
CHAPTER VIII

FUTURE WORK AND CONCLUSIONS

The algorithms, techniques, and tools for separating distribution concerns, explored

by this dissertation, present ample possibilities for future work. Each of the developed soft-

ware tools can be further enhanced in terms of both its capabilities and applicability. Fur-

thermore, some of the general insights gained from this research can be applied to domains

other than distributed computing. Some of the future research directions, resulting from this

work, have already been explored both by us [92] and other researchers [107]. We next

present some of the ideas for future work for NRMI, GOTECH, and J-Orchestra. After dis-

cussing the future work directions, we reiterate the merits of this dissertation and present

our conclusions.

8.1 NRMI Future Work

NRMI, with its call-by-copy-restore semantic that makes remote calls look like local

calls for stateless servers and single thread clients, is a convenient building block for other

middleware facilities that emphasize ease of use without jeopardizing performance. Specif-

ically, we would like to take our work on NRMI in the directions of greater generality and

adaptability to network outages. The first direction will extend NRMI to explore a general

problem of efficiently synchronizing a subset of the client state against a subset of the

server state by means of a remote procedure call. This problem is common in enterprise
219

p

alias1

alias2
NetworkClient

site
Server
site

alias3

Relevant client object Relevant server object

Figure 8-1: (a): A general remote call mechanism: a subset of the client heap, reachable from p, can be
sent to the server, to be updated against a subset of the server heap.

p

p

alias1

alias2
NetworkClient

site
Server
site

alias3

Updated client object Relevant server object

Figure 8-1: (b): A general remote call mechanism: param p is returned to the client and restored in
place.

p

New client object (brought from server)

computing such as the domain captured by the J2EE specification [78]. Often a server envi-

ronment contains a very large state of heap-allocated objects and clients need to synchro-

nize themselves periodically against this state. Currently, no existing mainstream

technology provides a convenient programming mechanism that implements this function-
220

ality. As a result, programmers resort to ad-hoc solutions that are error-prone and difficult

to maintain and extend.

In abstract terms, the solution can be provided by an efficient implementation of a

relaxed version of call-by-copy-restore semantics. For lack of a better term, we will call the

mechanism that implements this semantic a “general remote procedure call.” Figure 8-1 (a

and b) demonstrates the desired behavior. One can provide an efficient implementation of

a general remote procedure by reusing NRMI with its ability to update objects in place (i.e.,

preserving all the aliases) and extending it with a customizable serialization mechanism.

NRMI already relies on Java Serialization [79], which provides the transient keyword

to indicate a field that is not part of an object's persistent state and should not be serialized.

Nevertheless, the transient keyword is too crude a mechanism for providing a truly cus-

tomizable serialization as would be needed by the general remote procedure call mecha-

nism. One interesting question that is to be explored is how this customizable serialization

mechanism can be best expressed by the programmer. Perhaps it can be accomplished

through special purpose annotations or even via the means of a domain specific language

(DSL). Another question is how easy would that be to integrate this general remote proce-

dure call mechanism into an application server environment such as the one provided by

JBoss. Finally, it would be important to determine whether a general remote procedure call

implementation can be optimized enough for real-world use.

Another future direction for NRMI work would be providing an adaptable middle-

ware mechanism that could respond to network outages. This mechanism would have the

potential to enhance data availability and the overall quality of service (QoS) in unreliable

networks such as dynamic mobile wireless networks. Because of their ad-hoc nature such
221

networks are volatile and can temporarily become disconnected. Furthermore, usually out-

ages in such networks are temporary and short in duration. If such a network outage hap-

pens during a remote call, the client computation might proceed up to the point when the

data returned by the remote call is first referenced, which might be at some later point in

the control flow than immediately following the remote call. This mechanism would enable

continuing computation while the network is temporarily unavailable, and, in the presence

of frequent but short interruptions, can result in improved throughput. Of course, this adapt-

able mechanism would be applicable to regular call-by-copy semantics in remote calls as

well, taking into consideration only the return value of the call. However, with call-by-

copy-restore, which also changes the values of the parameters of a remote call upon return,

the problem becomes more comprehensive—solving it would require taking into consider-

ation all the variables that could have been changed as a result of a remote call.

At the implementation level, realizing an adaptable middleware mechanism that

could respond to network outages will require a combination of static analysis and code

rewriting. Such static analysis techniques as control flow can determine conservatively the

actual statements referencing by-copy-restore parameters and the return value of a remote

call in the client portion a program that follows it. Then the code can be automatically

rewritten to delay the blocking, occurring as a result of a temporary network outage during

a remote call, up to the program statements determined through the analysis. Of course,

extensive benchmarking at both the micro and macro levels would be required to determine

how successful such a middleware mechanism can be in improving the throughput of appli-

cations operating in volatile network environments.
222

8.2 GOTECH Future Work

The GOTECH framework is one of the first research projects that has taken the

approach of combining generative and aspect-oriented techniques. The GOTECH approach

can be enhanced in several directions such as improving the framework and providing tools

that would make it applicable in domains other than distribution. A representative of the

latter direction is a recent work by my colleagues on a generator called Meta AspectJ (or

MAJ for short) [107]. Their work has successfully resolved one of the major shortcomings

of the GOTECH approach—its reliance on text-based templates.1 As an evolutionary

improvement of the GOTECH approach, MAJ represents the generated code as a typed data

structure instead of arbitrary text, generating syntactically correct AspectJ programs. While

the MAJ project has focused on providing a general-purpose generator, it would be inter-

esting to explore how well a combination of generative and aspect-oriented techniques can

help solve problems in domains other than distribution, with persistence and security being

most promising.

Another future direction would be providing more mature support for the conversion

of plain objects to EJBs with different tools. For instance, the JBoss AOP framework per-

forms bytecode engineering at class load time to retrofit existing classes so that they

become EJBs. This approach can be applied both to distribution and to persistence concerns

and is of high industrial value. Since NRMI has already been implemented to work with

JBoss, this bytecode engineering work can result in a replication of the GOTECH capabil-

1. Reliance on text-base templates is not a serious issue for GOTECH per se, which is a domain-specific
generator with a fixed set of templates, but it definitely becomes so for any software generator that aims at
generalizing the GOTECH approach.
223

ities at load-time. Finally, another promising direction for more mature use of GOTECH

includes developing analysis tools that formalize the preconditions for the applicability of

the approach and ensure they are met by a specific application.

8.3 J-Orchestra Future Work

J-Orchestra is the largest and most comprehensive software tool for separating dis-

tribution concerns explored by this dissertation both in terms of the actual distribution con-

cerns that it successfully separates and in terms of the various case studies to which it has

been applied. It is natural, therefore, that our work on J-Orchestra has led to multiple and

diverse future work directions. Since it would be unrealistic to describe all of these future

work directions in detail here, we outline some of the major ones next. These directions fall

into two major categories: expanding the boundaries of application partitioning and apply-

ing the insights gained from the J-Orchestra project to domains other than distribution.

While J-Orchestra has demonstrated that automatic application partitioning is a

viable technology for introducing distributed capabilities to a specific class of centralized

applications, future work can address various limitations and shortcoming of the J-Orches-

tra approach. One inherent limitation of J-Orchestra has to do with the automatic nature of

its approach. That is, the J-Orchestra user works at the class or group-of-classes level of

abstraction. Thus, our approach is quite automatic and involves no programming, just

resource-location assignment—for example, that graphics code should run on this machine,

or the main engine should run on that machine. In contrast, a semiautomatic approach could

let the user annotate detailed parts of the code and data, to indicate, for example, what data

should be replicated, how the copies should remain consistent, and how leases should be
224

used for fault tolerance. Thus, a semiautomatic approach could resolve many of the issues

associated with automatic partitioning.

One of such issues is that, in its present state, automatic partitioning does not offer

any assistance in supporting highly dynamic interactions between communicating entities,

which are common in ubicomp applications [97]. For example, ubicomp applications often

allow for resources and services to come and go dynamically as users and devices enter and

leave the environment. Because automatic partitioning does not change the original central-

ized application’s logic or structure, flexibility and configurability must be designed into

the original application before it is partitioned. In contrast, a semiautomatic approach could

potentially support dynamic interactions through automatic modification of an unsuspect-

ing application.

In general, a partitioning system tries to automate many hard distribution tasks. Any

automation effort, however, hinders complete control for users with advanced require-

ments. Such requirements might include replication for fault tolerance; high performance

through load balancing, caching, or asynchronous communication; security; and persis-

tence. In an automatically partitioned application, it is not easy to use replication for redun-

dancy and switch to a different server once a failure is detected. The conventional wisdom

in the distributed-systems community is that mechanisms for handling distributed failure

are extremely application-specific and can not be automated completely.

Again, the appropriate solution might be to follow a semiautomated approach, pro-

viding tool support for replication, load balancing, security, and so forth. In this way, the

programmer would be relieved of the low-level complexity but would still be responsible

for annotating parts of the code in detail and for the distribution’s conceptual consistency.
225

In fact, Section 4.5.4 has described how J-Orchestra supports a semiautomated approach

that enables the user to specify complex schemes for object mobility (e.g., “move this

object whenever it is reachable from an argument of a remote method”). Nevertheless,

because this is not a GUI-accessible feature, the user must write Java code that follows J-

Orchestra framework conventions to enable such object mobility.

At the implementation level, a semiautomatic approach could, for example, let the

user annotate the application code to express desired policies for data consistency in the

context of possible failures. These annotations would form a domain-specific language for

specifying properties of dynamic distribution. For instance, one could annotate a certain

data field to indicate that many instances of it might exist. Another annotation could specify

the leases that each client holds and the data that depend on each lease. The low-level code

would then be generated from the annotations instead of having to be handwritten. Overall,

the approach would be very similar to the one currently followed by the GOTECH frame-

work, but it would also involve the J-Orchestra analysis and bytecode transformation

engines, making it more powerful.

J-Orchestra currently uses a type-based analysis heuristic that determines which ref-

erences can leak to which code. This heuristic is too conservative and its precision and

sophistication can be improved. Specifically, one promising direction would be to expand

it with various static analysis techniques such as control-flow and data-flow that would help

determine with a greater degree of precision which references can leak to which native

code. Of course, as we demonstrated in Chapter VI, any solution to this problem would be

an approximation, and one has to make reasonable assumptions to account for both the

inherent limitation of the existing static analyses techniques and the unpredictability of
226

native code behavior. Nevertheless, a more sophisticated analysis engine would enable

more powerful rewrites.

One of such rewrites could support object-based partitioning, which would be orders

of magnitude more fine-grained than the current class or group-of-classes abstraction level

at which J-Orchestra operates. Of course a full object-based partitioning approach would

not scale to realistic applications, but, when applied to only a limited subset of classes, it

would be an extremely valuable addition to the existing J-Orchestra tool set. J-Orchestra

already supports a limited version of object-based partitioning based on the objects’ cre-

ation sites. Nevertheless, in this case, it is entirely up to the programer to ensure that such

object-based partitioning makes sense. An object-based analysis could provide the pro-

grammer with information about how particular objects are used in the program, enabling

more sophisticated partitioning scenarios.

Another tool that could empower the programer in making more informed partition-

ing decisions is the J-Orchestra profiler. In its current stage, the J-Orchestra profiler pro-

vides a very crude kind of information and as such offers several directions for future work.

An important issue with profiling concerns the use of off-line vs. on-line profiling. Several

systems with goals similar to ours (e.g., Coign [33] and AIDE [56]) use on-line profiling in

order to dynamically discover properties of the application and possibly alter partitioning

decisions on-the-fly. So far, we have not explored an on-line approach in J-Orchestra,

because of its overheads for regular application execution. Since J-Orchestra has no control

over the JVM, these overheads can be expected to be higher than in other systems that

explicitly control the runtime environment. Without low-level control, it is hard to keep

such overhead to a minimum. Sampling techniques can alleviate the overhead (at the
227

expense of some accuracy) but not eliminate it: some sampling logic has to be executed in

each method call, for instance. Another issue has to do with fine-tuning the technique for

analyzing the profiling results. This technique, given some initial locations and the profil-

ing results, should determine a good placement for all classes. The technique that J-Orches-

tra currently follows is a clustering heuristic that implements a greedy strategy. It would be

interesting to experiment with replacing this clustering heuristic with other algorithms that

could provide a reasonable approximation, particularly for the situations when the number

of partitions is greater than two.

In its current implementation, J-Orchestra treats security as an orthogonal concern.

On the one hand, in designing the J-Orchestra rewrite engine, which transforms a central-

ized program into its distributed counterpart, we have made every effort not to introduce

security vulnerabilities if at all possible. At the same time, we did not have an opportunity

to have our rewrites follow a well-defined security policy. Producing a secure distributed

system as the partitioning’s end product has not yet been one of the primary objectives of

J-Orchestra. Nevertheless, partitioning presents many interesting security challenges.

Some prior work had focused on secure program partitioning [104], which is different from

the problem of applying a security policy to resource-based partitioning. By splitting up the

functionality of a centralized program to run on multiple network sites, talking to each other

over the network, some information that would have never left the confines of a single

address space, suddenly can get transferred over the network. Producing a coherent security

policy and incorporating it into each and every step in the partitioning process could be an

interesting research direction.
228

Aside from distribution, some of the insights, gained from our work on J-Orchestra,

can be generalized to other domains. In abstract terms, the J-Orchestra approach can be

described as adding capabilities to existing programs through bytecode modifications. In

the case of J-Orchestra, the added capabilities are distribution. In the past, bytecode manip-

ulations have been used to add other capabilities to existing programs, including persis-

tence, profiling, logging, and so forth. Nevertheless, our work on J-Orchestra has achieved

results that distinguish it from other work in its handling of the bytecode/native code inter-

actions in the runtime system. Therefore, it would be beneficial to generalize our tech-

niques from the domain of distribution to other domains, particularly the ones that have

already employed bytecode transformations in the past. The indirection machinery of J-

Orchestra can be generalized in a completely domain-independent way, resulting in a tool

that would allow adding capabilities to existing programs by modifying the bytecode not

only of application classes but also of system classes, whenever possible. One interesting

application of this tool would be extending AspectJ with capabilities to apply aspects to

systems classes.

In general, applying bytecode transformations can yield benefits in a variety of

domains and software development scenarios. We have attempted to generalize the tech-

nique by exploring the idea of binary refactoring [92], which applies refactoring transfor-

mations (e.g., split class, glue classes, inline method, remove design pattern indirection) to

a software application without affecting its source code. Binary refactoring is only the tip

of the iceberg, but it demonstrates an important principle that a good program transforma-

tion approach should follow: program transformation should not sacrifice software main-

tainability in order to achieve performance or temporary convenience. It would be
229

interesting to see how program generation and transformation can be applied to large-scale

program modifications.

8.4 Merits of the Dissertation

This dissertation has explored algorithms, techniques, and tools for separating dis-

tribution concerns. We discussed the motivation, design, and implementation of three soft-

ware tools: NRMI, GOTECH, and J-Orchestra. We also identified the applicability issues

of these tools and presented validation through case studies. We next reiterate some of the

conceptual contributions of this dissertation.

1. A general algorithm for call-by-copy-restore semantics in remote procedure calls for

linked data structures. The NRMI middleware mechanism provides a fully-general

implementation of call-by-copy-restore semantics for arbitrary linked data structures,

used as parameters in remote procedure calls.

2. An analysis heuristic that determines which application objects get passed to which

parts of native (i.e., platform-specific) code in the language runtime system for plat-

form-independent binary code applications. The J-Orchestra system utilizes this analy-

sis heuristic to enable partitioning of unaware programs in the presence of unmodifiable

native code in the runtime system. We also discuss how this heuristic can be fine-tuned

and applied to other domains.

3. A technique for injecting code in platform-independent binary code applications that

will convert objects to the right representation so that they can be accessed correctly

inside both application and native code. The J-Orchestra system implements this tech-

nique in its rewrite for classes with native dependencies.

4. An approach to maintaining the Java centralized concurrency and synchronization

semantics over remote procedure calls efficiently. The J-Orchestra system follows this
230

approach to transform centralized concurrency and synchronization Java constructs for

distributed execution.

5. An approach to enabling the execution of legacy Java code remotely from a web

browser. This approach is called appletizing, and it is fully realized as a specialization

of automatic partitioning in the J-Orchestra system.

8.5 Conclusions

This dissertation has discussed research that is concerned with developing and eval-

uating software tools for separating distribution concerns. The goal of this research is to

introduce software tools working with standard mainstream languages, systems software,

and virtual machines that effectively and efficiently separate distribution concerns from

application logic for object-oriented programs that use multiple distinct sets of resources.

We believe that this research will contribute to the development of versatile tools and tech-

nology with practical value, innovative designs, and the potential to become mainstream in

the future.

It is an exciting time to be a researcher in the field of software technology. For the

first time in the history of computing, we have mainstream commercial languages such as

Java and C# that are virtual machine based, platform-independent, garbage-collected, fairly

type safe, conducive to good software engineering practices, and easily amenable to code

transformation and generation. In addition, programs written in these languages show good

and improving performance, thanks to the ever more sophisticated Just-in-Time compila-

tion technologies. As a consequence, many interesting research developments in software

technology, before applied to and tested on exclusively esoteric, research-only language

environments, will be transferred to mainstream software development at ever accelerating
231

rates. All this makes software technologies a highly-dynamic research area with the poten-

tial of influencing how we build software today and in the future, and, hopefully, the con-

tributions of this dissertation are a concrete step in realizing this vision.
232

	Chapter VIII
	The algorithms, techniques, and tools for separating distribution concerns, explored by this dissertation, present ample possibi...
	8.1 NRMI Future Work
	NRMI, with its call-by-copy-restore semantic that makes remote calls look like local calls for stateless servers and single thre...
	Relevant client object

	In abstract terms, the solution can be provided by an efficient implementation of a relaxed version of call-by-copy-restore sema...
	Another future direction for NRMI work would be providing an adaptable middleware mechanism that could respond to network outage...
	At the implementation level, realizing an adaptable middleware mechanism that could respond to network outages will require a co...

	8.2 GOTECH Future Work
	The GOTECH framework is one of the first research projects that has taken the approach of combining generative and aspect-orient...
	Another future direction would be providing more mature support for the conversion of plain objects to EJBs with different tools...

	8.3 J-Orchestra Future Work
	J-Orchestra is the largest and most comprehensive software tool for separating distribution concerns explored by this dissertati...
	While J-Orchestra has demonstrated that automatic application partitioning is a viable technology for introducing distributed ca...
	One of such issues is that, in its present state, automatic partitioning does not offer any assistance in supporting highly dyna...
	In general, a partitioning system tries to automate many hard distribution tasks. Any automation effort, however, hinders comple...
	Again, the appropriate solution might be to follow a semiautomated approach, providing tool support for replication, load balanc...
	At the implementation level, a semiautomatic approach could, for example, let the user annotate the application code to express ...
	J-Orchestra currently uses a type-based analysis heuristic that determines which references can leak to which code. This heurist...
	One of such rewrites could support object-based partitioning, which would be orders of magnitude more fine-grained than the curr...
	Another tool that could empower the programer in making more informed partitioning decisions is the J-Orchestra profiler. In its...
	In its current implementation, J-Orchestra treats security as an orthogonal concern. On the one hand, in designing the J-Orchest...
	Aside from distribution, some of the insights, gained from our work on J-Orchestra, can be generalized to other domains. In abst...
	In general, applying bytecode transformations can yield benefits in a variety of domains and software development scenarios. We ...

	8.4 Merits of the Dissertation
	This dissertation has explored algorithms, techniques, and tools for separating distribution concerns. We discussed the motivati...
	1. A general algorithm for call-by-copy-restore semantics in remote procedure calls for linked data structures. The NRMI middlew...
	2. An analysis heuristic that determines which application objects get passed to which parts of native (i.e., platform-specific)...
	3. A technique for injecting code in platform-independent binary code applications that will convert objects to the right repres...
	4. An approach to maintaining the Java centralized concurrency and synchronization semantics over remote procedure calls efficie...
	5. An approach to enabling the execution of legacy Java code remotely from a web browser. This approach is called appletizing, and it is fully realized as a specialization of automatic partitioning in the J-Orchestra system.

	8.5 Conclusions
	This dissertation has discussed research that is concerned with developing and evaluating software tools for separating distribu...
	It is an exciting time to be a researcher in the field of software technology. For the first time in the history of computing, w...

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /KOR <FEFFd5a5c0c1b41c0020c778c1c40020d488c9c8c7440020c5bbae300020c704d5740020ace0d574c0c1b3c4c7580020c774bbf8c9c0b97c0020c0acc6a9d558c5ec00200050004400460020bb38c11cb97c0020b9ccb4e4b824ba740020c7740020c124c815c7440020c0acc6a9d558c2edc2dcc624002e0020c7740020c124c815c7440020c0acc6a9d558c5ec0020b9ccb4e000200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe7f6e521b5efa76840020005000440046002065876863ff0c5c065305542b66f49ad8768456fe50cf52068fa87387ff0c4ee563d09ad8625353708d2891cf30028be5002000500044004600206587686353ef4ee54f7f752800200020004100630072006f00620061007400204e0e002000520065006100640065007200200035002e00300020548c66f49ad87248672c62535f003002>
 /CHT <FEFF4f7f752890194e9b8a2d5b9a5efa7acb76840020005000440046002065874ef65305542b8f039ad876845f7150cf89e367905ea6ff0c4fbf65bc63d066075217537054c18cea3002005000440046002065874ef653ef4ee54f7f75280020004100630072006f0062006100740020548c002000520065006100640065007200200035002e0030002053ca66f465b07248672c4f86958b555f3002>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

