential in the number
of agents. Contrary to single-agent MABS, it is not trivial
to maximize over ji(a) + c¢(a), as we need to maximize
over a A efficiently, and ¢;(a) is a non-linear function in
the local counts ng (a“). Hence, MAUCE requires a special
algorithm to perform this maximization.

Approach - MAUCE

Al

gorithm 1 MAUCE

®» 39w

: Input: An MAMAB with a factorized reward function,

F(a) =)>"_, f¢(a®), a time horizon T’
. Initialize /1°(a®) and n°(a®) to zero.
s fori=1to7 do
a; = arg max, ftz(a) + c¢(a) where,
pg(a) =37, i(a®) and,

ci(a) = /4 (T0o; 7§ (a°) 1 (105)?) log(tA)

P_,ri(a°) (execute a, obtain local rewards)
Update /5 (a®) using r¢(a®) for all a® C ay
Increment n§ (a®) by 1 for all a° C a,

end for

Pp=

be selected often, or even at all. Note that the counts ng(a®)
used to compute the bonus for an action a can change over
time, even if the joint action a has never been selected, be-
cause MAUCE observes and uses the local rewards, ry(a).
This enables the algorithm to exploit the graphical structure
to compute tighter exploration bonuses while guaranteeing
a tight regret bound. Despite not guaranteeing to explore all
joint actions, the algorithm achieves guaranteed logarithmic
regret. The proof for this regret bound is given in Section 5.

Besides the local counts, the exploration bonus also depends
on the maximum value of the local rewards 7, ... the time
index ¢, and A. We note that A is exponential in the number
of agents. Contrary to single-agent MABS, it is not trivial
to maximize over ji(a) + c¢(a), as we need to maximize
over a A efficiently, and ¢;(a) is a non-linear function in
the local counts ng (a“). Hence, MAUCE requires a special
algorithm to perform this maximization.

Approach - UCVE

First, we define the input of UCVE. Specifically, to be able
to work with sers of vectors as intermediate results, we
first reformulate the problem of finding the optimal joint
action in these terms. Specifically, we define the input
to UCVE as a set F of local upper confidence vector set
functions (UCVSFs). For each f€ of F'(a), F contains an
identically scoped UCVSF u®. Each u¢ initially contains a
singleton set, u* = {v®(a®)}, where v¢(a®) is defined
as in Equation l. Ellmmatlng an agent i, is performed by

replacing all u¢(a®) which have 7 in scope, i.e., i € D¢,

by a new function that incorporates the possibly optimal
responses of i. These possibly optimal responses are again
vectors in the form of Equation 1.

ve(@®) = (i*(a%), nf (@) (i), (D

Algorithm 2 UCVE(F)

Input : A set of local upper confidence vector set functions
F and an elimination order q (a queue with all agents)
Output : An optimal joint action, a*

1: while q is not empty do
2: i< q.dequeue()
3: F; < the subset of UCVSFs in F that have ¢ in scope
Ty, x; < compute upper and lower bounds on the
exploration part of the vectors for the remaining fac-
tors'in F '\ JF;
5. u™"(-) + anew UCVSF
6: forall a°; e Ap.\(;; do
7 VY« U @ u®(a?; x {a;})
a;i€A; u°cF;
8: u™®¥(as ;)<prune(V, z,, ;)
9: end for
10: F=FNFUp="}
11: end while
12: u < retrieve final factor from F
13: return the optimal joint action from u

s O

Algorithm 2 UCVE(F)

Input : A set of local upper confidence vector set functions
F and an elimination order q (a queue with all agents)

ApproaCh - UCVE Output : An optimal joint action, a*

scope, F; are collected. The functions in JF; will be replaced 1: while g is not empty do
in F by a new UCVSEF, u"“", incorporating the possible 2 i < q.dequeue()
3

est responses to every possible local joint action of Fhe F. + the subset of UCVSFs in F that have i in scope
neighbors of i. This new UCVSEF has all the neighboring N])
Ty, x1 < compute upper and lower bounds on the

agents D¢ \ {i} of agent ¢ in scope. d) ‘ o
exploration part of the vectors for the remaining fac-
First, all possible vectors V that can be made with the G .
UCVSFs in F, ted (on line 7) Il acti eyl
s in J; are computed (on line 7), across all actions o
P u™"(-) < anew UCVSF

of %, for a given a“ ;: 5
forall a°; e Ap.\(;; do

6:
v=U @ waix{a}), 7 V+ U GB u®(a®; x {a;})

a; €EA; uCEF; a;CA; uccF;
T 1 4 k3

ol

N

where A; is the action space of agent 4, and the cross-sum 8: u™(af ; <—prune(V, x,, Ti)
operator A @ B is defined as A® B = {a+b :a € 9: end for

A Ab € B}. Note that the resulting actions always include 10: F « F \ F; U {vllﬂvt’u‘}

the appropriate actions a; (which is under the union) and 11: end while

the appropriate actions from a® ;. After V is computed, the
vectors in V that cannot lead to an optimal joint action need
to be pruned.

12: u + retrieve final factor from F
13: return the optimal joint action from u

Thanks

