
CHAPTER VI

GENERALIZING THE J-ORCHESTRA INDIRECTION MACHINERY

This chapter discusses how one of the technical contributions of this dissertation can

be generalized to domains other than distributed computing. Specifically, we take a closer

and broader look at the J-Orchestra approach to enabling indirection in the presence of

unmodifiable code (e.g., Java system classes), which is one of its sources of scalability.

Chapter IV discussed the J-Orchestra analysis heuristic that determines which application

objects get passed to which parts of native (i.e., platform-specific) code and a technique for

injecting code that will convert objects to the right representation so that they can be

accessed correctly inside both application and native code. Here we discuss the broader

ramifications and limitations of user-level indirection and show how the approach taken by

J-Orchestra can be fine-tuned so that user-level indirection can be applied to more system

classes.

6.1 Introduction

In this chapter, we take a more general look at user-level indirection techniques and

show that all different versions of the idea converge into using the same general

approaches. Then we discuss why the presence of native code always results in correctness

limitations. Some of these limitations are straightforward (e.g., native code can have its

own state) while some others are more subtle (e.g., native code can change user-level state
179

directly). Despite the fact that we generally use Java (i.e., Java language syntax, Java ter-

minology, and JNI conventions) as our reference system, our observations apply to most

other runtime systems for platform-independent binary code applications such as the CLR

and .NET technologies.

6.2 User-Level Indirection Techniques

We use the name “user-level indirection” to describe any general technique that

transparently interposes extra functionality to the execution of existing applications by

using code transformation techniques, instead of modifying the underlying implementation

of the runtime system. Applications of user-level indirection include transparent distributed

execution [21][66][74][75][84], persistence [12][46][59], profiling [33], and logging [48].

In general, user-level indirection aims at capturing specific events and performing actions

whenever they occur. Such events typically are:

• Access to a field of an object or a static field (reading or modifying the field).

• Calls to a method of an object of a specific type, or calls to a static method.

• Object construction.

For instance, we may want to add indirection to all changes to the fields of an object

for logging: we may want a permanent log of all state updates in a running system. This is

possible by finding all field access instructions in the application and modifying them to

log their action before taking it. The logging code is either included inline at the field access

site, or a separate method can be called.

What complicates user-level indirection is the existence of reusable core functional-

ity in the form of system classes (a.k.a. standard library classes). User-level indirection
180

cannot afford to ignore system classes, even if the intended use is not concerned with

system-level events. For instance, consider a user-level indirection system that performs

actions every time a user-level method gets called. User-level methods, however, often get

called by system-level code. For instance, system libraries often accept a callback object

and invoke its methods in response to asynchronous events, or in response to system code

actions initiated by a user-level call. Thus, the user-level indirection technique needs to

ensure that it allows and correctly handles all calls, regardless of whether they occur inside

user-level or system-level code.

In popular modern runtime systems, the majority of system class code is not special.

Most of the Java system classes, for instance, are distributed in Java bytecode format. Thus,

one can apply the same user-level indirection techniques to both user-level code and byte-

code-only system classes. Indeed, several systems [22][84] follow this approach. The stan-

dard technique in this case is to create a separate, instrumented version of the system

classes. The instrumented version co-exists with the standard system classes in the same

application. In this way, an application can access both the user-level indirected versions

of system classes and the original versions without any conflict. This is necessary, since the

system classes are often used inside the instrumentation code itself. In original application

code, however, all uses of system classes are replaced with uses of their instrumented coun-

terparts. Reference [22] calls this the “Twin Class Hierarchy” approach (TCH). As an

example, imagine that the original Java application contains code such as:

class A {
 public java.lang.String meth(int i, B b) {...}
}

The rewritten class would use the instrumented class types:
181

class UP.A {
 public UP.java.lang.String meth(int i, UP.B b)
 {...}
}

(UP in the above code stands for “user package”.)

Figure 6-1: (a): Original system classes hierarchy

Figure 6-1: (b): Replicating system classes in a user package (“UP”)

java.lang.Object

java.lang.String somesyspackage.A

java.lang.Object

UP.java.lang.Object

UP.somesyspackage.AUP.java.lang.String

somesyspackage.Ajava.lang.String

 Figure 6-1 shows the effects on

the class hierarchies pictorially.

6.3 Transparency Limitations

The problems with any user-level indirection technique begin when a system class

with native code needs to be instrumented. Native code (a.k.a. platform-specific binary

code) is often used to implement system-level functionality. Some of the most fundamental

system classes (e.g., the ones dealing with threading, file and network access, GUI, and so

forth) rely on native code, mainly for reasons of low-level resource access, such as context-
182

switching or fast graphical operations. System classes with native code are, thus, a way to

export runtime system functionality as language-level facilities.

Native code cannot be instrumented without invalidating all the advantages of the

user-level indirection approach. Changing native code requires platform-specific changes

and the creation of special versions of the runtime system (either the executable program

or its dynamic libraries). Similarly, analyzing native code and relying on its implementa-

tion properties is a platform-specific task. Thus, dealing with native code is incompatible

with the main motivation for user-level indirection: that of portability and platform inde-

pendence. Therefore, native code is opaque for the purpose of user-level indirection: it can

be neither modified nor analyzed.

Having an application access opaque code immediately introduces limitations in

user-level indirection approaches. Even if opaque code is a small percentage of the total

system code,1 it is likely to be used by every application and needs to be handled correctly.

(In fact, because java.lang.Object and System.Object, the root classes in Java and

C#, respectively, use native code in their implementation, one could argue that every pro-

gram written in these languages contains opaque code.) Clearly, one limitation is that user-

level indirection cannot be used to intercept actions occurring entirely inside native code.

For instance, we cannot observe and log updates to program state kept inside native code:

such state is invisible to the user-level. That is, changes to internal system state (e.g., the

contents of a low-level window, the scheduling structure of threads, and so forth) cannot be

intercepted using user-level indirection. Although it may seem that such state is low-level

1. Only about 3% of the Java system classes have native methods. (All numbers were measured on Sun JDK
1.4.2.) Nevertheless, as we show later, these are some of the most commonly used classes in Java and are
likely to constitute a much larger percentage of the loaded system code in a Java application.
183

and is outside the scope of user-level indirection, the restriction nevertheless places bound-

aries on what is achievable with user-level indirection alone. For instance, without reliance

on implementation specifics of the Java system libraries, a distributed execution system

that relies on user-level indirection (similarly to J-Orchestra: Pangaea [74], Addistant [84],

and JavaSplit [21]) cannot hope to transparently migrate window or thread objects from one

machine to another. This task can still be achieved by special-purpose emulation of the

semantics of a thread or window at the user level, but not by employing general-purpose

user-level indirection techniques on the Java system classes.

Often, however, the interactions of native code with user-level indirection are more

subtle. In the Java system, native code can directly read or modify the state of object fields

declared in bytecode. This allows for tight integration of native code and Java code. Essen-

tially, the Java Native Interface (JNI) is a way to program using the full object model of the

JVM with C or C++ as the host language. Direct access to fields inside native code compli-

cates matters for user-level indirection. Consider the TCH user-level indirection approach

for instrumenting standard Java libraries [22]. (This approach is representative of other

user-level indirection techniques, including the one in J-Orchestra.) In this approach, if a

class A has a native method, an instrumented version of A delegates calls to the native

method of an internal A object. This technique is used because a native method implemen-

tation in Java is bound to a particular class name and cannot be reused for a different class.

For instance, consider original code as follows: (This code does not reflect the Java File

class but the structure is representative of several system classes with native methods.)
184

class File {
 ...
 public native void write(byte b);
}

The instrumented version of this class would be:

class UP.File {
 private File origImpl_;
 ...
 // delegate to native method
 public void write(byte b) {origImpl_.write(b);}
}

It may at first seem that the UP.File class can use arbitrary user-level indirection

for its non-native methods. Nevertheless, this is not the case. Imagine that the File class

also has a non-native method newLine:

class File {
 ...
 public native void write(byte b);
 public void newLine() { ... }
}

It is not safe to indirect method newLine (e.g., to track its changes to fields of a

File object) yet simply delegate method write. To see this, consider the re-written code:

class UP.File {
 private File origImpl_;
 ...
 // delegate to native method
 public void write(byte b) {origImpl_.write(b);}
 public void newLine() {...} // instrumented body
}

The problem is that any call to method write affects the origImpl_ object, while

any call to method newLine affects the current object of type UP.File. Separating these

two objects (when they were one in the original application) destroys the transparency of
185

user-level indirection. Therefore, we see that the TCH user-level indirection approach is

all-or-nothing: any class that has even a single native method is impossible to instrument

transparently. This limitation is not specific to the TCH approach: following the same rea-

soning one can see that once a class has native methods, it is not possible to transparently

replace it with an instrumented copy of the class such that it implements any kind of user-

level indirection.

The ability of Java native system code to directly access user-level state hinders

many more user-level indirection tasks. For instance, consider user-level indirection

approaches that capture all updates to fields of an object (e.g., to implement transparent per-

sistence or distributed execution). In this case, all objects that can ever be referenced by

native code cannot be fully indirected using user-level indirection techniques. That is, even

if an object’s class has no native methods, if the object is ever referenced by some other

class’s native code, then we cannot indirect all access to the object’s fields.

Furthermore, often constraints on the use of user-level indirection have to do with

restrictions derived from the structure of the user-level indirection scheme itself. For

instance, consider again the above TCH rewrite. Without any special provisions, the limi-

tations on the use of indirection propagate to all subclasses. A subclass ROFile of the orig-

inal File class may have no native methods, yet its methods cannot be instrumented. If the

instrumentation were performed, the UP.ROFile class would be a subclass of UP.File

and not of File. Thus, UP.ROFile would not be able to access non-public members of

File. We later discuss how to remove this limitation.
186

6.3.1 Beyond Java Conventions: Native Code in .NET

For the purposes of our discussion, the .NET and Java technologies are almost

equivalent, with .NET being slightly more restrictive due to the unstructured nature of

interfacing between managed and unmanaged code. Just like in the Java case, managed and

unmanaged code in the CLR can operate on the same objects. Just like in Java, .NET

unmanaged code, usually written in C++, provides many system services that are impossi-

ble to implement in a managed environment because they require such low-level program-

ming techniques as direct memory access. Unlike the Java platform, however, which

clearly distinguishes between bytecode and native libraries and provides a clean interfacing

mechanism between the two in the form of the JNI, the C# core classes implementation

consists of managed and unmanaged code that are binary compatible with each other.

At the language level, the annotation [MethodImplAttribute(MethodImplOp-

tions.InternalCall)] specifies external methods that are implemented natively in the

runtime itself. These methods use standard Microsoft C language calling conventions (such

as __stdcall and __cdecl). In addition, the internal member methods in C# take this as

the first argument, which in C++ becomes just a regular pointer that can be used to access

and modify the memory of the underlying C# class directly. For example, a brief look at

the Microsoft Shared Source CLI Implementation reveals that the C++ native code of the

runtime relies on a very concrete object memory layout. For example, comparing whether

two C# references point to objects of the same type includes comparing the pointers to their

method tables, located at a predefined memory offset from the base references. Therefore,

unmanaged code in the CLR not only accesses fields of objects, but is allowed to make

assumptions about how these fields are laid out in memory. Such tight coupling between
187

managed and unmanaged code enables an efficient implementation for the runtime but also

makes introducing any indirection into the managed code almost impossible. Therefore,

introducing indirection by simply moving code of a Core Library C# class with native

dependencies to a different package is even more unrealistic and error-prone than it is in

Java. In the remainder of this chapter, all our qualitative observations should apply equally

well to the CLR, unless we explicitly note otherwise.

6.4 Weak Assumptions of J-Orchestra Classification

To determine which program actions can be safely indirected, we would need to ana-

lyze the implementation of native methods. Since source code for the VM and its dynamic

libraries will typically not be available, one important question is whether one can use the

type information at the native code interface as a “poor-man’s native code annotations.” We

discuss how some well-founded assumptions on the behavior of native code enable J-

Orchestra to employ a conservative type-based analysis of what objects can be accessed by

native code. It turns out that type information is often remarkably sufficient for determining

the safety of user-level indirection.

6.4.1 Type-Based Analysis + Weak Assumptions

Recall that the majority (~97%) of Java system classes have no native methods. Such

classes encode useful reusable libraries and not system-level functionality. It is, thus, cru-

cial to automatically recognize system classes that do not interact with native code and to

support correct user-level indirection for them. In general, this task is impossible without

making assumptions regarding native code behavior. For instance, all classes in Java are

subclasses of the java.lang.Object class, which has native code. In theory, any native
188

method can be receiving an Object-typed argument, discovering its actual type using

reflection and performing on the object some action (e.g., reading fields) that would be

undetected by any user-level indirection mechanism. Next we discuss practical assump-

tions that let us classify different parts of system functionality for safe user-level indirec-

tion.

In Section 6.2 we distinguished several different kinds of events typically captured

by user-level indirection: access to fields, method calls, constructor calls, and so forth.

Clearly none of these events can be captured if they occur entirely within opaque code. For

instance, it is impossible to capture updates to state (i.e., variables) that is defined inside

native code. The interesting case, however, is that of events concerning user-level (i.e.,

non-opaque) entities and the question of whether these can occur inside opaque code. For

instance, we may want to capture all updates to an object field that is declared in a Java

system class implemented in bytecode. We need to ask if this field is ever accessed inside

native code. In this section we assume the full gamut of user-level indirection events,

including access and modification of fields. If a certain application is only interested in cap-

turing method and constructor calls, the restrictions are typically far less severe. Neverthe-

less, most interesting applications of user-level indirection (esp. distributed execution and

persistence) need to capture field accesses.

Here we abstract away the specifics of the J-Orchestra approach. It makes two main

heuristic assumptions regarding system classes:

• Classes without native methods have no special semantics.

• Native methods do not use dynamic type discovery (reflection, downcasting, or any low-

level type information recovery) on objects supplied through method arguments.
189

These assumptions generally hold true with few exceptions. The first assumption

does not hold, for instance, for classes in the java.lang.ref package. The second

assumption does not hold in the implementation of reflection classes themselves. In Section

6.5 we discuss a study of the Sun implementation of Java system classes and how it sup-

ports our assumptions.

The first assumption essentially states that the JVM is not allowed to handle differ-

ent types of objects specially when the objects just use plain bytecode instructions. For

instance, the JVM is not allowed to detect the construction of an object of a “special” type

and keep a reference to this object that native code can later use for destructive state

updates. This is a reasonable assumption, conforming to good software design practices.

The second assumption states that native code is strongly typed: if a reference is declared

to be of type T, it can never be used to access fields (method calls are fine) of a subclass of

T. For instance, the assumption prohibits native methods from taking an Object-typed

argument, checking if it is actually of a more specific type (e.g., Thread or Window), cast-

ing the object to that type and directly accessing fields or methods defined by the more spe-

cific type. This assumption also encodes a good design practice: code exploits the static

type system as much as possible for correctness checking.

With the above two assumptions, we can perform a classification of Java system

classes with respect to whether they can employ user-level indirection transparently or not,

based on their usage of native code. We will use the term NUI (for non-user-indirectible)

to describe classes that cannot employ user-level indirection transparently. We can gener-

alize the J-Orchestra rules from Chapter IV to infer all classes that have user-level indirec-

tion limitations, as follows:
190

1) A system class with native methods is NUI.

2) A system class used as a parameter or return type for a method or static method in a

NUI class is NUI.

3) If a system class is NUI, then all class types of its fields or static fields are NUI.

4) If a system class, other than java.lang.Object, is NUI, then its subclasses and

superclasses are NUI.

(Just like in Chapter IV, the above rules represent the essence of the analysis but are

not complete. For instance, they do not discuss arrays or exceptions—these are handled

similarly to regular classes holding references to the array element type and method return

types, respectively. Note that interface access does not impose restrictions since an inter-

face cannot be used to directly access state. We prefer the abbreviated form of the rules for

readability, especially since the analysis is based on heuristic assumptions, and therefore

we do not make an argument of strict correctness.2 The numbers we later report are for the

full version of the rules, however.)

Rule 1 above is justified because no user-indirection technique can guarantee to cap-

ture all field updates of an instance of a class with a native method. The native method can

always perform updates without any indirection.

2. In addition, one possible native dependency that might not be determined correctly through our type base
heuristic is “intrinsics,” a class loading mode in which a JVM ignores the bytecode file of a class defined in
the platform specification, providing instead a native implementation for the class’s functionality. The prob-
lem arises when the vendor of a JVM that uses “intrinsics” fails to mark intrinsic methods as native. In that
case, the only way to find out if some methods are intrinsic is by trial-and-error, and our static type based
heuristic is no longer sufficient. Empirically, this has not been an issue for Sun’s Hot Spot JVM.
191

Rule 2 is justified with a similar argument: if an object can be passed to native code,

native code can alias it and (either during the native method execution or during a later

invocation) change its state. Furthermore, the rule can be applied transitively: if a class is

NUI then we cannot replace all its uses with uses of an instrumented version in a user pack-

age UP. Then all objects used as arguments of any method (even non-native) may have their

fields accessed directly.

Rule 3 is analogous to Rule 2 but for fields: native code can access any object tran-

sitively reachable from an object that leaks to native code.

Rule 4 is justified by the specifics of the J-Orchestra user-level indirection scheme.

We saw an instance of this restriction in Section 6.3: if a class cannot be indirected, its uses

in the application cannot instead employ a modified copy of the class in a user-level pack-

age. Thus, all subclasses and superclasses also cannot be copied to a user level package, as

they may need to access non-public fields of their superclass.

These rules enable user-level indirection to be used safely for many Java system

classes. Specifically, 37% of the Java system classes are classified as having no dependen-

cies to native code and, thus, being able to employ user-level indirection safely.

Still, however, these rules are too conservative, as 63% of the system classes are

deemed non-indirectible. Nevertheless, the rules are a good starting point and can be weak-

ened to be made practical for specific applications of user-level indirection. For instance,

in the context of J-Orchestra one more assumption is made relating to the way native code

in different libraries can share state. The extra assumption allows placing different pieces

of native code on separate machines and placing the instances of opaque classes in the same

machine as the relevant code [51][87].
192

Next, we show one important general-purpose weakening of the rules. Rules 2 and

4 can be weakened significantly if we are allowed to modify system packages (still without

touching native code) and we employ a more sophisticated user-level indirection scheme

than that of J-Orchestra or TCH.

6.4.2 More Sophisticated Type-Based Analysis

The rules of the previous section are conservative because they assume that all code

in system packages (be it native or not) is opaque. See, for instance, Rule 2: although any

object that is used as a parameter of a native method can have its fields accessed with no

indirection, there is no need to recursively propagate this constraint to the non-native meth-

ods of this object as well. If the object class is in pure bytecode, we can edit it and introduce

indirection for accesses to its parameters. This, however, relies on a low-level assumption:

we assume that the user-level indirection technique can modify system packages in order

to edit the bytecode of existing system classes or add a new class in a system package. This

is not desirable in some user-level indirection settings because it requires control over the

startup environment of the JVM. Such control is not always possible, e.g., for deploying

applets that random users will download and use inside a browser, or in systems in which

the user cannot modify or extend the system package for security. Nevertheless, many

applications of user-level indirection are allowed to set the parameters of the runtime sys-

tem, and this can include a modified system package.

Under this assumption, we can use a weaker version of Rules 2 and 4.

1) A system class with native methods is NUI.

2’) A system class used as a parameter or return type for a native method is NUI.
193

3) If a system class is NUI, then all class types of its fields or static fields are NUI.

4’) If a system class is NUI, then its superclasses are NUI.

The weaker rules push the limits of user-level indirection much further: fewer than

8% of the Java system classes are classified as unable to employ user-level indirection (i.e.,

NUI). This means that a general-purpose user-level indirection technique can apply to more

than 92% of the Java system classes with no special handling.

We already discussed how the new version of Rule 2 is a result of instrumenting the

bytecode of bytecode-only NUI classes. The weakening of Rule 4 is more interesting. In

the new Rule 4, a class does not impose any restrictions on its subclasses. This also elimi-

nates any special handling of the java.lang.Object class, which is a common singular-

ity in user-level indirection schemes.

To use the weaker version of Rule 4, we need to make sure that every system class

C that cannot employ user-level indirection transparently is replicated in a user-level pack-

age. The replica class will just delegate all method calls to the original. Subclasses of C that

have no native dependencies will employ full user-level indirection: an instrumented copy

will be created in a user package and all references to the original class will become refer-

ences to the instrumented version. As discussed in Section 6.3, the problem is that the

instrumented class will not be able to access non-public members of C, as it is not in the

same package as C. One solution is to make public all non-public members of class C by

editing the class bytecode. (Or, equivalently, to create a subclass of C that exports the non-

public members of C—see later.) A safer approach would be to emulate the Java access

control at run-time using a technique such as that proposed by Bhowmik and Pugh [1] for
194

the Java inner classes rewrite. At load time, class C creates a secret key and passes it to the

instrumented version of its subclass. When objects of the instrumented class need to access

C members, they call a public method that also receives and checks the secret key. This is

a safe emulation of the Java access protection, yet it avoids the requirement of placing

classes in the same package.

An example application of this technique is shown in Figure 6-2(a). The example

class File of Section 6.3 is now shown with a non-public field field1. File has a sub-

class TXFile with no native dependencies. Figure 6-2(b) shows the transformed classes so

that UP.File and UP.TXFile can correctly replace all uses of File and TXFile, respec-

tively, yet UP.TXFile can employ fully transparent user-level indirection. (As a low-level

note, this transformation means that the instrumented system package, UP, needs to be

loaded by the bootstrap class loader, since there is a call to method UP.File.setKey

inside the File system class. The easiest way to effect this is to put the UP package in the

rt.jar file.)

The effects of the transformation on the example class hierarchy are shown pictori-

ally in Figure 6-3.

6.5 Validating The Assumptions and Analysis

We validate the assumptions and analysis of the previous section in three ways: first

we measure the impact of our type classification for real applications: can we indeed use

user-level indirection, without any special-case handling, for a large number of the system

classes used by realistic applications? Next we examine an actual native code implementa-
195

class File {
 SomeT field1;
 ...
 public native void write(byte b);
 public void newLine() {...}
}

class TXFile extends File {
 ...
 public void writeString(String s) {
... foo(field1) ... }
}

Figure 6-2: (a): Original system class File (with a native
method) and subclass TXFile (without native
dependencies).
class File {
 SomeT field1;
 // Allow free access to field1 only to
 // class UP.File (and children)
 private static final Object key_ = new Object();
 static { UP.File.setKey (key_); }
 public SomeT get_field1(Object key) {
 if (key != key_)
 throw new IllegalAccessException();
 return field1;
 }
 ...
 public native void write(byte b);
 public void newLine() {...}
}

// Just delegates to File. Only used for correct
// subtype hierarchy.
class UP.File {
 protected File origImpl_;
 protected static Object key_;
 public static void setKey(Object key)
 { key_ = key; }
 ...
 // delegate to native method
 public void write(byte b) { origImpl_.write(b); }
 public void newLine() { origImpl_.newLine(); }
}

class UP.TXFile extends UP.File {
 ...
 // methods of this class can employ any
 // user-level indirection scheme
 public void writeString(String s) {
 ...foo(origImpl_.get_field1(key_))...
 }
}

Figure 6-2: (b): Result of the user-level indirection
transformation, with safe access to non-public fields of class
File.
196

tion of system methods and check whether it satisfies our assumptions. Finally, we perform

a dynamic analysis of several Java applications and show that they do not violate the results

of our type-based analysis during their execution.

java.lang.Object

somesyspackage.File

somesyspackage.TXFile

Figure 6-3: (a): A File class hierarchy

java.lang.Object

somesyspackage.File

 UP.TXFile

 UP.File

Uses
(safely)

somesyspackage.TXFile

Figure 6-3: (b): Removing subclassing restrictions

6.5.1 Impact on Real Applications

An interesting question is to quantify the impact of the type-based analysis for real

applications, as opposed to the set of all Java system classes. Although the more sophisti-

cated version of our analysis allows to use indirection in 92% of the system classes, the

remaining 8% are some of the most heavily used classes in practice. We demonstrate this

in Table 6-1.. The table shows how many of the system classes actually used by different

Java applications are classified as NUI under our analysis of Section 6.4.2. The table also

shows how many of the used system classes have native methods themselves—this is a
197

lower bound on the number of NUI classes under any analysis. (We find the used classes

by dynamically observing the loaded classes, minus JVM bootstrap classes. We then run

our type-based analysis with the set of used classes as a universe set—any NUI dependen-

cies introduced by classes that were not loaded are ignored.)

Three of the applications (javac, jess, mpegaudio) are standard benchmarks from

SPEC JVM’98. (The rest of the SPEC JVM’98 programs yield practically identical num-

bers.) Unsurprisingly, these benchmarks are old and exercise few of the Java system

classes. Nevertheless, we still see that more than 62% of the system classes used can

employ user-level indirection. The next seven applications (antlr, bloat, chart, hsqldb,

jython, ps, xalan) are from the more modern DaCapo benchmark suite (version

beta050224). These applications are more realistic, yet they still do not exercise a large part

of the Java system libraries. We see that our analysis enables 66-85% of the system classes

used in the DaCapo benchmark programs to be safely indirected. For applications that exer-

cise more of the Java system classes, we examined the Sun demo application SwingSet2

and the JBits FPGA simulator by Xilinx. The inputs used for these two applications were

interactive and consisted of navigating extensively through the application’s GUI and per-

forming standard program actions (e.g., loading a simulator and an FPGA configuration

and performing simulation steps). Both of these applications exercise over 1400 Java

system classes. Only 21 and 16% (for JBits and SwingSet2, respectively) of these classes

were found to be NUI under our analysis: the rest can employ user-level indirection without

any special treatment. Finally, we include in our suite the RMIServer sample application

from Sun, in order to exercise networking system classes.
198

Thus, Table 6-1. confirms that native code is not a negligible part of real applica-

tions. Additionally, although the type analysis assumes the most general native code behav-

ior that respects its assumptions, it is still sufficient for enabling safe indirection for the

large majority of Java system classes used in actual applications. (Where safety is always

contingent on non-violation of our heuristic assumptions by the native code. We later dis-

cuss how we confirm that our approach is indeed safe for these executions.)

Table 6-1. Type-based analysis of used system classes

Application #classes #native %native #NUI %NUI
javac 167 21 13 62 37
jess 165 21 13 61 37

Mpeg audio 158 21 13 60 38
Antlr 209 21 10 67 32
Bloat 275 25 9 80 29
Chart 601 69 11 194 32

Hsqldb 295 26 9 83 28
Jython 263 20 8 76 29

Ps 175 18 10 60 34
Xalan 505 21 4 74 15

SwingSet2 1887 120 6 303 16
JBits 1442 124 9 306 21
RMI

Server
415 37 9 109 26

6.5.2 Accuracy of Type Information

Recall that one of the heuristic assumptions of our type-based analysis is that the

APIs to system functionality offer accurate type information. That is, we assume that native

code does not discover type information dynamically: if a native method signature refers to

type A, then it does not attempt to dynamically discover which particular subtype of A is the

actual type of the object and to use fields or methods specific to that subtype. It is certainly

common to pass instances of subtypes of A to the native method, but these should only be
199

accessed using the general interface defined by the supertype A. This assumption is in line

with good object-oriented design.

Although the assumption is soundly motivated, there are certainly exceptions in real

code. Nevertheless, such exceptions are fairly rare. To validate the assumption, we exam-

ined part of the implementation of native methods in Sun’s JDK 1.4.2. We searched for the

use of specific idioms throughout native method implementations and we examined in

detail all native methods (109 of them) accepting as argument or returning as result an

object with declared type java.lang.Object (the root of the Java inheritance hierarchy).

In our study, we observed few violations of our assumptions. The most important ones are:

• reflection functionality routinely circumvents the type system, as expected. Reflection

requires special handling in a user-level indirection environment.

• passing primitive arrays to native code is typically invisible to the type system. Several

native methods accept an Object reference but implicitly assume that they are really

passed a Java array of bytes or integers. This does not affect our analysis, as we consider

primitive types and their arrays to be non-indirectible by default.

• a handful of methods have poor type information and violate our type accuracy assump-

tions. For instance, method socketGetOption in class java.net.PlainSock-

etImpl takes an Object as argument, casts it into a java.net.InetAddress and

then sets one of its fields. (The addr field is set when the method returns the bind

address for its socket implementation.) Similarly, native method getPrivateKey in

class sun.awt.SunToolkit assumes that its Object argument is really a

java.awt.Component or a java.awt.MenuComponent and dynamically discovers

its actual type.

These exceptions, however, are very rare, in our experience. A quick search of all native

code in Java system libraries (for all platforms together) reveals just 69 uses of the JNI

function IsInstanceOf, which is the main way to do dynamic type discovery in native
200

code. In contrast, there are about 5900 uses of the Java counterpart, instanceof, in

plain Java code in the system libraries. (The total size of Java code in system libraries is

roughly twice the size of C/C++ native code, so the discrepancy is not justified by the

size alone.)

We, thus, feel that our heuristic assumption is well-justified. Even though the native

implementation is free to circumvent the type system, we believe that in practice it is rea-

sonable to assume that sufficient type information exists at the user/system boundary of

languages like Java to allow a heuristic but fairly good type-based analysis. Clearly the

analysis will not offer strict guarantees, but if it determines that a certain system class can

employ user-level indirection, it is highly likely to be right. We quantify this likelihood for

actual applications next.

6.5.3 Testing Correctness

Our type-based analysis attempts a heuristic solution to an unsolvable problem.

Recall that if we treat native code as an adversary, there are no safe assumptions we can

make, other than “all native code can directly access and modify all objects”. This assump-

tion invalidates every kind of user-level indirection. Nevertheless, in practice our heuristic,

type-based approach works well. (Our experience with J-Orchestra was what first sug-

gested to us that a type-based analysis is sufficient for ensuring safe indirection in practice.)

We dynamically analyzed the applications discussed above to confirm that the

results of our type-based analysis are rarely, if ever, violated in practice. We instrumented

a Java VM to observe all reads and writes to object fields performed inside native code.

Then we checked whether fields of a class that we did not consider NUI are ever read or

written inside native code. Of course, this experiment is just a test under specific inputs.
201

Our analysis results could still be violated by different program inputs. Nevertheless, given

the amount and variety of tested code and inputs, we have high confidence in our observa-

tions.

Almost all applications listed in Table 6-1. exhibit accesses to Java object fields

from inside native code. Some applications (especially the more graphics-intensive ones)

have native code access the fields of objects of more than 50 different classes. Throughout

all executions of the applications, we observed only two instances of access inside native

code to objects of types that were not classified as NUI. Both cases represented native code

implementation patterns in Sun’s JDK 1.4.2 that violated our type-accuracy assumptions.

Specifically, the first case was that of method populateGlyphVector in class

sun.awt.font.NativeFontWrapper (not a directly user-accessible class). The

method accepts a java.awt.font.GlyphVector parameter but implicitly assumes that

the true type of the parameter is sun.awt.font.StandardGlyphVector and proceeds

to set specific fields of that class. This is a classic case where information is not present in

the type signatures of native methods for no apparent good reason. (Upon further inspec-

tion, a couple of more methods in the same class also circumvent the type system for

GlyphVector arguments.)

The second case was that of the constructor of class sun.java2d.loops.Mask-

Fill. The constructor accepts a java.awt.Composite parameter but assumes its real

type is java.awt.AlphaComposite. Although this is again a bad practice of obscuring

information from the type system, at least in this case there is some code economy benefit

from doing so: the constructor is only called in native code using dynamic method discov-
202

ery (i.e., reflection at the native level). Eliding the specific type information allows the con-

structor to be called by the same code as some other similar constructors.

In summary, our experience confirms that a type-based analysis is quite safe in prac-

tice. Although no guarantees can be offered (as the assumptions can be violated by the

implementation of native methods) one can reasonably expect that the type analysis will be

safe. In the absence of complete information on the behavior of native code, our analysis is

a clear win. The alternatives are to either not support indirection for any system classes, or

to leave the user with no assistance in determining the correctness of applying indirection.

6.6 Conclusions

In recent years, the high and growing popularity of high-level languages such as Java

and C#, running on top of virtual machine-based runtime systems, has influenced the pro-

liferation of user-level indirection techniques for achieving systems-level extensibility. The

ability to transform a piece of software automatically and correctly by enhancing it with

useful functionality such as logging, persistence, distribution, and others, relieves the pro-

grammer from the necessity of performing tedious and error-prone tasks by hand. However,

the applicability of all such user-level indirection techniques is limited by the presence of

native code. This chapter has studied ways that identify these limitations, in order to enable

user-level indirection to be applicable as widely as possible. In the greater scheme, this

chapter has generalized one of the technical contributions of this dissertation to the domain

of user-indirection-based software systems, having made the following observations:
203

• Native code can invalidate any user-level indirection technique in the worst case.

Although this is a standard observation for program analysis experts, it is a topic often

completely ignored by implementors of user-level indirection mechanisms.

• A simple type-based analysis together with fairly general assumptions can help distin-

guish classes that are safely indirectible from those that are not. It is interesting that the

type information at the user/system boundary would be sufficient for this purpose. It is

the type system of modern OO languages such as Java that is directly responsible for

enabling this analysis. In other words, the analysis would be impossible at the user/sys-

tem boundary between C and Unix or Windows, in which most of the arguments to sys-

tem library calls are unstructured pointers and byte buffers.

• These findings have the potential to be of value in the design of future runtime systems

and environments, making the code running on top of them easier to indirect. Specifi-

cally, these findings pointed out the need for a runtime specification that would describe

how system classes interact with their native platform-specific libraries. Having such a

runtime specification, perhaps in the form of annotations of Java system classes, would

make user-level indirection techniques safe from the possibility of being invalidated by

native code.
204

	Chapter VI
	This chapter discusses how one of the technical contributions of this dissertation can be generalized to domains other than dist...
	6.1 Introduction
	In this chapter, we take a more general look at user-level indirection techniques and show that all different versions of the id...

	6.2 User-Level Indirection Techniques
	We use the name “user-level indirection” to describe any general technique that transparently interposes extra functionality to ...
	For instance, we may want to add indirection to all changes to the fields of an object for logging: we may want a permanent log ...
	What complicates user-level indirection is the existence of reusable core functionality in the form of system classes (a.k.a. st...
	In popular modern runtime systems, the majority of system class code is not special. Most of the Java system classes, for instan...
	The rewritten class would use the instrumented class types:
	(UP in the above code stands for “user package”.) Figure 6-1 shows the effects on the class hierarchies pictorially.

	6.3 Transparency Limitations
	The problems with any user-level indirection technique begin when a system class with native code needs to be instrumented. Nati...
	Native code cannot be instrumented without invalidating all the advantages of the user-level indirection approach. Changing nati...
	Having an application access opaque code immediately introduces limitations in user-level indirection approaches. Even if opaque...
	Often, however, the interactions of native code with user-level indirection are more subtle. In the Java system, native code can...
	The instrumented version of this class would be:
	It may at first seem that the UP.File class can use arbitrary user-level indirection for its non-native methods. Nevertheless, this is not the case. Imagine that the File class also has a non-native method newLine:
	It is not safe to indirect method newLine (e.g., to track its changes to fields of a File object) yet simply delegate method write. To see this, consider the re-written code:
	The problem is that any call to method write affects the origImpl_ object, while any call to method newLine affects the current ...
	The ability of Java native system code to directly access user-level state hinders many more user-level indirection tasks. For i...
	Furthermore, often constraints on the use of user-level indirection have to do with restrictions derived from the structure of t...
	6.3.1 Beyond Java Conventions: Native Code in .NET
	For the purposes of our discussion, the .NET and Java technologies are almost equivalent, with .NET being slightly more restrict...
	At the language level, the annotation [MethodImplAttribute(MethodImplOptions.InternalCall)] specifies external methods that are ...

	6.4 Weak Assumptions of J-Orchestra Classification
	To determine which program actions can be safely indirected, we would need to analyze the implementation of native methods. Sinc...
	6.4.1 Type-Based Analysis + Weak Assumptions
	Recall that the majority (~97%) of Java system classes have no native methods. Such classes encode useful reusable libraries and...
	In Section 6.2 we distinguished several different kinds of events typically captured by user-level indirection: access to fields...
	Here we abstract away the specifics of the J-Orchestra approach. It makes two main heuristic assumptions regarding system classes:
	These assumptions generally hold true with few exceptions. The first assumption does not hold, for instance, for classes in the ...
	The first assumption essentially states that the JVM is not allowed to handle different types of objects specially when the obje...
	With the above two assumptions, we can perform a classification of Java system classes with respect to whether they can employ u...
	(Just like in Chapter IV, the above rules represent the essence of the analysis but are not complete. For instance, they do not ...
	Rule 1 above is justified because no user-indirection technique can guarantee to capture all field updates of an instance of a class with a native method. The native method can always perform updates without any indirection.
	Rule 2 is justified with a similar argument: if an object can be passed to native code, native code can alias it and (either dur...
	Rule 3 is analogous to Rule 2 but for fields: native code can access any object transitively reachable from an object that leaks to native code.
	Rule 4 is justified by the specifics of the J-Orchestra user-level indirection scheme. We saw an instance of this restriction in...
	These rules enable user-level indirection to be used safely for many Java system classes. Specifically, 37% of the Java system classes are classified as having no dependencies to native code and, thus, being able to employ user-level indirection safely.
	Still, however, these rules are too conservative, as 63% of the system classes are deemed non-indirectible. Nevertheless, the ru...
	Next, we show one important general-purpose weakening of the rules. Rules 2 and 4 can be weakened significantly if we are allowe...

	6.4.2 More Sophisticated Type-Based Analysis
	The rules of the previous section are conservative because they assume that all code in system packages (be it native or not) is...
	Under this assumption, we can use a weaker version of Rules 2 and 4.
	The weaker rules push the limits of user-level indirection much further: fewer than 8% of the Java system classes are classified...
	We already discussed how the new version of Rule 2 is a result of instrumenting the bytecode of bytecode-only NUI classes. The w...
	To use the weaker version of Rule 4, we need to make sure that every system class C that cannot employ user-level indirection tr...
	An example application of this technique is shown in Figure 6-2(a). The example class File of Section 6.3 is now shown with a no...
	The effects of the transformation on the example class hierarchy are shown pictorially in Figure 6-3.

	6.5 Validating The Assumptions and Analysis
	We validate the assumptions and analysis of the previous section in three ways: first we measure the impact of our type classifi...
	6.5.1 Impact on Real Applications
	An interesting question is to quantify the impact of the type-based analysis for real applications, as opposed to the set of all...
	Three of the applications (javac, jess, mpegaudio) are standard benchmarks from SPEC JVM’98. (The rest of the SPEC JVM’98 progra...
	Thus, Table 6-1. confirms that native code is not a negligible part of real applications. Additionally, although the type analys...
	Table 6-1. Type-based analysis of used system classes

	6.5.2 Accuracy of Type Information
	Recall that one of the heuristic assumptions of our type-based analysis is that the APIs to system functionality offer accurate ...
	Although the assumption is soundly motivated, there are certainly exceptions in real code. Nevertheless, such exceptions are fai...
	We, thus, feel that our heuristic assumption is well-justified. Even though the native implementation is free to circumvent the ...

	6.5.3 Testing Correctness
	Our type-based analysis attempts a heuristic solution to an unsolvable problem. Recall that if we treat native code as an advers...
	We dynamically analyzed the applications discussed above to confirm that the results of our type-based analysis are rarely, if e...
	Almost all applications listed in Table 6-1. exhibit accesses to Java object fields from inside native code. Some applications (...
	Specifically, the first case was that of method populateGlyphVector in class sun.awt.font.NativeFontWrapper (not a directly user...
	The second case was that of the constructor of class sun.java2d.loops.MaskFill. The constructor accepts a java.awt.Composite par...
	In summary, our experience confirms that a type-based analysis is quite safe in practice. Although no guarantees can be offered ...

	6.6 Conclusions
	In recent years, the high and growing popularity of high-level languages such as Java and C#, running on top of virtual machine-...

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /KOR <FEFFd5a5c0c1b41c0020c778c1c40020d488c9c8c7440020c5bbae300020c704d5740020ace0d574c0c1b3c4c7580020c774bbf8c9c0b97c0020c0acc6a9d558c5ec00200050004400460020bb38c11cb97c0020b9ccb4e4b824ba740020c7740020c124c815c7440020c0acc6a9d558c2edc2dcc624002e0020c7740020c124c815c7440020c0acc6a9d558c5ec0020b9ccb4e000200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe7f6e521b5efa76840020005000440046002065876863ff0c5c065305542b66f49ad8768456fe50cf52068fa87387ff0c4ee563d09ad8625353708d2891cf30028be5002000500044004600206587686353ef4ee54f7f752800200020004100630072006f00620061007400204e0e002000520065006100640065007200200035002e00300020548c66f49ad87248672c62535f003002>
 /CHT <FEFF4f7f752890194e9b8a2d5b9a5efa7acb76840020005000440046002065874ef65305542b8f039ad876845f7150cf89e367905ea6ff0c4fbf65bc63d066075217537054c18cea3002005000440046002065874ef653ef4ee54f7f75280020004100630072006f0062006100740020548c002000520065006100640065007200200035002e0030002053ca66f465b07248672c4f86958b555f3002>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

