
CHAPTER V

APPLICABILITY AND CASE STUDIES

This chapter argues that this dissertation explores algorithms, techniques, and tools

for separating distribution concern that can be a valuable addition to the working program-

mer’s toolset. The content of this chapter, as its title suggests, is divided into two parts: dis-

cussing general applicability issues followed by supporting our claims through a series of

case studies. The discussion starts by showing how NRMI, GOTECH, and J-Orchestra

compare with each other and how they follow the translucent approach to separating distri-

bution concerns. Then we take a closer look at each software tool from the applicability per-

spective. This includes identifying for each tool the distribution concerns that it separates,

the common architectural characteristics of the centralized applications that it can effec-

tively and efficiently transform for distributed execution, and the programming scenarios

under which programmers are most likely to find it useful. The second part of the chapter

presents a series of case studies that apply each of the three tools to various programming

scenarios, thus supporting our applicability claims empirically.

5.1 Applicability of the Translucent Approach

This dissertation explores software tools that separate distribution concerns by fol-

lowing the approach we call “translucent.” This approach, while aiming at distribution

transparency, nevertheless, does not attempt to mask all the differences between the cen-
135

tralized and distributed execution models. NRMI—a middleware mechanism, GOTECH—

a code generator, and J-Orchestra an automatic partitioning system demonstrate the value

of the translucent approach in their own categories. On the scale of automation, NRMI is

the least automatic tool, being just a middleware mechanism, GOTECH introduces distri-

bution into centralized programs, given the programmer’s annotations, and J-Orchestra

automates the entire distribution process, requiring only high-level GUI-based input from

the programmer. Next we describe in greater detail how each of these tools follows the

translucent approach.

NRMI makes remote calls look like local calls as far as the parameters passing

semantics is concerned for stateless servers and single-threaded clients. It is the program-

mer’s responsibility to ensure that these preconditions hold true. At the same time, NRMI

does not hide the possibility of partial failures, and similarly to regular RMI, every remote

call can throw various remote exceptions, and the programmer is responsible for supplying

custom code for catching and handling them. Thus, with NRMI and call-by-copy-restore,

remote calls have a closer semantics to the one of local calls without trying to hide the pos-

sibility of partial failure.

GOTECH uses NRMI as its building block, but has more preconditions for success-

ful application. Prior to specifying which local calls GOTECH should transform into

remote calls, the programmer has to be aware that the structure of the original application

is amenable to such a transformation. This includes not only the preconditions for the suc-

cessful application of NRMI (i.e., a stateless server and a single-thread client) but also that

the centralized program follows the strict client-server communication model. The pro-

grammer is also responsible for providing custom code for handling the remote exceptions
136

that could be raised during every remote method invocation. Thus, GOTECH relieves the

programmer from having to write tedious and error-prone distribution code by hand, but

the code that it generates does not attempt to hide the fact that the distribution has taken

place.

Finally, J-Orchestra is the most automatic of the tools and also separates the largest

number of distribution concerns. Nevertheless, J-Orchestra is not a distributed shared

memory system and aims at functional distribution, putting the code near the resources it

manages. Despite having some preconditions for successful application that are discussed

in Section 5.4, J-Orchestra works correctly with a very broad subset of the Java language

and shares none of the preconditions of NRMI and GOTECH. Specifically, a distributed

program, created through J-Orchestra partitioning, can have stateful servers and multi-

threaded clients. As far as the possibility of failures is concerned, J-Orchestra uses regular

Java RMI, and a sophisticated user can provide custom error handling in response to raised

remote exceptions. Thus, J-Orchestra relieves the programmers from having to figure out

all the complex data sharing scenarios done through references, allowing them to concen-

trate on the challenging issues in distributed computing such as handling partial failures.

Next we take a closer look at the applicability issues of NRMI, GOTECH, and J-

Orchestra in turn.

5.2 Applicability of NRMI: Usability Call-by-Copy-Restore vs. Call-by-
Copy

Compared to call-by-copy, call-by-copy-restore semantics offers better usability, for

it simulates the local execution semantics very closely, as discussed in Section 2.4.1.
137

Clearly, call-by-copy-restore semantics can be achieved by using call-by-copy and adding

application-specific code to register and re-perform any updates necessary. Nevertheless,

taking this approach has several disadvantages:

• The programmer has to be aware of all aliases in order be able to update the values

changed during the remote call, even if the changes are to data that became unreachable

from the original parameters.

• The programmer needs to write extra code to perform the update. This code can be long

for complex updates (e.g., up to 100 lines per remote call for the microbenchmarks we

discuss in Section 5.5.3).

• The programmer cannot perform the updates without full knowledge of what the server

code changed. That is, the changes to the data have to be part of the protocol between the

server programmer and the client programmer. This complicates the remote interfaces

and specifications.

As we discussed in Section 2.2 on page 15, a call-by-copy-restore semantics is most

valuable in the presence of aliased data. Aliasing occurs as a result of several common

implementation techniques in mainstream programming languages. All of these techniques

produce code that is more convenient to write using call-by-copy-restore middleware than

using call-by-copy middleware. Specific examples include:

• Common GUI patterns such as model-view-controller. Most GUI toolkits register multi-

ple views, all of which correspond to a single model object. That is, all views alias the

same model object. An update to the model should result in an update to all of the views.

Such an update could be the result of a remote call.

• A variant of this pattern occurs when GUI elements (e.g., menus, toolbars) hold aliases

to program data that can be modified. The reason for multiple aliasing is that the same
138

data may be visible in multiple toolbars, menus, and so forth or that the data may need to

be modified programmatically with the changes reflected in the menu or toolbar. For

example, we distribute with NRMI a modified version of one of the Swing API example

applications. We changed the application to be able to display its text strings in multiple

languages. The change of language is performed by calling a remote translation server

when the user chooses a different language from a drop-down box. (That is, the remote

call is made in the event dispatching thread, conforming to Swing thread programming

conventions [81].) The remote server accepts a vector of words (strings) used through-

out the graphical interface of the application and translates them between English, Ger-

man, and French. The updated list is restored on the client site transparently, and the

GUI is updated to show the translated words in its menus, labels, and so on. The distrib-

uted version code (using the RMI drop-in replacement implementation) has only two

tiny changes compared to local code: a single class needs to implement the NRMI

marker interface java.rmi.Restorable, and a method has to be looked up using a

remote lookup mechanism before getting called. In contrast, the version of the applica-

tion that uses regular Java RMI has to use a more complex remote interface for getting

back the changed data and the programmer has to write code in order to perform the

update.

• Multiple indexing. Most applications in imperative programming languages create some

multiple indexing scheme for their data. For example, a business application may keep a

list of the most recent transactions performed. Each transaction, however, is likely to

also be retrievable through a reference stored in a customer’s record through a reference

from the daily tax record object, and so forth. Similarly, every customer may be retriev-

able from a data structure ordered by zip code and from a second data structure ordered

by name. All of these references are aliases to the same data (i.e., customers, business

transactions). NRMI allows such references to be updated correctly as a result of a

remote call (e.g., an update of purchase records from a different location or a retrieval of

a customer’s address from a central database), in much the same way as they would be

updated if the call were local.
139

5.3 Applicability of GOTECH: What are the Distribution Concerns and
Can They Be Separated?

For insight into identifying “distribution concerns,” we refer to the “differences”

between local and distributed models of computation listed in Waldo et al.'s well-known

“A Note on Distributed Computing” [96]. The distribution concerns that GOTECH aims to

separate fall into three main groups: semantics, performance, and conventions.

5.3.1 Semantics

Consider a centralized application written in a modular fashion with separate objects

handling distinct parts of the functionality of the application. It might seem that moving a

part of the functionality to a remote machine is just a matter of making some object

remotely accessible by the rest of the application. Nevertheless, objects can be sharing data

through memory references (which are valid only in a single address space). Of course, one

could emulate a single address space over a network of nodes by making all references be

over the network. However, such an emulation would be prohibitively slow.

As a result, the semantics of remote method calls are different from the semantics of

local calls under standard middleware. That is, the same code will behave differently if exe-

cuted in the same process and if executed as a remote call (using CORBA, RMI, DCOM,

and so forth) on a different machine. Therefore, the lack of a shared address space is the

single most important conceptual difference introduced by distribution. This problem

cannot be solved in a fully general way. For instance, an application may have a structure

such that all its parts are tightly coupled, access each other's data (or OS-level resources,

like I/O) directly and depend on reading the latest values of these data. In this case, efficient
140

distribution is impossible without a change in the application structure. Therefore, the

assumption of the GOTECH approach is that the application is amenable to added distribu-

tion without a fundamental change in the application structure. In this case, the memory

semantics issue can be alleviated if the programmer has control over the calling semantics

and if local semantics can be emulated under certain assumptions so that the programmer

does not need to write a lot of tedious code. Distribution also requires changes to the client

of a remote object to become aware of the possibility of partial failures. Again, this problem

cannot be solved in a fully general way, but Java language designers used the exception

mechanism to ensure partial failure awareness: the client of a remote call needs to handle

various exceptions that might arise in response to various partial failure conditions.

5.3.2 Performance

With processor speed continuing to increase at a much higher rate than network per-

formance, remote calls have become more costly than ever compared to local calls. When

some local calls suddenly become remote, the resulting distributed application may become

unusable due to a slowdown by orders of magnitude. When applying distribution as a sep-

arate step, one has to be aware of such latencies when deciding whether an object can be

moved to a remote site. An object can be moved to a remote site only if it is not tightly cou-

pled with the rest of the application. For this reason, the programmer should have complete

control over the location of objects.

5.3.3 Conventions

Using a middleware mechanism such as RMI, CORBA, DCOM, and so forth to

enable distribution has become a common business practice. Since GOTECH aims to
141

remove the low-level technical barriers to aspectizing distribution, our main challenge is to

change application code so that it interfaces with distribution middleware, which entails

manipulating code according to established conventions. In object-oriented distributed sys-

tems, types are often used to mark an object that can interact with the middleware runtime

services. For example, to interact with such a runtime service an object might have to

implement certain interfaces by providing methods that are called by the middleware at

runtime. Another example would be to declare the remote methods of an object as throwing

exceptions for potential network errors. The client code requires some modifications as

well. A call to a remote object constructor might have to be replaced by a sequence of calls

to a registry service. Making such changes can be quite tedious. Tool vendors have made

some inroads in alleviating the task of converting plain objects so that they conform to a

given framework convention. One such example is Microsoft's Class Wizard for Visual

C++, which creates an MFC class from a given COM object. However, none of these indus-

trial tools help the programmer make changes to the clients of the modified object.

The authors of the “Note” suggest that, “providing developers with tools that help

manage the complexity of handling the problems of distributed application development as

opposed to the generic application development is an area that has been poorly addressed.”

Hopefully, the ideas introduced by GOTECH can help in providing developers with such

tools.
142

5.4 Applicability of J-Orchestra: Conditions for Successful Automatic
Partitioning

“It’s not how well the bear dances;

it’s that it can dance at all”

J-Orchestra can handle a large subset of Java and, thus, can correctly partition a large

class of realistic unsuspecting applications. Nevertheless, among these, J-Orchestra will be

useful only in a few well-defined cases. Automatic partitioning is not a substitute for gen-

eral distributed systems development. The striking element of the approach is not that it is

widely applicable but that it is at all applicable, given how automated it is.

We introduce the term embarrassingly loosely coupled to describe the kinds of

applications to which J-Orchestra is applicable. An embarrassingly loosely coupled appli-

cation satisfies two criteria:

• it has components that exchange little data with the rest of the application, and

• these components are statically identifiable by looking at the structure of the application

code at the class or the module level.

That is, by looking at static relations among application classes, the user of J-

Orchestra (aided by our analysis tools) should be able to identify distinct components com-

prising multiple classes. Then, during run-time, the data coupling among distinct compo-

nents should be very small. In other words, an application should have very clear

communication and locality patterns. Since the application logic will remain the same, a

large number of remote accesses will be detrimental to performance. This requirement

stems from the intrinsic difference in latency between local and remote method calls. As an
143

illustration, consider a sequence of method calls constituting an execution scenario. In a

centralized, monolithic application, an execution scenario comprises local method calls,

executing in a shared address space. When partitioning takes place, in the same execution

scenario some of the method calls become remote, invoked through an RPC mechanism

such as Java RMI. As the latency of a remote call is several orders of magnitude larger than

that of a local call, a partitioned version of a sequential centralized application is expected

to take longer to execute.1

The slowdown factor can be defined as the difference in total execution time (disre-

garding such additional factors as waiting for user input or interacting with the OS) between

the original centralized application and its partitioned version. Of course, applications

differ in terms of how much slowing down they can afford as a result of partitioning before

the process would render them unusable. Nevertheless, a performance optimization, aimed

at reducing the total number of remote calls, would be beneficial for any application. What

determines the total number of remote calls made by a particular partitioned application is

not just the initial static class placement but also various object mobility scenarios. Many

modern networks, in which latency is more of an issue than bandwidth, present optimiza-

tion opportunities via the means of object mobility (i.e., moving method arguments to or

the return value from the site of a remote call) that could reduce the total number of remote

calls. Approaches to estimating the expected slowdown factor of an application include

online or offline profiling that could take into consideration both the initial static placement

of objects and object mobility scenarios. Once presented with the profiling results, the pro-

1. An additional slowdown results from the fact that a partitioned version of a centralized application
always ends up making more (local) method calls in a given execution scenario due to such mechanisms as
proxy indirection and object factory lookup introduced by the partitioning.
144

grammer can decide whether the expected slowdown factor is acceptable for a given appli-

cation.

Once partitioned, an embarrassingly loosely coupled application must not share

objects among partitions that are used by unmodifiable code (e.g., OS or JVM code) and

should have synchronous communication patterns. If either of these two properties do not

hold true or if good performance or reliability requires asynchronous communication, the

application structure needs to change.

Hence, embarrassingly loosely coupled applications can be partitioned automati-

cally without significant loss in performance due to network communication. However, in

order to get any benefit, the application needs to have a reason to be distributed. The fore-

most reason for distributing an application with J-Orchestra is to take advantage of remote

hardware or software resources (e.g., a processor, a database, a graphical screen, or a sound

card). Several special-purpose technologies do this already: distributed file systems allow

storage on remote disks; remote desktop applications (e.g., VNC [69], X [70]) allow trans-

ferring graphical data from a remote machine; network printer protocols let users print

remotely. Nevertheless, the advantage of automatic partitioning is that it can put the code

near the resource that it controls. For instance, if a graphical representation can be com-

puted from less data than it takes to transfer the entire graphical representation over the net-

work, then J-Orchestra has an advantage. Some mainstream technologies put code near a

resource such as Java applets, which move graphics-producing code from a server to a

client with the screen on which the graphics will be displayed. However, this solution is

inflexible, as it requires the entire program to move across the network. In contrast, applet-
145

izing (Section 4.7), a specialization of automatic partitioning, can split an application so

that any part of it can become a “virtual applet” and can run on a client machine.

Of course, one reason to partition an application is to take advantage of parallelism.

Distinct machines will have distinct CPUs. If the original centralized application is multi-

threaded, we can use multiple CPUs to run threads in parallel. Although distribution-for-

parallelism is a potential application of J-Orchestra, we have not examined this space so

far. The reason is that parallel applications either are written to run in distributed memory

environments in the first place, or have tightly coupled concurrent computations.

To summarize, we can characterize the domain of J-Orchestra as partitioning

embarrassingly loosely coupled applications for resource-driven distribution.

5.5 NRMI Case Studies

Before presenting the results of NRMI performance experiments, we describe the

performance optimizations that we applied to the RMI replacement implementation of

NRMI. These optimizations demonstrate that copy-restore middleware can be optimized

for real-world use, which is the main point of our experiments. Although NRMI empha-

sizes usability, its implementation can be quite efficient: the RMI replacement implemen-

tation is optimized and suffers only small overheads. The optimized NRMI for JDK 1.4 is

about 20% slower than regular RMI for JDK 1.4. To put this number in perspective, this

also means that NRMI for JDK 1.4 is about 20-30% faster than regular RMI for the previ-

ous version, JDK 1.3.
146

5.5.1 NRMI Low-Level Optimizations

In principle, the only significant overhead of call-by-copy-restore middleware over

call-by-copy middleware is the cost of transferring the data back to the client after the

remote routine execution. In practice, middleware implementations suffer several over-

heads related to processing the data, so that processing time often becomes as significant

as network transfer time. Java RMI has been particularly criticized for inefficiencies, as it

is implemented as a high level layer on top of several general purpose (and thus slow) facil-

ities—RMI often has to suffer the overheads of security checks, Java serialization, indirect

access through mechanisms offered by the Java Virtual Machine, and so forth. NRMI has

to suffer the same overheads to an even greater extent, since it has to perform an extra tra-

versal and copying over object structures.

Our implementation of NRMI as a full replacement of Java RMI has two versions:

a “portable”, high-level one and an “optimized” one. The portable version makes use of

high-level features such as Java reflection for traversing and copying object structures.

Although NRMI is currently tied to Sun’s JDK, the portable version works with JDK 1.3,

1.4, and 1.5 on all supported platforms. The portability means some loss of performance:

Java reflection is a very slow way to examine and update unknown objects. Nevertheless,

our NRMI implementation minimizes the overhead by caching reflection information

aggressively. Additionally, the portable version uses native code for reading and updating

object fields without suffering the penalty of a security check for every field. These two

optimizations give a >200% speedup to the portable version, but still do not achieve the

optimized version’s performance.
147

The optimized version of NRMI only works with JDK 1.4 and 1.5 and takes advan-

tage of special features exported by the JVM in order to achieve better performance. The

performance of regular Java RMI improved significantly between versions 1.3 and 1.4 of

the JDK (as we show in our measurements). The main reason was the flattening of the

layers of abstraction in the implementation. Specifically, object serialization was optimized

through non-portable direct access to objects in memory through an “Unsafe” class

exported by the Java Virtual Machine. The optimized version of NRMI also uses this facil-

ity to quickly inspect and change objects.

5.5.2 Description of Experiments

In order to see how our implementation of call-by-copy-restore measures up against

the standard implementation of RMI, we created three micro-benchmarks. Each benchmark

consists of a single randomly-generated binary tree parameter passed to a remote method.

The remote method performs random changes to its input tree. The invariant maintained is

that all the changes are visible to the caller. In other words, the resulting execution seman-

tics is as if both the caller and the callee were executing within the same address space.

With NRMI or distributed call-by-reference (through remote pointers, as in Figure 2-3) this

is done automatically. For call-by-copy, the programmer needs to simulate it by hand.

We have considered three different scenarios of parameter use, listed in the order of

difficulty of achieving the call-by-copy-restore semantics “by-hand” using the means pro-

vided by RMI.
148

• In the first benchmark scenario, we assume that none of the objects reachable from the

parameter is aliased by the client.

Network

4

0 1

tree
4

3 1

7 5

tree

no aliases,
data and structure may
change

• In the second benchmark scenario, we allow aliases but assume that the structure of the

tree stays the same (although the tree data may be modified by the remote method).

Network

4

0 1

tree
4

3 5

tree

alias

structure does not
change but data may
change
149

• In the third benchmark scenario, aliasing and modifications can be arbitrarily complex:

tree nodes can be aliased on the client site and the tree structure can be changed by the

remote call.

Network

4

0 1

tree
4

3 1

7 5

tree

structure changes
aliases present

alias

Consider how a programmer can replay the server changes on the client using regu-

lar Java RMI in each of the three cases. We assume that the programmer is fully aware of

the server’s behavior, as well as of whether aliases exist on the client site.

• In the first case, the parameter just has to be returned as the return value of the remote

method. Once the remote call completes, the reference pointing to the original data

structure gets reassigned to point to the return value. This will work for any changes to

both the data and structure of the tree. The only complication here is that the method

might already have a return value. Resolving this problem would require defining a spe-

cial return class type that would contain both the original return type and the parameter.

Besides the code for this new return class type itself, some additional code has to be

written to call its constructor, populate it with its constituent members on the callee site,

and retrieve them when the call completes.

• In the second case, the client needs to reassign the aliases pointing to some nodes in the

original tree to point to the corresponding nodes in the new tree. After this step is per-

formed, the reference reassignment described in the previous benchmark can be used. If
150

the programmer knows all the aliases, as well as where in the tree they point to (i.e., how

to get to the aliased node from the tree root) then the aliases can be reassigned directly.

If, however, the programmer only knows the aliases but not how to get to the aliased

nodes, then a search needs to be performed before the update takes place. Both the orig-

inal and the modified trees (which are now isomorphic) can be traversed simultaneously.

Upon encountering each node, all aliases should be reassigned from pointing from the

original tree to the modified one.

• In the third case, returning the changed structure alone is not very useful since the origi-

nal and the modified trees are no longer isomorphic. To complicate matters further, the

remote method invocation might make some changes to some of the tree nodes’ data that

were aliased by the caller and then disconnect them from the tree structure. This way the

modified data nodes might no longer be part of the tree structure. Obviously just return-

ing the new tree is not enough. Emulating the call-by-copy-restore or call-by-reference

semantics is particularly cumbersome in this case. The simplest way to do it is by having

the remote method create a “shadow tree” of its tree parameter prior to making any

changes to it. The “shadow tree” points to the original tree’s data and serves as a

reminder of the structure of the original tree. Then both the parameter tree and the

“shadow tree” are returned to the caller. The “shadow tree” is isomorphic to the original

parameter and can be used for simultaneous traversal and copying of aliases. After that

the new tree is used for the reference reassignment operation as in the previous cases.

Note that correct update is not possible without modifying both the server and the client.

For all benchmarks, the NRMI version of the distributed code is quite similar to the

local version, with the exception of remote method lookup and declaring a class to be

Restorable. Analogous changes have to be made in order to go from the local version to

the distributed one that updates client data correctly using regular Java RMI. Several extra

lines of code have to be added/modified in the latter case, however. For all three bench-

marks, about 45 lines of code were needed in order to define return types. For the second
151

and third benchmark scenario, an extra 16 lines of code were needed to perform the updat-

ing traversal. For the third benchmark scenario, about 35 more lines of code were needed

for the “shadow tree”.

5.5.3 Experimental Results

For each of these benchmarks, we measure the performance of call-by-copy (RMI),

call-by-copy-restore (NRMI), and call-by-reference implemented using remote pointers

(RMI). (Of course, NRMI can also be used just like regular RMI with identical perfor-

mance. In this section when we talk of “NRMI” we mean “under call-by-copy-restore

semantics”.) For reference, we also provide three base line numbers by showing how long

it takes to execute the same methods within the same JVM locally, on different JVMs

through RMI but on the same physical machine, and on different machines but without

caring to restore the changes to the client (i.e., only sending the tree to the server but not

sending the changed tree back to the client). We show measurements for both versions of

NRMI and both JDK 1.3 and JDK 1.4. The environment consists of a SunBlade 1000 (two

UltraSparc III 750MHz processors and 2GB of RAM) and a Sun Ultra 10 (UltraSparc II

440MHz) machines connected with a 100Mbps effective bandwidth network. This environ-

ment certainly does not unfairly benefit NRMI measurements—the network speed is rep-

resentative of networks in which high-level middleware is used and the machines are on the

low end of today’s performance spectrum. For faster machines and slower networks, the

performance of NRMI would strictly improve relative to the baselines.

The results of our experiments are shown in Table 5-1 to Table 5-6. All numbers are

in milliseconds per remote call, rounded to the nearest millisecond. We ensured (by “warm-
152

ing” the JVM) that all measured programs had been dynamically compiled by the JVM

before the measurements.

Table 5-1. Baseline 1—Local Execution (processing overhead) on both the fast
(750MHz) and the slow (440MHz) machine.

Bench
mark/
Tree
Size

JDK 1.3 JDK 1.4

16 64 256 1024 16 64 256 1024
I <1 / <1 <1 / 1 1 / 2 6 / 8 <1 / <1 <1 / 1 1 / 1 4 / 6
II <1 / 1 1 / 1 4 / 5 15 / 20 <1 / 1 1 / 1 3 / 4 12 / 16
III <1 / 1 1 / 2 5 / 6 19 / 24 <1 / 1 1 / 1 4 / 5 15 / 19

Table 5-2. Baseline 2—RMl Execution, without Restore (one-way traffic).

Bench
mark/
Tree
Size

JDK 1.3 JDK 1.4

16 64 256 1024 16 64 256 1024
I 3 7 18 65 2 4 9 33
II 3 7 21 74 3 4 12 41
III 3 8 22 79 3 5 12 44

Table 5-3. Baseline 3—RMI Execution with Restore on local machine (no network
overhead).

Bench
mark/
Tree
Size

JDK 1.3 JDK 1.4

16 64 256 1024 16 64 256 1024
I 3 7 17 59 3 4 11 41
II 4 8 19 67 3 5 13 48
III 4 9 24 87 3 6 16 66

Table 5-4. RMI Execution with Restore (two-way traffic).

Bench
mark/
Tree
Size

JDK 1.3 JDK 1.4

16 64 256 1024 16 64 256 1024
I 5 11 29 102 4 6 18 68
II 5 12 32 112 4 7 21 77
153

Table 5-5. NRMI (Call-by-copy-restore). Both the portable and optimized version shown
for JDK 1.4.

Bench
mark/
Tree
Size

JDK 1.3 JDK 1.4

16 64 256 1024 16 64 256 1024
I 6 13 36 130 5 / 4 8 / 8 25 / 22 93 / 82
II 6 13 38 141 5 / 4 9 / 8 27 / 24 103 / 95
III 6 14 39 146 5 / 4 9 / 8 28 / 25 106 / 97

Table 5-6. Call-by-Reference with Remote References (RMI).

Bench
mark/
Tree
Size

JDK 1.3 JDK 1.4

16 64 256 1024 16 64 256 1024
I 41 50 87 - 44 48 124 -
II 35 50 85 - 49 53 95 -
III 113 123 164 - 131 131 228 -

The local measurements of Table 5-1 are given for both the fast and the slow

machines. The local measurements of Table 5-6 are from the dual processor SunBlade

machine. (This allowed us to avoid context switching and get a fair measurement. The num-

bers were significantly tainted on a uniprocessor machine.)

The main observations from these measurements are as follows:

• The benchmarks have very low computation times—their execution consists mostly of

middleware processing and data transmission.

III 6 13 38 143 4 9 27 106

Bench
mark/
Tree
Size

JDK 1.3 JDK 1.4

16 64 256 1024 16 64 256 1024
154

• Java RMI in JDK 1.4 is significantly faster than RMI in JDK 1.3. The speedup is in the

order of 50-60% for this experimental setting. The speedup will be lower for a network

that is slower relative to the processor speeds.

• The results of Table 5-4 minus the corresponding results of Table 5-3 will only yield an

upper bound for the raw data transmission time, because the Table 5-3 results were com-

puted exclusively on the fast (750MHz) machine while the Table 5-4 results include

computation on both the fast and the slow (440MHz) node. The difference between the

raw data transmission time and the “Table 5-4-minus-Table 5-3” value can be as high as

the difference between the computation times on the fast and slow machines, shown in

Table 5-1. Even then, however, JDK 1.3 seems to perform much better when no network

is involved than the corresponding difference in JDK 1.4. This leads us to conclude that

probably RMI in JDK 1.4 uses the underlying OS/networking facilities much more effi-

ciently than JDK 1.3 and this difference disappears when the two hosts are sharing mem-

ory. We independently corroborated the raw data transmission time shown in the tables

by profiling the benchmarks and noting the amount of time they spent blocked for I/O.

We found that the real transmission time for JDK 1.3 is much higher even for transmit-

ting the exact same amount of data as 1.4.

• For benchmarks I and II, NRMI is quite efficient. Even the portable version is rarely

more than 30% slower than the corresponding RMI version. The optimized implementa-

tion of NRMI is about 20% slower than RMI in JDK 1.4. This is certainly fast enough

for use in real applications. For instance, the optimized implementation of NRMI for

JDK 1.4 is 20-30% faster than regular RMI in JDK 1.3.

• For benchmark III, which is hard to simulate by hand with call-by-copy alone, the porta-

ble implementation of NRMI gets similar performance to regular RMI in all cases, while

the optimized implementation is faster. The cause is not the processing time for restoring

the values changed by the header. (In fact, we performed the same experiments ignoring

the manual restoring of changes and got almost identical timings.) Instead, the reason is

that the regular RMI version transfers more data: the “shadow tree” is a simple way to
155

emulate the local semantics by hand, but stores more information than that of the NRMI

linear map. (Specifically, it stores all the original structure of the tree instead of just

pointers to all the reachable nodes.) The only alternative would be to compute a linear

mapping to all reachable nodes on both sides, effectively imitating NRMI in user space.

• Call-by-reference implemented by remote pointers is extremely inefficient (as

expected). Every access to parameter data by the remote method results in network traf-

fic. Java RMI does not seem fit for this kind of communication at all—the memory con-

sumption of the benchmarks grew uncontrollably. For the 1,024 node trees, the

benchmarks took more than 600ms per case (repeated over 1,000 times) and in fact

failed to complete as they exceeded the 1GB heap limit that we had set for our Java vir-

tual machines. The reason for the memory leak is that the references back from the

server to the client create distributed circular garbage. Since RMI only supports refer-

ence counting garbage collection, it cannot reclaim the garbage data.

The conclusion from our experiments is that NRMI is optimized enough for real use.

NRMI (copy-restore) for JDK 1.4 is close to the optimized RMI in JDK 1.4 and faster than

regular RMI (call-by-copy with results passed back) in JDK 1.3. Of course, with NRMI the

programmer maintains the ability to use call-by-copy semantics when deemed necessary.

When, however, a more natural programming model is desired, NRMI is without competi-

tion—the only alternative is the very slow call-by-reference through RMI remote pointers.

5.6 The GOTECH Case Study

In this section we present an example of applying the GOTECH framework to con-

vert a scientific application into a distributed application interacting with an application

server. The original application is a thermal plate simulator. Its back-end engine performs
156

the CPU-intensive computations and its front-end GUI visualizes the results. (The back-

end engine can also be configured to receive input from real heat sensors.)

The distribution scenario we want to accomplish is to separate the back-end simula-

tion functionality from the rest of the application. and to place it on a powerful remote

server machine. There are several benefits gained by this distribution scheme. First, it takes

advantage of the superior computing power of a remote server machine. Second, multiple

clients can share the same simulation server. Finally, if real heat sensors are used, the user

does not have to be in the same physical location with the sensors to run the experiment.

The kind of distribution we examine is very similar to the distribution scenario of the

Health Watcher application by Soares et al. [72]. (We sought to replicate the experiment of

Soares et al. and re-engineer the Health Watcher system, but unfortunately the code is pro-

prietary and was not made available to us.) The distribution scenario for Health Watcher

was one where the GUI was running remotely from the core application and used a facade

class to communicate with it. Near-identical issues are raised with our thermal plate simu-

lator. Note, however, that, unlike Soares et al., we concentrate only on distribution and do

not concern ourselves with persistence aspects.

A simplified UML diagram for the original version of the thermal plate simulator is

shown in Figure 5-1. We have laid out the class diagram so that the front-end and back-end

are clearly visible. The hierarchy under interface Plate contains the types of the objects

that form the connecting link between the application’s front-end and back-end. The graph-

ical front-end creates a Plate object and several visual component objects reference it and

query it to obtain the necessary data when performing their drawing operations. The Plate
157

Figure 5-1: UML class diagram of the Thermal Plate Simulator functionality

DLatticePoint

...

 FLatticePoint

...

LatticePoint

recompute()
...

OPlate

...
APlate

...

Plate

...

 PlateRenderer2D

 paintComponent()

GuiPlate
Simulation

diffuse(Plate)

Observer

 update()

AbstractSimulation

...

SimpleSimulation

...

Front-end Back-end

object gets modified by being sent as a parameter to the diffuse method in the Simula-

tion class. Once the diffuse method returns having modified its Plate parameter, the

front-end is signaled to repaint itself. The visual components can access the updated data

of the Plate object and redraw. Note that the main computation logic of the thermal plate

simulation is not distributed—the results are the only data transferred over the network for

remote display and simulation control.

Accomplishing the outlined distribution takes two steps:

• Converting simulation classes into EJBs and deploying them in an application server.

• Changing the client code to interact with an application server and EJBs instead of plain

Java objects.

Notice that making simulation classes remote while preserving the original execu-

tion semantics requires special handling for remote method parameters. The Plate object

that participates in a complicated aliasing (i.e. multiple referencing) scenario now becomes
158

a parameter of a remote call to an EJB. If a copy-restore mechanism is not provided by the

application server, then the process of bridging the differences between local (by-refer-

ence) and remote (by-copy) parameter passing semantics becomes a tedious and compli-

cated task. The use of NRMI (copy-restore semantics) completely eliminates the need for

special purpose code to reproduce the back-end changes to the Plate object inside the

front-end.

In-order for GOTECH to perform the required changes, we add some XDoclet-spe-

cific tags. Below are all the tags that are needed to convert a plain class lattice.Sim-

pleSimulation into a stateless session Enterprise Java Bean.

/**
 * @ejb:bean name=”SimpleSimulation”
 * display-name=”SimpleSimulation Bean”
 * type=”Stateless”
 * transaction-type=”Container”
 * jndi-name=”ejb/test/SSim”
 */

package lattice;
class SimpleSimulation {
...
/**
 * @ejb:interface-method view-type=”remote”
 * @jboss:method-parameters copy-restore=”true”
 */
 public void diffuse (Plate plate) { ... }
...
}

The tags entered in lattice.SimpleSimulation will convert the class into an

EJB and will also change all its clients consistently. XDoclet generates the home and

remote interface, as well as the bean class, all derived from the original source code for
159

SimpleSimulation. For example, the generated code for the home interface of the Sim-

pleSimulation EJB (slightly simplified) is:

package simulations;
// [Redundant import statements removed]
/**
 * Home interface for SimpleSimulation.
 * @xdoclet-generated at [date] [time]
 */

public interface SimpleSimulationHome
 extends javax.ejb.EJBHome
{
 public static final String COMP_NAME =
 “java:comp/env/ejb/SimpleSimulation”;
 public static final String JNDI_NAME =
 “ejb/SimpleSimulation”;

 public simulations.SimpleSimulation create()
 throws javax.ejb.CreateException,
 java.rmi.RemoteException;
}

XDoclet also generates the non-code artifacts (deployment descriptor in XML) and

an aspect that is supplied to AspectJ. AspectJ performs the client modifications based on

the generated aspect. Recall how the aspect code generated by the template of Figure 3-1

will change all object creation (new SimpleSimulation()) to calls to a remote object

factory and all method calls (e.g. sim.diffuse(plate);) to calls to a remote interface.

Upon completion, GOTECH has generated a new EJB, deployed it in the application

server, and modified the client code to interact with the new bean. The new distributed

application can be used right away without requiring any additional configuration.
160

5.7 J-Orchestra Case Studies

To showcase J-Orchestra, we present four case studies of partitioning medium to

large applications and of several smaller applications. The first three case studies demon-

strate the benefits of appletizing by successfully transforming three realistic, third-party

applications: JBits [27], JNotepad [36], and Jarminator [35], into client-server applications.

JBits is not only the largest among all the case studies but also a commercial application

available in bytecode-only form. While JNotepad and Jarminator are also third-party appli-

cations, they are free and publicly available. The last case study of partitioning the Kimura

system [55] demonstrates how automatic partitioning can be an enabling technology for

prototyping ubiquitous computing applications [97]. In this case study, the starting point is

a distributed application that is rewritten with the explicit purpose to develop a centralized

version that will later become distributed with J-Orchestra. Finally, we present some of the

most representative smaller applications we have partitioned with J-Orchestra.

5.7.1 Appletizing Case Studies

In our measurements, we compare the partitioned applications’ behavior to using a

remote X display [71] to remotely control and monitor the application. Since all three sub-

jects are interactive applications and we could not modify what they do, we got measure-

ments of the data transferred and not the time taken to update the screen (i.e., we measured

bandwidth consumption but not latency). Our experience is that appletizing is an even

greater win in terms of perceived latency. In all cases, the overall responsiveness of the

appletized versions is much better than using remote X displays. This is hardly surprising,

as many GUI operations require no network transfer. Note that the data transfer numbers
161

would not change in a different measurement environment. For reference, however, our

environment consisted of a SunBlade 1000 (dual UltraSparc III 750MHz, 2GB RAM) and

a Pentium III, 600MHz laptop connected via 10Mbps ethernet.

5.7.1.1 JBits

JBits, the largest of the applications, is an FPGA simulator by Xilinx—a web search

shows many instances of industrial use. The JBits GUI (see [27] for a picture of an older

version) is very rich with a graphical area presenting the results of the simulation cells, as

well as multiple smaller areas presenting the simulated components. The GUI allows con-

necting to various hardware boards and simulators and depicting them in a graphical form.

It also allows stepping through a simulation offering multiple views of a hardware board,

each of which can be zoomed in and out, scrolled, and so forth. The JBits GUI is quite rep-

resentative of CAD tools in general.

JBits was given to us as a bytecode-only application. The installed distribution (with

only Java binary code counted) consists of 1,920 application classes that have a combined

size of 7,577 KBytes. These application classes also use a large part of the Java system

libraries. We have no understanding of the internals of JBits, and only limited understand-

ing of its user-level functionality.

For our partitioning, the vast majority (about 1,800) of the application’s classes are

anchored by choice on the server. Thus co-anchored objects can access each other directly

and impose no overhead on the application’s execution. This is particularly important in

this case, as the main functionality of JBits is the simulation, which is compute-intensive.

With the anchoring by choice, the simulation steps of JBits incur no measurable overhead.
162

259 classes are always anchored on the client (i.e., GUI) site. Of these, 144 are JBits

application classes and the rest are classes from the Java system’s graphical packages

(AWT and Swing). The rest of the classes are anchored on the server site. (We later discuss

a variation in which we make some objects mobile.)

The appletized JBits performs arbitrarily better than a remote X-Window display.

For instance:

• JBits has multiple views of the simulation results (“State View”, “Power View”, “Core

View”, and “Routing Density View”). Switching between views is a completely local

operation in the J-Orchestra partitioned version—no network transfers are caused. In

contrast, the X window system needs to constantly refresh the graphics on screen. For

cycling through all four views, X needed 3.4MBytes transferred over the network.

• JBits has deep drop-down menus (e.g., a 4-level deep menu under “Board->Connect”).

Navigating these drop-down menus is a local operation for the J-Orchestra partitioned

application, but not for remote access with the X window system. For interactively nav-

igating 4 levels of drop-down menus, X transferred 1.8MBytes of data.

• GUI operations like resizing the virtual display, scrolling the simulated board, or zoom-

ing in and out (four of the ten buttons on the JBits main toolbar are for resizing opera-

tions) do not result in network traffic with the appletized JBits. In contrast, the remote X

display produces heavy network traffic for such operations. With our example board,

one action each of zooming-in completely and zooming-out results in 3.5MBytes of data

transferred. Scrolling left once and down once produces about 2MBytes of data over the

network with X, but no network traffic with the J-Orchestra partitioned version. Contin-

uous scrolling over a 10Mbps link is unusably slow with the X window system. Clearly,

a slower connection (e.g., DSL) is not suitable for remote interactive use of JBits with X.
163

Even for a regular board redraw, in which the appletized JBits needs to transfer data

over the network, less data get transferred than in the X version. Specifically, the appletized

version needs to transfer about 1.28MB of data for a complete simulation step including a

redraw of the view. The X window system transfers about 1.68MBytes for the same task.

Furthermore, J-Orchestra transfers these data using five times fewer total TCP segments,

suggesting that, for a network in which latency is the bottleneck, X would be even less effi-

cient.

Although there may be ways (e.g., compression, or a more efficient protocol) to

reduce the amount of data transferred by X, the important point is that some data transfer

needs to take place anyway. In contrast, the appletized version only needs to transfer a data

object to the remote site, and all GUI operations presenting the same data can then be per-

formed locally. For the cases that do produce network traffic, the appletized version can

also have its bandwidth requirements optimized by using a version of Java RMI with com-

pression.

Experiment: Mobility

In the previous discussion we did not examine the effects of object mobility. In fact,

very few of the potentially mobile objects in JBits actually need to move in an interesting

way. The one exception is JBits View Adaptor objects (instances of four *ViewAdaptor

classes). View adaptors seem to be logical representations of visual components and they

also handle different kinds of user events such as mouse movements. During our profiling

we noticed that such objects are used both on the server and the client partition and in fact

can be seen as carriers of data among the two partitions. Thus, no static placement of all

view adaptor objects is optimal—the objects need to move to exploit locality. We specified
164

a mobility policy that originally creates view adaptors on the client site, moves them to the

server site when they need to be updated, and then moves them back to the client site.

Surprisingly, object mobility results in more data transferred over the network. With

mobile view adaptor objects and an otherwise indistinguishable partitioning, J-Orchestra

transferred more than 2.59MBytes per simulation step (as opposed to 1.28MBytes without

a mobility policy). The reason is that the mobile objects are quite large (in the order of 300-

400KBytes) but only a small part of their data are read/written. In terms of bytes transferred

it would make sense to leave these objects on one site and send them their method param-

eters remotely. Nevertheless, mobility results in a decrease in the total number of remote

calls: 386 remote calls take place instead of 484 for a static partitioning, in order to start

JBits, load a file and perform 5 simulation steps. Thus, the partitioned version of JBits with

mobile objects may perform better for high bandwidth networks, in which latency is the

bottleneck.

5.7.1.2 JNotepad

JNotepad emulates the functionality of the Windows Notepad editor. It allows the

user to read and write text files. As in any simple text editor, the functionality of JNotepad

consists of a user interface and I/O facilities. The user manipulates the content of a text file

through the user interface, which includes the interaction with the I/O facilities for writing

and retrieval of files to and from disk. One appletizing scenario for Notepad places the user

interface on the client, while processing the I/O on the server.

The analysis for appletizing showed that the application has a total of 106 classes (66

JRE system classes, and 40 application classes). It also assigned 98 classes to the client site,
165

7 classes to the server site, and left 2 classes unassigned. To help determine a good place-

ment for the unassigned classes named Center and Actions, we performed a scenario-

based profiling that consisted of opening a file, searching for a word in it, changing its con-

tent, and saving it back to disk. The data exchange patterns, revealed by the profiling,

showed that the Center class has been tightly coupled with the client classes, calling each

other’s methods 17 times. Therefore, the most logical placement for this class is on the cli-

ent, together with the GUI classes. The Actions class exhibited a more complex data

exchange pattern, communicating with both the client (18 method calls) and the server (42

method calls). More detailed profiling showed that the data exchange between the server

classes and the Actions class happens inside the savE method, with the rest of the meth-

ods communicating only with the client classes. This is exactly a case for which object

mobility can provide an elegant solution. The objects of type Actions can be created at

the client site and then temporarily move to the server for the duration of the savE method.

As our measurements have shown, this mobility arrangement does not result in less data

being transferred over the network, but significantly decreases the number of remote calls

made (from 60 to 17).

We compared the behaviors of the partitioned application to the original one, run

remotely under the X window system. The test scenario was similar to the profiling one,

described above. (We believe that this reflects typical JNotepad use.) The appletized ver-

sion transferred less than 1/7th the amount of data over the network (~1 MB vs. ~7 MB).

With all the GUI operation not generating any network traffic, the appletized version sent

data over the network only when reading and writing the text file. Under X, JNotepad, run-
166

ning on the server that had the text file, accessed it directly. However, its every interaction

with the GUI resulted in sending data over the network.

5.7.1.3 Jarminator

Jarminator is a popular Java application that examines the content of multiple jar

files and displays their combined content in a tree view. The user can have only a subset of

the content displayed by supplying a wildcard filter. We have appletized Jarminator so that

it can examine jar files on a remote machine and display the results locally. The analysis

for appletizing showed that the application uses a total of 74 classes: 55 JRE system classes,

and 19 application classes. The appletizing analysis assigned 62 classes to the client site, 4

classes to the server site, and left 8 classes unassigned. A case-based profiling suggested

assigning 6 classes to the client, 1 to the server, and did not detect any data exchange with

the remaining class. It also did not reveal any communication patterns in which a mobility

scenario could be useful.

Again, we compared the behaviors of the partitioned application to the original one,

run remotely under the X window system. In this benchmark, we used Jarminator to explore

three third-party jar files used by J-Orchestra. The use scenario included loading the jars,

navigating through the tree view, and applying wildcard filters to the displayed content.

The appletized version exhibits significant benefits, transferring less than 1/30th the

amount of data over the network (~500 KB vs. ~15 MB). In fact, operations such as filtering

the displayed contents are entirely local in the appletized version and do not generate any

network traffic.
167

5.7.1.4 Discussion

Appletizing, just like general application partitioning, is not free of limitations.

Applications can be arbitrarily complex and can defy correct partitioning. Furthermore,

although we handle common cases of invalid operations inside applets, we do not have an

exhaustive approach to sanitize all Java code for applet execution. More common in prac-

tice, however, is the case of applications that can be correctly appletized (i.e., they do not

employ unsupported Java features such as dynamic loading or code rejected by the applet

security manager) yet require manual intervention to override conservative decisions of the

J-Orchestra heuristic analyses.

Of our three case studies, JNotepad and Jarminator were partitioned completely

automatically within 1-2 hours of time. JBits required more intervention (but still no

explicit programming) to arrive at a good partitioning within 1-2 days. For example, know-

ing only the JBits execution from the user perspective, we speculated that the integer arrays

transferred from the server towards the GUI part of JBits could safely be passed by-copy.

These arrays turned out to never be modified at the GUI part of the application. A more

conservative rewrite would have introduced a substantial overhead to all array operations.

Even in the less automatic cases, however, the expertise required to appletize an

application is analogous to that of a system administrator, rather than that of a distributed

systems programmer. For instance, in the JBits case we partitioned a 7.5MB binary appli-

cation without knowledge of its internals. Even though the partitioning was not automatic,

the effort expended was certainly much less than that of a developer who would need to

change an application with about 2,000 classes, more than 200 of which need to be modi-

fied to be accessed remotely.
168

Our experience confirms the benefits of appletizing. Indeed, it requires no program-

ming: we did not have to write distribution code or recode the subject applications; it is

flexible: each of the subjects has a complex GUI and could not be written as a servlet; it is

easy to deploy: all subjects run as applets over a standard browser communicating with a

server part; and results in good performance: by putting the GUI code on the client, we

transmit less data than transferring all the graphics.

5.7.2 Kimura Case Study

The Kimura case study [51] stands apart from other J-Orchestra case studies because

its primary objective was not only to showcase the capabilities of J-Orchestra but also to

explore whether automatic application partitioning can help researchers rapidly

Figure 5-2: Kimura architecture: (a) the original system; (b) the reengineered Kimura2 system.

prototype

distributed ubiquitous computing systems. Proponents of ubiquitous computing (or ubi-

comp, for short) [97] envision a future in which computers are inexpensive and plentiful
169

and seamlessly interoperate. Ubicom is also one area in which researchers have clearly

identified the need for software engineering support [1]: although hardware continues to

become smaller and cheaper, the corresponding software tools that would make the vision

of ubicomp possible have not matured at the same rate. One major feature of the ubicomp

domain—distinguishing it from traditional desktop applications, for example—is the soft-

ware’s inherent distributed nature. Ubicomp environments are naturally distributed over

multiple computers connected via a wired or wireless network. These computers come in

many shapes and sizes, from handheld to wall-sized. Applications in these environments

are typically designed under the assumption that computing resources come and go in ever-

changing combinations of lightweight and heavyweight, predefined and ad hoc groups. So,

ubicomp application developers typically must suffer all the complexities of distributed-

systems programming.

The difficulties that developers encounter when building ubicomp applications are

more pronounced during research and prototype development. Ubicomp application proto-

types are typically exploratory: The application’s structure, the kind of data being shared,

and the data’s distribution characteristics will change frequently as the application under-

goes iterations through the design-build-deploy-evaluate-redesign cycle. To facilitate

application prototyping in this domain, developers must be able to modify the data struc-

tures’ underlying distribution characteristics with little effort. Unfortunately, ubicomp

developers often aren’t expert at distributed systems. As a result, ubicomp researchers need

simple, automated techniques that support rapid prototyping in such domains, and the

Kimura case study explores how useful automated application partitioning with J-Orches-

tra can be in this respect.
170

As a larger case study of applying automatic partitioning to ubiquitous computing

systems, we used automatic partitioning in developing the latest version of the Kimura sys-

tem, which is a realistic, complex ubicomp application [55], Kimura is part of a research

project that seeks to explore and evaluate the addition of visual peripheral displays to

human-computer interfaces. Kimura uses large, projected displays as peripheral interfaces

to complement an existing work area—the area surrounding a traditional desktop com-

puter. Kimura uses these peripheral displays to help users manage multiple activities, such

as coherent sets of tasks typically involving multiple documents, tools, or communications.

Kimura assists in visualizing background activities as montages of images on the peripheral

displays. These montages serve as anchors for background awareness information collected

from a context-aware infrastructure.

Kimura’s source code consists of 98 Java application classes and over 4,400 source

statements. These application classes use many system and third-party classes, including

Swing and Java Advanced Imaging (JAI) library classes, as well as classes that facilitate

two-way communication with an electronic whiteboard.

The architecture of the original version of Kimura consists of three distinct compo-

nents (see Figure 5-2a). A desktop interface module runs on the user’s PC, monitoring all

window and application activity through a native library and providing virtual-desktop

functionality. A context interpreter module acts as an intermediate layer, aggregating the

incoming messages from the desktop and the context-aware infrastructure and conveying

them to the peripheral-display module, which we informally call “the wall.” The wall,

which connects directly to several projectors and a SMART Board interactive whiteboard,
171

maintains two-way communication with the SMART Board and provides up-to-date visu-

alizations of the user’s working contexts as montages projected onto the SMART Board.

These three components connect through TSpaces, a communication package

designed to connect distinct distributed components [49]. TSpaces is based on the well-

known tuplespace paradigm and incorporates database features such as transactions, per-

sistent data, and flexible queries. It employs the publish-subscribe model. When one com-

ponent adds or deletes a tuple on the TSpaces server, an appropriate callback method is

called asynchronously in any other component that has registered to receive notifications

matching that type of tuple.

The creators of TSpaces aimed at “hitting the distributed computing sweet spot

[49].” The system lets programmers ignore many hard aspects of distributed communica-

tion, such as naming, state, and load balancing. The original Kimura implementation didn’t

use any of these advanced TSpaces features but employed TSpaces as a convenient way to

keep shared state and to broadcast global events—such as activity changes—to all system

components.

To evaluate the applicability of automatic partitioning to the ubicomp domain, we

reengineered Kimura by removing the existing distribution code and redistributing it with

automatic partitioning. The first step of reengineering was to separate Kimura’s main appli-

cation tasks from its network communication. In this way, we could create a simpler

Kimura core, evolve it as necessary, and automatically partition it with J-Orchestra.

We first removed the code that supported distribution with TSpaces and replaced it

with a single shared data structure. The result was a single program that could run in one

process and open multiple windows—the wall and the desktop control panel—on a single
172

machine. The TSpaces-related code—functions responsible for connecting to the TSpaces

server and adding or deleting tuples—was spread over 11 of the 77 source files. While

TSpaces dictated an event-based structure for the application, the centralized version could

use direct method calls between components, resulting in simpler, cleaner code.

Similarly, the interpreter component, which acted as an extra level of indirection

between the desktop and the wall, was superfluous in the centralized version. We removed

it as a distinct entity, preserving its functionality in two new modules designed to act as

public interfaces of the desktop and the wall. These two new modules were two singleton

classes whose responsibilities included handling incoming and outgoing messages from the

application’s other part. Coding and integrating them with the rest of the system was

straightforward. As Figure 5-2b illustrates, Kimura’s new version no longer has a central

server. Instead, the system components talk to one another directly and synchronously.

Kimura2 consists of two partitions—one for the desktop and one for the peripheral

display. The user interaction takes place through the peripheral display, while the desktop

machine does the core of the processing, such as monitoring open applications. One can

think of the peripheral display as a “monitoring console” for the Kimura working environ-

ment.

To make partitioning possible, we had to understand the application’s internal struc-

ture, as the type based analysis heuristics of J-Orchestra, which determines what references

can leak to what code, turned out to be too conservative in this case. Kimura2 uses Swing

UI classes on what would become the wall and the desktop partitions. Because the code

handling these objects is unmodifiable, we need to be sure that the objects in one partition

are not shared in the other. Otherwise, the Swing code might try to access a remote object’s
173

fields directly, resulting in a crash. The heuristic analysis conservatively concluded that

Swing classes can’t exist on two different partitions. However, we know that the Swing

object partitioning in Kimura2 is safe: the Swing widgets on the desktop display are distinct

from the Swing widgets on the wall display. Therefore, we could explicitly direct J-Orches-

tra to produce appropriate code for Swing classes on both partitions.

Altogether, of the 64 automatically rewritten classes, 43 were Swing and Abstract

Window Toolkit (AWT) classes, and 6 were made serializable so that they could be by-

copy passed by-copy across different memory spaces to improve performance. We

excluded 71 Kimura application, 4 third-party, and 12 Java development kit (JDK) classes

from the distribution process altogether because we determined that they never participate

in the distributed communication. All in all, including testing, it took us only a few days to

partition Kimura2 with J-Orchestra.

Discussion

Automatic partitioning turned out to be quite beneficial in the case of developing

Kimura2. The main benefit is in the new software architecture’s simplicity, which resulted

in more understandable and maintainable code without sacrificing any of the original func-

tionality. Kimura2’s architecture will facilitate planned additions to the system much more

easily because the developers can focus on the desired functionality without worrying

about the distribution specifics. The new version also is easier to deploy because we don’t

need to maintain a running TSpaces server.
174

Table 5-7. Software Complexity Metrics

Kimura Kimura2
Percent more

in original

Total statements 4,436 4,084 8.6

Number of classes 98 92 6.5

Number of methods 693 682 1.6

Program difficulty metric 3,305 3,124 5.8

Development effort metric 2,611 2,235 16.8

Lack of cohesion of methods metric 2,395 2,165 10.6

Interpackage fan-out (no. of classes) 881 822 7.2

To quantify this simplicity’s benefits, we used JStyle [38] to derive software metrics.

The software engineering community is still divided on software metrics’ value and mean-

ing, so the significance of our qualitative findings is somewhat subject to individual inter-

pretation. Table 5-7 lists some of the more pronounced differences between Kimura and

Kimura2. The new version exhibited better results in all metrics, including those not

described in detail here.

Kimura originally consisted of 4,436 source statements (including declarations but

not counting comments, empty statements, empty blocks, closing brackets, or method sig-

natures). Out of them, 3,836 (86 percent of the total) remained unchanged in the new ver-

sion. We completely removed the TSpaces-related code (486 statements, almost 11 percent

of the total) and added 134 statements. Finally, we modified 114 statements to adapt the

application to the new communication paradigm.
175

As Table 5-7 shows, the new version exhibited significant differences using the Hal-

stead program difficulty metric [28], Chidamber and Kemerer’s lack of cohesion of meth-

ods (LCOM) [16], and class fan-out (the number of classes a given class depends on). The

new version is significantly less complex. Of course, we would expect a centralized archi-

tecture to be much less complex than a distributed one. However, it is interesting to quan-

tify the difference.

In our evaluation of Kimura2, we also performed extensive measurements to evalu-

ate how the partitioning infrastructure affects performance. Most system operations

(including montage creation, montage switching, and document manipulation) exhibited

significant speedup in relation to their counterparts in the original version, with only two

of the measured operations (wall montage switching and document activation) showing a

slowdown. We omitted our performance measurements because they are not essential to

our conceptual evaluation of automatic partitioning for ubicomp, being merely the result of

orthogonal, low-level concerns, such as the underlying middleware used in the case of J-

Orchestra relative to TSpaces.

Our experiences using automatic partitioning to develop ubicomp applications have

been quite positive. The approach’s overwhelming advantages include both the simplicity

of coding for a single machine without the need for distributed programming and the ease

of repartitioning and redeployment. Furthermore, the ability to run on unmodified runtime

systems—that is, any Java VM—is invaluable when using a multitude of heterogeneous

devices. Nevertheless, we have also identified several shortcomings associated with auto-

matic partitioning for ubicomp applications but not necessarily revealed by the Kimura

case study. Most of these shortcomings stem from the fact that many general engineering
176

issues are difficult to address using an automated approach that J-Orchestra follows. Con-

trary to this automated approach, which involves no programming, just resource-location

assignment (e.g., graphics code should run on this machine, or the main engine should run

on that machine), a semiautomatic approach could let the user annotate detailed parts of the

code and data that would actuate advanced distributed systems mechanisms (e.g., what data

should be replicated, how the copies should remain consistent, and where leases should be

used for fault tolerance). Indeed, a semiautomatic approach could resolve many of the

issues associated with automatic partitioning, and we discuss this research direction in the

future work section (Chapter VIII).

5.7.3 Other J-Orchestra Case Studies

Some of the most representative other applications we have partitioned to demon-

strate J-Orchestra include:

• the Java Speech API demo mentioned in Section 4.2 on page 63. Speech is produced on

one machine while the application GUI is running on a handheld (IPaq machine). In

general, Java sound APIs can easily be separated from an application’s logic using J-

Orchestra.

• JShell: a third-party command shell for Java. The command parsing is done on one

machine, while the commands are executed on another.

• PowerPoint controller: we have written a small Java GUI application that controls MS

PowerPoint through its COM interface. We partitioned the GUI of this application from

its back-end. We run the GUI on a IPaq PDA with a wireless card and use it to control a

Windows laptop. We have given multiple presentations using this tool.
177

• A remote load monitoring application: machine load statistics are collected and filtered

locally with all the results forwarded to a handheld (IPaq) machine over a wireless con-

nection and displayed graphically. The original application was written to run on a sin-

gle Windows machine.

This chapter discussed the issues of applicability of the three software tools for sep-

arating distribution concerns explored by this dissertation. We identified programming sce-

narios under which NRMI, GOTECH, and J-Orchestra would be most useful. Finally, we

presented case studies that showcased how the tools can successfully separate distribution

concerns of realistic applications.
178

	Chapter V
	This chapter argues that this dissertation explores algorithms, techniques, and tools for separating distribution concern that c...
	5.1 Applicability of the Translucent Approach
	This dissertation explores software tools that separate distribution concerns by following the approach we call “translucent.” T...
	NRMI makes remote calls look like local calls as far as the parameters passing semantics is concerned for stateless servers and ...
	GOTECH uses NRMI as its building block, but has more preconditions for successful application. Prior to specifying which local c...
	Finally, J-Orchestra is the most automatic of the tools and also separates the largest number of distribution concerns. Neverthe...
	Next we take a closer look at the applicability issues of NRMI, GOTECH, and J- Orchestra in turn.

	5.2 Applicability of NRMI: Usability Call-by-Copy-Restore vs. Call-by- Copy
	Compared to call-by-copy, call-by-copy-restore semantics offers better usability, for it simulates the local execution semantics...
	As we discussed in Section 2.2 on page 15, a call-by-copy-restore semantics is most valuable in the presence of aliased data. Al...

	5.3 Applicability of GOTECH: What are the Distribution Concerns and Can They Be Separated?
	For insight into identifying “distribution concerns,” we refer to the “differences” between local and distributed models of comp...
	5.3.1 Semantics
	Consider a centralized application written in a modular fashion with separate objects handling distinct parts of the functionali...
	As a result, the semantics of remote method calls are different from the semantics of local calls under standard middleware. Tha...

	5.3.2 Performance
	With processor speed continuing to increase at a much higher rate than network performance, remote calls have become more costly...

	5.3.3 Conventions
	Using a middleware mechanism such as RMI, CORBA, DCOM, and so forth to enable distribution has become a common business practice...
	The authors of the “Note” suggest that, “providing developers with tools that help manage the complexity of handling the problem...

	5.4 Applicability of J-Orchestra: Conditions for Successful Automatic Partitioning
	J-Orchestra can handle a large subset of Java and, thus, can correctly partition a large class of realistic unsuspecting applica...
	We introduce the term embarrassingly loosely coupled to describe the kinds of applications to which J-Orchestra is applicable. An embarrassingly loosely coupled application satisfies two criteria:
	That is, by looking at static relations among application classes, the user of J- Orchestra (aided by our analysis tools) should...
	The slowdown factor can be defined as the difference in total execution time (disregarding such additional factors as waiting fo...
	Once partitioned, an embarrassingly loosely coupled application must not share objects among partitions that are used by unmodif...
	Hence, embarrassingly loosely coupled applications can be partitioned automatically without significant loss in performance due ...
	Of course, one reason to partition an application is to take advantage of parallelism. Distinct machines will have distinct CPUs...
	To summarize, we can characterize the domain of J-Orchestra as partitioning embarrassingly loosely coupled applications for resource-driven distribution.

	5.5 NRMI Case Studies
	Before presenting the results of NRMI performance experiments, we describe the performance optimizations that we applied to the ...
	5.5.1 NRMI Low-Level Optimizations
	In principle, the only significant overhead of call-by-copy-restore middleware over call-by-copy middleware is the cost of trans...
	Our implementation of NRMI as a full replacement of Java RMI has two versions: a “portable”, high-level one and an “optimized” o...
	The optimized version of NRMI only works with JDK 1.4 and 1.5 and takes advantage of special features exported by the JVM in ord...

	5.5.2 Description of Experiments
	In order to see how our implementation of call-by-copy-restore measures up against the standard implementation of RMI, we create...
	We have considered three different scenarios of parameter use, listed in the order of difficulty of achieving the call-by-copy-restore semantics “by-hand” using the means provided by RMI.
	Consider how a programmer can replay the server changes on the client using regular Java RMI in each of the three cases. We assume that the programmer is fully aware of the server’s behavior, as well as of whether aliases exist on the client site.
	For all benchmarks, the NRMI version of the distributed code is quite similar to the local version, with the exception of remote...

	5.5.3 Experimental Results
	For each of these benchmarks, we measure the performance of call-by-copy (RMI), call-by-copy-restore (NRMI), and call-by-referen...
	The results of our experiments are shown in Table 5-1 to Table 5-6. All numbers are in milliseconds per remote call, rounded to ...
	Table 5-1. Baseline 1-Local Execution (processing overhead) on both the fast (750MHz) and the slow (440MHz) machine.
	Table 5-2. Baseline 2-RMl Execution, without Restore (one-way traffic).
	Table 5-3. Baseline 3-RMI Execution with Restore on local machine (no network overhead).
	Table 5-4. RMI Execution with Restore (two-way traffic).
	Table 5-5. NRMI (Call-by-copy-restore). Both the portable and optimized version shown for JDK 1.4.
	Table 5-6. Call-by-Reference with Remote References (RMI).
	The local measurements of Table 5-1 are given for both the fast and the slow machines. The local measurements of Table 5-6 are f...
	The main observations from these measurements are as follows:
	The conclusion from our experiments is that NRMI is optimized enough for real use. NRMI (copy-restore) for JDK 1.4 is close to t...

	5.6 The GOTECH Case Study
	In this section we present an example of applying the GOTECH framework to convert a scientific application into a distributed ap...
	The distribution scenario we want to accomplish is to separate the back-end simulation functionality from the rest of the applic...
	The kind of distribution we examine is very similar to the distribution scenario of the Health Watcher application by Soares et ...
	A simplified UML diagram for the original version of the thermal plate simulator is shown in Figure 5-1. We have laid out the cl...
	Accomplishing the outlined distribution takes two steps:
	Notice that making simulation classes remote while preserving the original execution semantics requires special handling for rem...
	In-order for GOTECH to perform the required changes, we add some XDoclet-specific tags. Below are all the tags that are needed to convert a plain class lattice.SimpleSimulation into a stateless session Enterprise Java Bean.
	The tags entered in lattice.SimpleSimulation will convert the class into an EJB and will also change all its clients consistentl...
	XDoclet also generates the non-code artifacts (deployment descriptor in XML) and an aspect that is supplied to AspectJ. AspectJ ...
	Upon completion, GOTECH has generated a new EJB, deployed it in the application server, and modified the client code to interact with the new bean. The new distributed application can be used right away without requiring any additional configuration.

	5.7 J-Orchestra Case Studies
	To showcase J-Orchestra, we present four case studies of partitioning medium to large applications and of several smaller applic...
	5.7.1 Appletizing Case Studies
	In our measurements, we compare the partitioned applications’ behavior to using a remote X display [71] to remotely control and ...
	5.7.1.1 JBits
	JBits, the largest of the applications, is an FPGA simulator by Xilinx-a web search shows many instances of industrial use. The ...
	JBits was given to us as a bytecode-only application. The installed distribution (with only Java binary code counted) consists o...
	For our partitioning, the vast majority (about 1,800) of the application’s classes are anchored by choice on the server. Thus co...
	259 classes are always anchored on the client (i.e., GUI) site. Of these, 144 are JBits application classes and the rest are cla...
	The appletized JBits performs arbitrarily better than a remote X-Window display. For instance:
	Even for a regular board redraw, in which the appletized JBits needs to transfer data over the network, less data get transferre...
	Although there may be ways (e.g., compression, or a more efficient protocol) to reduce the amount of data transferred by X, the ...
	Experiment: Mobility

	In the previous discussion we did not examine the effects of object mobility. In fact, very few of the potentially mobile object...
	Surprisingly, object mobility results in more data transferred over the network. With mobile view adaptor objects and an otherwi...

	5.7.1.2 JNotepad
	JNotepad emulates the functionality of the Windows Notepad editor. It allows the user to read and write text files. As in any si...
	The analysis for appletizing showed that the application has a total of 106 classes (66 JRE system classes, and 40 application c...
	We compared the behaviors of the partitioned application to the original one, run remotely under the X window system. The test s...

	5.7.1.3 Jarminator
	Jarminator is a popular Java application that examines the content of multiple jar files and displays their combined content in ...
	Again, we compared the behaviors of the partitioned application to the original one, run remotely under the X window system. In ...

	5.7.1.4 Discussion
	Appletizing, just like general application partitioning, is not free of limitations. Applications can be arbitrarily complex and...
	Of our three case studies, JNotepad and Jarminator were partitioned completely automatically within 1-2 hours of time. JBits req...
	Even in the less automatic cases, however, the expertise required to appletize an application is analogous to that of a system a...
	Our experience confirms the benefits of appletizing. Indeed, it requires no programming: we did not have to write distribution c...

	5.7.2 Kimura Case Study
	The Kimura case study [51] stands apart from other J-Orchestra case studies because its primary objective was not only to showca...
	The difficulties that developers encounter when building ubicomp applications are more pronounced during research and prototype ...
	As a larger case study of applying automatic partitioning to ubiquitous computing systems, we used automatic partitioning in dev...
	Kimura’s source code consists of 98 Java application classes and over 4,400 source statements. These application classes use man...
	The architecture of the original version of Kimura consists of three distinct components (see Figure 5-2a). A desktop interface ...
	These three components connect through TSpaces, a communication package designed to connect distinct distributed components [49]...
	The creators of TSpaces aimed at “hitting the distributed computing sweet spot [49].” The system lets programmers ignore many ha...
	To evaluate the applicability of automatic partitioning to the ubicomp domain, we reengineered Kimura by removing the existing d...
	We first removed the code that supported distribution with TSpaces and replaced it with a single shared data structure. The resu...
	Similarly, the interpreter component, which acted as an extra level of indirection between the desktop and the wall, was superfl...
	Kimura2 consists of two partitions-one for the desktop and one for the peripheral display. The user interaction takes place thro...
	To make partitioning possible, we had to understand the application’s internal structure, as the type based analysis heuristics ...
	Altogether, of the 64 automatically rewritten classes, 43 were Swing and Abstract Window Toolkit (AWT) classes, and 6 were made ...
	Discussion

	Automatic partitioning turned out to be quite beneficial in the case of developing Kimura2. The main benefit is in the new softw...
	Table 5-7. Software Complexity Metrics
	To quantify this simplicity’s benefits, we used JStyle [38] to derive software metrics. The software engineering community is st...
	Kimura originally consisted of 4,436 source statements (including declarations but not counting comments, empty statements, empt...
	As Table 5-7 shows, the new version exhibited significant differences using the Halstead program difficulty metric [28], Chidamb...
	In our evaluation of Kimura2, we also performed extensive measurements to evaluate how the partitioning infrastructure affects p...
	Our experiences using automatic partitioning to develop ubicomp applications have been quite positive. The approach’s overwhelmi...

	5.7.3 Other J-Orchestra Case Studies
	Some of the most representative other applications we have partitioned to demonstrate J-Orchestra include:
	This chapter discussed the issues of applicability of the three software tools for separating distribution concerns explored by ...

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /KOR <FEFFd5a5c0c1b41c0020c778c1c40020d488c9c8c7440020c5bbae300020c704d5740020ace0d574c0c1b3c4c7580020c774bbf8c9c0b97c0020c0acc6a9d558c5ec00200050004400460020bb38c11cb97c0020b9ccb4e4b824ba740020c7740020c124c815c7440020c0acc6a9d558c2edc2dcc624002e0020c7740020c124c815c7440020c0acc6a9d558c5ec0020b9ccb4e000200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe7f6e521b5efa76840020005000440046002065876863ff0c5c065305542b66f49ad8768456fe50cf52068fa87387ff0c4ee563d09ad8625353708d2891cf30028be5002000500044004600206587686353ef4ee54f7f752800200020004100630072006f00620061007400204e0e002000520065006100640065007200200035002e00300020548c66f49ad87248672c62535f003002>
 /CHT <FEFF4f7f752890194e9b8a2d5b9a5efa7acb76840020005000440046002065874ef65305542b8f039ad876845f7150cf89e367905ea6ff0c4fbf65bc63d066075217537054c18cea3002005000440046002065874ef653ef4ee54f7f75280020004100630072006f0062006100740020548c002000520065006100640065007200200035002e0030002053ca66f465b07248672c4f86958b555f3002>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

