
CHAPTER I

INTRODUCTION

As the emergence of the Internet has changed the computing landscape, distribution

has become a necessity in a large and growing number of software systems. The focus of

distributed computing has been shifting from “distribution for parallelism” to “resource-

driven distribution,” in which the resources of an application are naturally remote from

each other or from the computation. Because of this shift, more and more centralized appli-

cations, written without any distribution in mind, are being adapted for distributed execu-

tion. This entails adding distributed capabilities to these applications to move parts of their

execution functionality to a remote machine. Examples abound: a local database grows too

large and is relocated to a powerful server, becoming remote from the rest of the applica-

tion; a desktop application needs to redirect its output to a remote graphical display or to

receive input from a remote digital camera or a sensor; a desktop application, executed on

a PDA, does not find all the hardware and software resources that it references available

locally and needs to access them remotely; or a software component, designed for local

access, is distributed over a network and needs to be accessed remotely.

These examples introduce the issue of separating distribution concerns. Separation

of concerns has been a guiding principle for controlling the complexity of software ever

since Dijkstra [20] coined the term almost 30 years ago. As described by Ossher and Tarr

[64], separation of concerns is “the ability to identify, encapsulate and manipulate only
1

those parts of software that are relevant to a particular concept, goal, or purpose.” The

advent of the Java technology re-ignited interest in the subject within the software research

community, with industry not far behind, resulting in such tools as AspectJ [41] and HyperJ

[28]. In light of these developments, the question of which concerns can be effectively and

efficiently separated has taken on a new significance and importance.

As many other principles of computing, separating computational concerns encom-

passes two dimensions: what and how. While the “what” dimension refers to determining

whether a particular concern can be separated and identifying the specific code entities

expressing it, the “how” dimension pertains to how actual separation can be realized at the

implementation level.

Some concerns fundamentally define the meaning of computation and as such

cannot be separated. For instance, parallel algorithms often have no resemblance to sequen-

tial algorithms for the same problem, and some problems are very unlikely to even have an

efficient parallel solution. Thus “efficient parallelism” is not a concern that can be sepa-

rated from the logic of a software application. (Similar arguments apply to transactions and

failure handling as well [43].)

In view of such difficulties, most research has shifted from the problem of separating

concerns to the problem of removing low-level technical barriers to the separation of con-

cerns, assuming that the separation is conceptually possible. In software tools, two main

directions have been identified. The first is that of general-purpose tools for expressing dif-

ferent concerns as distinct code entities and composing them together. The second is that

of domain-specific tools that achieve separation of concerns for well-defined domains by

hiding such concerns behind programming abstractions (e.g., new language constructs).
2

The term “aspect-oriented” is often used to describe the first direction (although it was orig-

inally [40] proposed as a concept that encompasses both directions).

While many domains can derive benefits from separating concerns, in recent years,

it is the area of enterprise computing in which such benefits have become particularly evi-

dent. Through the process, which is currently being standardized [37], some J2EE applica-

tion servers use the so-called aspect-oriented programming (AOP) frameworks to add

various non-functional capabilities such as caching, security, and persistence to enterprise

business objects.

In the context of this dissertation, the term “separation of distribution concerns”

refers to the process of transforming a centralized monolithic program into a distributed

one. In other words, we treat distribution functionality as a separate concern that is added

to the application logic of a centralized program, thereby transforming it into a distributed

program. It has long been under debate whether distribution is a concern that can be at all

separated from application logic. For example, Waldo et al.’s well-known “A Note on Dis-

tributed Computing” [96] argues that “papering over the network” is ill-advised. The main

reasons include difference in performance, different calling semantics, and the possibility

of partial failure. (Other reasons, mentioned by Waldo et al., such as direct memory access,

no longer hold today for Java and C#.) The research described in this dissertation does not

attempt to refute any of the major arguments made by the authors of the Note: our answer

to the question of whether distribution can be successfully introduced transparently to all

programs is still a resounding no.

To clarify our perspective, let us consider the two extremes that define the transpar-

ency spectrum of approaches to separating distribution concerns: “papering over the net-
3

work” and the so-called “explicit” approach. At one extreme, “papering over the network”

is a completely transparent approach to distribution that masks all the differences between

the centralized and distributed execution models from the programmer. Some distributed

shared memory (DSM) systems follow this approach. At the other extreme, the “explicit”

approach makes use of different programming idioms for distributed computing as a means

to accommodate for the differences in performance, calling semantics, and the possibility

of partial failure. A representative of this approach is Java RMI [80] itself. Taking the

middle ground between these two extremes from the transparency perspective, this

research follows the approach to separating distribution concerns whose unifying theme

can be defined as “translucency.” Our approach is “translucent” in the sense that it is trying

to be transparent, but without going all the way. In other words, our approach aims at cre-

ating software tools for distributed computing that are more convenient to use from the pro-

grammer’s perspective (i.e., closer to the familiar centralized programming model), while

being fully-aware of the differences between the centralized and distributed execution

models.

This research delineates the limits of introducing distribution translucently through

the following three steps. First, we determine which distribution concerns, defined as the

differences between centralized and distributed execution, can be separated effectively and

efficiently. Second, we outline the architectural characteristics of a class of programs to

which distribution can indeed be introduced translucently. Third, in trying to achieve dis-

tribution translucency, we make improvements to several mainstream software tools for

distributed computing such as RPC middleware [10]. Because adding distributed capabili-

ties to existing programs is currently one of the most important software evolution tasks in
4

practice [44], the improved software tools for separating distribution concerns are valuable

even if successful distribution requires changes to the application logic.

The primary goal of this research is to explore novel software tools for separating

distribution concerns that, for a certain class of object oriented programs, bridge centralized

and distributed programing models and semantics as closely as possible. Taking the soft-

ware tools approach to this problem entails that in transforming a centralized monolithic

program into a distributed one only the program’s code itself changes, while the runtime

system remains intact. That is, the new software tools, explored by this research, work

exclusively with standard mainstream languages, systems software, and virtual machines.

1.1 Overview of Software Tools

NRMI [88], middleware with copy-restore semantics, GOTECH [89], a program

generator for distribution, and J-Orchestra [87], an automatic partitioning system are three

developed software tools for evolving a centralized program into a distributed one.

Although these tools overlap in terms of the kinds of distribution concerns that they sepa-

rate, each one addresses the general problem from a different perspective, makes different

assumptions about the original centralized programs to which it can be applied, and intro-

duces novel algorithms, techniques, and tools applicable to different programming scenar-

ios.

1.1.1 Middleware with Copy-Restore Semantics

The NRMI middleware system [88] supports call-by-copy-restore semantics in addi-

tion to traditional call-by-copy semantics. Intuitively, this means that NRMI allows the user

to specify that changes to data reachable by the arguments of a remote method be repro-
5

duced on the caller site. In addition, NRMI does this in full generality, even for complex,

pointer-based data structures, imposing very low computation and communication over-

heads (remote calls proceed at full speed). Call-by-copy-restore semantics is highly desir-

able in distributed computing because it causes remote calls to behave exactly like local

calls in many cases (e.g., in the important case of single-threaded clients and stateless serv-

ers). Both the value of call-by-copy-restore and the need for a mechanism to support it in

full generality has been repeatedly identified in the distributed systems community. In their

recent textbook Distributed Systems (2002), Tanenbaum and van Steen summarize the

problem that NRMI was the first middleware to solve:

Although [call-by-copy-restore] is not always identical [to

local execution], it frequently is good enough. ...[Current

call-by-copy-restore mechanism] still cannot handle the

most general case of a pointer to an arbitrary data structure

such as a complex graph.

1.1.2 Program Generation for Distribution

Sometimes the problems of programming distributed systems are purely those of

conciseness and expressiveness of the language tools. In this direction, we have developed

the GOTECH program generator [89], which accepts programmer-supplied annotations

and generates distribution code, relieving the programmer from writing tedious, protocol-

specific code by hand. GOTECH depends only on general-purpose tools, offers easy-to-

evolve implementation amenable to inspection and change, and uniquely combines aspect-

oriented and generative techniques. In general, domain-specific tools that automate rote

programming tasks are of significant interest from a software design standpoint.
6

1.1.3 Automatic Partitioning

The process of rewriting a centralized application using a compiler-level tool in

order to produce its distributed version is called automatic partitioning. This approach is

more automated than copy-restore middleware and program generation for distribution.

Although the process cannot be fully automated, most correctness aspects of the rewrite are

typically handled automatically (i.e., the resulting distributed application has semantics

identical to the original centralized one) while performance aspects are optimized under

user guidance. Automatic partitioning is a relatively new approach: only a handful of par-

titioning tools exist, and all of them have been developed in the past five years. Neverthe-

less, the goal of automatic partitioning is almost identical to that of distributed shared

memory (DSM) systems, a mature systems area. The difference is in the techniques used:

DSMs operate by providing a system (i.e., a runtime environment) that enables distributed

execution. In contrast, automatic partitioning tools take a language approach and rewrite

the application only without making any change to the runtime environment. The differ-

ence has a significant practical implication: an automatically partitioned application can be

deployed very easily in standard runtime environments without any need for specialized

support. For example, a partitioned Java application can run on any Java-enabled platform,

from PDAs and cell phones to mainframes.

We have developed the J-Orchestra automatic partitioning system for Java programs

[87]. J-Orchestra, arguably the most mature and scalable automatic partitioning system in

existence, was the first system to identify the presence of unmodifiable code in the runtime

system that can access regular language-level objects (e.g., Java VM code for opening file

objects) as a salient problem with automatic partitioning. If such code accesses a remote
7

object, a runtime error will occur since the code is unaware of distribution (e.g., it expects

to access fields of a regular object but instead receives a proxy). J-Orchestra addresses this

problem with a rewrite algorithm that automatically transforms object references from

direct to indirect at run-time, ensuring that they are in the correct form for the code that han-

dles them. As a result, J-Orchestra has scaled to realistic, third-party applications. Also, the

ease of creating distributed programs with J-Orchestra as compared to programming with

standard distribution middleware has demonstrated automatic partitioning as a promising

technology for prototyping ubiquitous computing applications [51].

1.2 Thesis Statement

Software tools working with standard mainstream languages, systems software, and

virtual machines can effectively and efficiently separate distribution concerns from

application logic for object-oriented programs that use multiple distinct sets of

resources.

This research proves this thesis through a two-phase process. The first phase devel-

ops algorithms, techniques, and tools for separating distribution concerns. We will refer to

the deliverables of this phase of research as “research artifacts.” The second phase evalu-

ates the applicability of the developed research artifacts in terms of their effectiveness and

efficiency. We will evaluate these artifacts by determining (1) the exact set of distribution

concerns that they separate and outlining (2) the common architectural characteristics of the

centralized applications that they can transform effectively and efficiently.
8

1.3 Contributions

The contributions of this research include:

1. a general algorithm for call-by-copy-restore semantics in remote procedure calls for

linked data structures,

2. an analysis heuristic that determines which application objects get passed to which

parts of native (i.e., platform-specific) code in the language runtime system for plat-

form-independent binary code applications,

3. a technique for injecting code in such applications that will convert objects to the right

representation so that they can be accessed correctly inside both application and native

code,

4. an approach to maintaining the Java centralized concurrency and synchronization

semantics over remote procedure calls efficiently, and

5. an approach to enabling the execution of legacy Java code remotely from a web

browser.
9

1.4 Overview of Distribution Concerns

Table 1-1. Distribution Concerns and Solutions

Challenges of Separating
Distribution Concerns Solutions

Semantics

Performance

Distribution Middleware Conventions

Viability & Scalability

• The lack of shared address space; the dif-
ference in parameter-passing semantics.

• Distribution in the presence of unmodifi-
able (system: OS, JVM) code.

• NRMI and its efficient implementation of
the call-by-copy-restore semantics.

• The J-Orchestra approach to enabling
indirection even in the presence of
unmodifiable code (analysis heuristics, a
novel rewrite algorithm, and run-time
direct-indirect and vice verse translation).

• The latency of a remote call is several
orders of magnitude slower than that of a
local one.

• J-Orchestra:

• profiling,

• object mobility, and

• placement policy based on creation site.

• Having to deal with the complex conven-
tions of using modern middleware mech-
anisms.

• Preserving the centralized concurrency
and synchronization semantics in a dis-
tributed environment.

• The NRMI call-by-copy-restore is more
natural than the standard call-by-copy.

• Combining generative and aspect-ori-
ented techniques in a novel way in
GOTECH to automate the complexities
of enabling server-side distribution in
J2EE.

• The J-Orchestra approach to dealing with
distributed multi-threading and synchro-
nization.

• Various case studies.
10

1.5 Overview of Dissertation

The rest of this dissertation is structured as follows. The chapters II, III, and IV cover

the motivation, design, and implementation of NRMI, GOTECH, and J-Orchestra, respec-

tively. Chapter V discusses various applicability issues and validation through case studies.

Chapter VI demonstrates how the J-Orchestra indirection machinery can be extended to

domains other than distributed computing. Chapter VII presents related work. Chapter VIII

concludes after discussing future research directions and the merits of this dissertation.
11

	Chapter I
	As the emergence of the Internet has changed the computing landscape, distribution has become a necessity in a large and growing...
	These examples introduce the issue of separating distribution concerns. Separation of concerns has been a guiding principle for ...
	As many other principles of computing, separating computational concerns encompasses two dimensions: what and how. While the “wh...
	Some concerns fundamentally define the meaning of computation and as such cannot be separated. For instance, parallel algorithms...
	In view of such difficulties, most research has shifted from the problem of separating concerns to the problem of removing low-l...
	While many domains can derive benefits from separating concerns, in recent years, it is the area of enterprise computing in whic...
	In the context of this dissertation, the term “separation of distribution concerns” refers to the process of transforming a cent...
	To clarify our perspective, let us consider the two extremes that define the transparency spectrum of approaches to separating d...
	This research delineates the limits of introducing distribution translucently through the following three steps. First, we deter...
	The primary goal of this research is to explore novel software tools for separating distribution concerns that, for a certain cl...
	1.1 Overview of Software Tools
	NRMI [88], middleware with copy-restore semantics, GOTECH [89], a program generator for distribution, and J-Orchestra [87], an a...
	1.1.1 Middleware with Copy-Restore Semantics
	The NRMI middleware system [88] supports call-by-copy-restore semantics in addition to traditional call-by-copy semantics. Intui...

	1.1.2 Program Generation for Distribution
	Sometimes the problems of programming distributed systems are purely those of conciseness and expressiveness of the language too...

	1.1.3 Automatic Partitioning
	The process of rewriting a centralized application using a compiler-level tool in order to produce its distributed version is ca...
	We have developed the J-Orchestra automatic partitioning system for Java programs [87]. J-Orchestra, arguably the most mature an...

	1.2 Thesis Statement
	Software tools working with standard mainstream languages, systems software, and virtual machines can effectively and efficientl...
	This research proves this thesis through a two-phase process. The first phase develops algorithms, techniques, and tools for sep...

	1.3 Contributions
	The contributions of this research include:
	1. a general algorithm for call-by-copy-restore semantics in remote procedure calls for linked data structures,
	2. an analysis heuristic that determines which application objects get passed to which parts of native (i.e., platform-specific) code in the language runtime system for platform-independent binary code applications,
	3. a technique for injecting code in such applications that will convert objects to the right representation so that they can be accessed correctly inside both application and native code,
	4. an approach to maintaining the Java centralized concurrency and synchronization semantics over remote procedure calls efficiently, and
	5. an approach to enabling the execution of legacy Java code remotely from a web browser.

	1.4 Overview of Distribution Concerns
	Table 1-1. Distribution Concerns and Solutions

	1.5 Overview of Dissertation
	The rest of this dissertation is structured as follows. The chapters II, III, and IV cover the motivation, design, and implement...

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /KOR <FEFFd5a5c0c1b41c0020c778c1c40020d488c9c8c7440020c5bbae300020c704d5740020ace0d574c0c1b3c4c7580020c774bbf8c9c0b97c0020c0acc6a9d558c5ec00200050004400460020bb38c11cb97c0020b9ccb4e4b824ba740020c7740020c124c815c7440020c0acc6a9d558c2edc2dcc624002e0020c7740020c124c815c7440020c0acc6a9d558c5ec0020b9ccb4e000200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe7f6e521b5efa76840020005000440046002065876863ff0c5c065305542b66f49ad8768456fe50cf52068fa87387ff0c4ee563d09ad8625353708d2891cf30028be5002000500044004600206587686353ef4ee54f7f752800200020004100630072006f00620061007400204e0e002000520065006100640065007200200035002e00300020548c66f49ad87248672c62535f003002>
 /CHT <FEFF4f7f752890194e9b8a2d5b9a5efa7acb76840020005000440046002065874ef65305542b8f039ad876845f7150cf89e367905ea6ff0c4fbf65bc63d066075217537054c18cea3002005000440046002065874ef653ef4ee54f7f75280020004100630072006f0062006100740020548c002000520065006100640065007200200035002e0030002053ca66f465b07248672c4f86958b555f3002>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

