
Client Insourcing: Bringing Ops In-House for Seamless
Re-engineering of Full-Stack JavaScript Applications

Kijin An
Software Innovation Lab, Virginia Tech

ankijin@vt.edu

Eli Tilevich
Software Innovation Lab, Virginia Tech

tilevich@cs.vt.edu

ABSTRACT
Modern web applications are distributed across a browser-based
client and a cloud-based server. Distribution provides access to re-
mote resources, accessed over the web and shared by clients. Much
of the complexity of inspecting and evolving web applications lies
in their distributed nature. Also, the majority of mature program
analysis and transformation tools works only with centralized soft-
ware. Inspired by business process re-engineering, in which remote
operations can be insourced back in house to restructure and out-
source anew, we bring an analogous approach to the re-engineering
of web applications. Our target domain are full-stack JavaScript
applications that implement both the client and server code in
this language. Our approach is enabled by Client Insourcing, a
novel automatic refactoring that creates a semantically equivalent
centralized version of a distributed application. This centralized
version is then inspected, modified, and redistributed to meet new
requirements. After describing the design and implementation of
Client Insourcing, we demonstrate its utility and value in address-
ing changes in security, reliability, and performance requirements.
By reducing the complexity of the non-trivial program inspection
and evolution tasks performed to meet these requirements, our
approach can become a helpful aid in the re-engineering of web
applications in this domain.

CCS CONCEPTS
• Software and its engineering→General programming lan-
guages; • Social and professional topics→ History of program-
ming languages.

KEYWORDS
Software Engineering, Re-Engineering,WebApplications, JavaScript,
Mobile Apps, Program Analysis & Transformation, Middleware

ACM Reference Format:
Kijin An and Eli Tilevich. 2020. Client Insourcing: Bringing Ops In-House
for Seamless Re-engineering of Full-Stack JavaScript Applications. In Pro-
ceedings of ACM Conference (Conference’17). ACM, New York, NY, USA,
12 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
Developers often need to re-engineer web applications to address
requirement changes made only after deployment and usage. Re-
engineering captures evolutionary modifications that range from
maintenance tasks to architecture-level changes [4]. A re-engineer-
ing effort can involve adding a major feature, protecting against

Conference’17, July 2017, Washington, DC, USA
2020. ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

security vulnerabilities, or removing performance bottlenecks. Mod-
ifying existing web applications requires complex program analysis
and modification operations that are hard to perform and even
harder to verify. One of the main causes of this complexity is the
distributed execution model of web applications.

In this model, a web application’s execution flows across the
separate address spaces of its client and server parts. All remote
interactions are typically implemented by means of middleware
libraries. As a result, the control flow of web applications can be
highly complex, with their business and communication logic inter-
mingled. That complexity hinders all tracing and debugging tasks.
In addition, distributed execution over the network makes web
applications vulnerable to partial failure and non-determinism.

Program analysis is central to software comprehension. The web
is predominated by dynamic languages, which defeat static analysis
techniques. Hence, to comprehend programs written in dynamic
languages, such as JavaScript, requires dynamic analysis. Software
debugging hinges on the ability to repeat executions deterministi-
cally [22, 27]. However, many web applications are stateful, with
certain client server interactions changing the server’s state. It can
be quite laborious and error-prone to restore the original state to
be able to repeat a remote buggy operation [14, 21, 30]. All in all,
it is the presence of both distribution and stateful execution that
makes it so hard to trace and modify web applications.

In this paper, we draw inspiration from business process re-
engineering that can bring remote operations in-house via insourc-
ing. Once the insourced operations are redesigned and restructured,
some of them can be outsourced anew. As argued above, the notion
of local operations being easier to analyze and restructure than
remote ones equally applies to web applications.

Specifically, the approach presented herein first automatically
transforms a web application, comprising a client communicating
with a remote server, to run as a centralized program. The resulting
centralized variant retains to a large degree the semantics of the
original application, but replaces all remote operations with local
ones. The centralized variant becomes easier to analyze and modify
not only because it has no remote operations, but also because
the majority of program analysis and transformation approaches
and tools have been developed for centralized programs. After the
centralized variant is modified to address the new requirements
and the modifications have been verified, it is then redistributed
again into a re-engineered distributed web application. Our target
domain are web applications written entirely in JavaScript, both
the client and server parts; such applications are referred to as full-
stack JavaScript applications. We take advantage of the monolingual
nature of such applications to streamline our implementation.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Conference’17, July 2017, Washington, DC, USA Kijin An and Eli Tilevich

In a web application, clients communicate with the server by
means of the HTTP protocol, typically in a request/response pat-
tern. However, from the implementation perspective, the HTTP
functionality can be supported by a variety of middleware libraries
with vastly dissimilar APIs [25]. To be able to identify and replace
the HTTP communication functionality, a web application may
need to be executed multiple times under different inputs. However,
some remote interactions cause the server to change its state. For
example, a client can pass a parameter to the server, which would
store that parameter in the server-side database. In addition, the
non-database state can change as well (e.g., adding the parameter to
the JavaScript list of displayed items). In different states, the server
may respond dissimilarly, thus making it impossible to identify
HTTP middleware API calls, so they can be correctly replaced with
corresponding local calls of the insourced functionalities.

The focal point of our approach is Client Insourcing, a new auto-
matic refactoring that undoes distribution by gluing the local and
remote parts of a distributed application together. Our approach
can precisely identify the functionality of HTTP middleware—
irrespective of its API and in the presence of stateful operations—by
combining program instrumentation, profiling, and fuzzing in a
novel way. Our ideas are realized in our reference implementation—
Java Script Remote Client Insourcing (JS-RCI). We evaluate our
approach’s value, correctness, and utility by applying JS-RCI to
re-engineer a set of real-world web applications.

The contribution of this paper is three-fold:

(1) We introduce a technique that identifies the HTTP middle-
ware functions used to send and receive HTTP commands
in a full-stack JavaScript application. This technique elimi-
nates the need to specialize our approach for the multitude
of HTTP middleware libraries and their APIs.

(2) We create Client Insourcing—a novel automatic refactoring
that creates a semantically equivalent centralized version of a
distributed application by integrating remote functionalities
with local code and replacing middleware communication
with direct function calls. This refactoring moves to the
client not only the server’s business logic implemented in
JavaScript, but also the referenced database functionality,
including the relational database schema in SQL.

(3) We evaluate the wide applicability of Client Insourcing in
re-engineering real-world full-stack JavaScript applications.
Specifically, we apply our approach to re-engineer 10 sub-
ject distributed applications, both two-tier and three-tier
(including the database), to meet new security, reliability,
and performance requirements.

The rest of this paper is structured as follows. Section 2 motivates
and summarizes our approach. Sections 3 and 4 present the design
and implementation specifics of the Client Insourcing refactoring,
respectively. Section 5 reports on how we applied Client Insourcing
to streamline three representative re-engineering scenarios of web
applications. Section 6 discusses various applicability issues per-
taining to our approach. Section 7 compares our approach with the
related state of the art. Section 8 outlines future work directions
and presents concluding remarks.

2 RE-ENGINEERINGWEB APPLICATIONS
Developers often find themselves having to re-engineer an actively
used application to ensure its continued utility, reliability, and safety.
When interacting with an application in real-world settings, users
may discover and report inefficiencies and imperfections. Users may
request that new features be added to an application to increase its
utility. As users discover existing faults and request new features,
developers can decide to re-engineer the application to deliver
an improved version to the users. Re-engineering modifications
can range from routine maintenance and evolution tasks to major
architectural transformations. Next, we demonstrate two examples
of re-engineering full-stack JavaScript applications.

2.1 Example Apps
The code snippets in Figure 1 come from two third-party full-stack
JavaScript applications realty-rest1 (left) and recipebook2 (right),
with both of their client and server parts shown. Both applications
rely on the network for their client and server parts to communicate
with each other. The primary user base of realty-rest are real-estate
brokers, licensed professionals that sell and purchase various prop-
erties on behalf of their clients. Due to the nature of their business
operations, real-estate brokers lead highly mobile professional lives,
moving from location to location to show properties to potential
buyers. Hence, as a mobile app, realty-rest is well-aligned with
the needs of its users, who rely on the app to be readily available,
responsive, and reliable. To start using the app, a user selects a prop-
erty from the list of all properties registered with the system. The
selected property can then be updated or deleted, with the app’s
client then sending HTTP commands to the server, (e.g., DELETE
/property/favorite to remove a property from the list of
favorites, etc). The HTTP commands are wrapped into distribu-
tion middleware (angular2/http) with JavaScript API. Specifically,
the client invokes HTTP.delete passing a URL parameter, with angu-
lar2/http delivering the invocation to the server and calling function
unfavorite there. This function finds and deletes the passed property,
returning the updated list of favorites to the client. angular2/http
marshals both property and the result-to-return as JSON-encoded
messages. The client unmarshals the returned result to update the
GUI. The recipebook maintains a list of cooking recipes at the server,
so different clients could retrieve and update the maintained recipes.
recipebook uses a different middleware library to wrap its HTTP
commands—angularJS, whose JavaScript API differs from that of
angular2/http. While realty-rest is a two-tier app (JavaScript client
and sever), recipebook is three-tier (adding a database tier).

Next, we present examples of how realty-rest and recipebook may
need to be re-engineered to address new requirements.

2.2 Adapting to Disconnected Operation
Examining the history of realty-rest reveals that some of this app’s
functionalities have been moved between its client and server sites3.
Since scant documentation makes it hard to ascertain the reason
for these moves, we next discuss a typical new feature that enables
distributed apps to continue operation in the absence of a network

1realty-rest (https://github.com/ccoenraets/ionic2-realty-rest)
2recipebook (https://github.com/9bitStudios/recipebook)
3ionic2-realty (https://github.com/ccoenraets/ionic2-realty)

https://github.com/ccoenraets/ionic2-realty-rest
https://github.com/ccoenraets/ionic2-realty

Client Insourcing Conference’17, July 2017, Washington, DC, USA

//SERVER:server.js
app.delete('/properties/favorites/'
, properties.unfavorite);
//server/properties.js
var favorites = require('./property').favs;
function unfavorite(request, response) {
 var id = request.body.id;//unMarshalling
 for (var i=0; i<favorites.length; i++){
 if (favorites[i].id == id){
 favorites.splice(i, 1);
 break;}}
 response.json(favorites)//Marshalling
}
//SERVER: server/property.js
exports.data = [{id: 1,...}];
exports.favs = [{id:2,…},…,{…}];

POST
/properties/unf
avorite
HOST ..
[{"id":1,"city"
:..}]

HTTP/1.1 200 OK
Content-t: json
Content-Len: …
[{"id":2,"city"…]

1)HTTP Request
From Client

2)HTTP Response
From Server

//CLIENT: angular/…/RecipeControllers.js
function init(){ //marshaling
 recipe.getRecipe($routeParams.id)
 .then(function(data){//unmarshaling
 $scope.recipe = data;
 appSync.prepForBroadcast(…);},
 function(error){…}
);
}

GET
/api/recipes/1
HOST ..
User-Agent:..

HTTP/1.1 200 OK
Content-t:json
Content-Len:1901
[{"id":1,"name"
:..}]

Client Input JSCode
Server Output

Performance Bottleneck
Remote Code to be Insourced

//SERVER: api/recipes.js
var db = require('../utilities/SQL');
var Auth = require('../utilities/Auth');
app.get('/api/recipes/:id', Auth.BAuth,
 function(req,res){ //unMarshalling
 db.query('SELECT * FROM recipes
 WHERE id = ${req.params.id}',
 function (results) {
 if(error)
 res.status(500).send({'Error'});
 else {
 var data = [];
 results.forEach(function(item) {
 data.push({'id':item['id'],
 'name':item['name']})
 });
 res.json(data); //Marshalling
 }});//Query Invocation
});

1)HTTP Request
From Client

2)HTTP Response
From Server

DELETE
/properties/fav
orite
HOST ..
[{"id":1,"city"
:..}]

//CLIENT: app/../property-details.ts
unfavorite(event, property){
 //Marshalling
this.pServ.unfavorite(property)
.subscribe(favorite //unMarshalling
 =>{ this.favorites =favorites;});
}

//CLIENT: angular/…/RecipeCtrls.js
function init(){ //marshalling
 recipe.getRecipe($rParams.id)
 .then(function(data){
 //unmarshalling
 $scope.recipe = data;
 appSync.prepForBroadcast(…);},
 function(error){…}
);
}

HTTP/1.1 200 OK
Content-t:json
Content-Len:…
[{"id":1,"name"
:..}]

1)HTTP Request
From Client

2)HTTP Response
From Server

GET
/api/recipes/1
HOST ..
User-Agent:..

Client parameter
Server Return Performance BottleneckJSCode

Figure 1: Motivating Distributed Apps realty-rest/recipebook and highlighted Client-/Server-side code

connection. In particular, if users need to operate a mobile app in
locations with limited or intermittent network connectivity, the
app has to deliver its core business functionality without relying
on any remote services. To enable such offline operations, several
strategies have been proposed [28]. One such strategy is replication,
which replicates a remote component locally, so the local copy
acts as a proxy of its remote counterpart. A consistency protocol
keeps both copies in sync. A naïve strategy for replicating a remote
functionality would be just to copy its complete source files to the
client, adapting the copied code by hand as necessary. However,
such complete copying unnecessary replicates functionalities, some
of which become “dead code.”

2.3 Enhancing Privacy
Enterprises often find themselves in need to enhance user privacy
in a released application. Consider a request to keep the realty-rest
user’s property browsing histories private from other real-estate
brokers due to business competition reasons. To ensure user pri-
vacy, certain server-side functionalities (e.g., Customer Relationship
Management (CRM)) can be redistributed to a special server that re-
quires authentication before giving access to sensitive information.
In fact, realty-rest indeed has gone through a similar modification,
as evidenced by the existence of realty-salesforce4, which provides
the same business functionality, but takes advantage of third-party
trusted identification and security features. To re-engineer realty-
rest into realty-salesforce, programmers would have to identify and
migrate the relevant functionality to another server, modifying the
client to communicate with different servers (regular and secure).

2.4 Improving Performance
If a substantial subset of users becomes unsatisfied with application
performance, programmers may be asked to identify and remove
performance bottlenecks. The left side of Figure 1 displays the
server function unfavorite, which contains a known performance
bottleneck, rooted in the usage of favorite.splice(i,1), an inefficient
API for removing collection items. In fact, an actual pull request5
states that Array.splice()’s performance is between 1.5 and 10 times
slower than that of a customized implementation, comprising a for

loop iteration and Array.pop(). To be able to identify this particular
4realty-salesforce (https://github.com/ccoenraets/ionic2-realty-salesforce)
5Perfective Modification for Array.splice() (https://github.com/nodejs/node/pull/20453)

source of the experienced performance bottleneck, programmers
either would have to be intimately familiar with the peculiarities of
JavaScript APIs or to rely on detailed execution profiling, typically
available only for centralized programs. recipebook also contains a
similarly inefficient forEach loop6. Notice that the distributed con-
trol flow that invokes these inefficient functions, starting from the
graphical actions at the client, traversing the network through lay-
ers and layers of middleware, and finally executing the functions
at the server. The invocation flows can be interrupted by network
volatility and authentication failures. Hence, it is both complex
control flows and possible failures that make it hard to isolate the
performance of a web application’s function.

2.5 Client Insourcing to the Rescue
Next, we explain how Client Insourcing can facilitate the re-engi -
neering tasks outlined above.
Redistribution Client Insourcing creates a redistributable central-
ized variant devoid of the unnecessary middleware functionality.
Once the variant is modified, it can be redistributed automatically.
Numerous complementary research efforts have focused on au-
tomating the process of distributing centralized applications, with
automatic transformation tools released to the public [17, 19, 48].
Because the majority of existing refactoring techniques are de-
signed for regular centralized applications, they can be applied
at will to centralized variants. For example, the Extract Function
refactoring can be used to separate some privacy-sensitive code
within a function into a separate function to be executed in a dif-
ferent environment. After the sensitive code portions are separated
into their own encapsulation units, the resulting program can be
redistributed, placing the sensitive units to execute in separate
privacy-enforcing server environments.
Isolated ProfilingWhat if business logic can be precisely isolated
from middleware and distribution-related functionality? Then the
isolated code can be easily profiled to ascertain its performance
characteristics and identify any performance bottlenecks. Client
Insourcing enables such isolated profiling by removing middleware
and gluing the remote parts of a web application together.
Offline Operation Client Insourcing can enable offline operation,
without copying any unnecessary code from the server to the client,

6A modification request to remove this inefficiency appears here: https://github.com/
elastic/apm-agent-nodejs/pull/1275

https://github.com/ccoenraets/ionic2-realty-salesforce
https://github.com/nodejs/node/pull/20453
https://github.com/elastic/apm-agent-nodejs/pull/1275
https://github.com/elastic/apm-agent-nodejs/pull/1275

Conference’17, July 2017, Washington, DC, USA Kijin An and Eli Tilevich

by replicating only the remote functionality’s subset needed at the
client. The replicated subset can include both JavaScript code and
data persisted in a database.

3 DESIGN & REFERENCE IMPLEMENTATION
In this section, we explain our design options and then detail the
specifics of our implementation of the Client Insourcing refactoring.

3.1 Design Overview
We give an overview of the main design decisions behind Client
Insourcing via specific examples. Consider the task of moving the
server functionalities of DEL /favorite or GET /recipe/
:id to execute at the clients (Figure 1). Instead of invoking these
functions via middleware that handles communication, partial fail-
ures, and authentication, they would become regular local functions
to be called directly. Hence, all middleware-based code would have
to be replaced with direct function calls.

Consider the service DEL /favorite, whose business logic
is encapsulated within the server-side unfavorite function. We want
to insource unfavorite so it can be called as a regular local function.
However, we cannot simply move this function from the server to
the client, as its business logic and middleware functionality are in-
termingled. In addition, the exports.favorite array, referenced in the
body of unfavorite, is declared externally. If unfavorite and exports.

favorite are notmoved together, invoking the function locally would
raise an error. Hence, we must move all the referenced externally
declared program elements to the client as well. JS-RCI identifies the
exact boundaries of the server functionality to insource. However,
some dependent business logic of GET /recipe/:id is not con-
fined to JavaScript code only. JS-RCI also transparently insources
code that persists data in a relational database.

//app/../property-details.js
import {j5ga2} from './j5ga2';
unfavorite { const IS_SYNC = false;
 if (IS_SYNC) {//synchronous call
 this.favorites = j5ga2(property.id);
 return;
 } //default: non-blocking call
 new Promise((resolve,reject) => {
 var out_j5ga2 = j5ga2(property.id);
 resolve(out_j5ga2);
 }).then(res => this.favorites = res);
}

//SERVER:server.js
app.delete('/properties/favorites/'
, properties.unfavorite);
//server/properties.js
var favorites = require('./property').favs;
function unfavorite(request, response) {
 var id = request.body.id;//unMarshaling
 for (var i = 0; i < favorites.length; i++){
 if (favorites[i].id == id){
 favorites.splice(i, 1);
 break;}}
 response.json(favorites)//Marshaling
}
//SERVER: server/property.js
exports.data = [{id: 1,...}];
exports.favs = [{id:2,…},…,{…}];

//CLIENT: app/../property-details.ts
unfavorite(event, property){//Marshaling

this.pServ.unfavorite(property)
.subscribe(favorite //unMarshaling

 =>{ this.favorites =favorites;});
}

POST
/properties/unf
avorite
HOST ..
[{"id":1,"city"
:..}]

HTTP/1.1 200 OK
Content-t: json
Content-Len: 1945
[{"id":2,"city"…]

1)HTTP Request
From Client2)HTTP Response

From Server

//app/../property-details.js
import {j5ga2} from './j5ga2';
unfavorite { const IS_SYNC = false;
 if (IS_SYNC) {//synchronous local call
 this.favorites = j5ga2(property.id);
 return;} //default: non-blocking call
 new Promise((resolve,reject) => {
 var out_j5ga2 = j5ga2(property.id);
 resolve(out_j5ga2);
 }).then(res => this.favorites = res);}

//CLIENT: angular/…/RecipeControllers.js
function init(){ //marshaling
 recipe.getRecipe($routeParams.id)
 .then(function(data){//unmarshaling
 $scope.recipe = data;
 appSync.prepForBroadcast(…);},
 function(error){…}
);
}

GET
/api/recipes/1
HOST ..
User-Agent:..

HTTP/1.1 200 OK
Content-t:json
Content-Len:1901
[{"id":1,"name"
:..}]

Client Input JSCode
Server Output

Performance Bottleneck
Remote Code to be Insourced

//SERVER: api/recipes.js
var db = require('../utilities/SQL');
var Auth = require('../utilities/Auth');
app.get('/api/recipes/:id', Auth.BAuth,
 function(req,res){
 db.query('SELECT * FROM recipes
 WHERE id = ${req.params.id}',//unMarshaling
 function (results) {
 if(error)
 res.status(500).send({'Error..'});
 else {
 var data = [];
 results.forEach(function(item, index) {
 data.push(
 {'id':item['id'],'name':item['name']})
 });
 res.json(data); //Marshaling
 }});//Query Invocation
});

1)HTTP Request
From Client

2)HTTP Response
From Server

//app/../b8f9a.js

exports.favs = [{id: 1,city:'B,..}];

//app/../j5ga2.js

var favorites=require('./b8f9a').favs;

export function j5ga2(input){
 var tmpv1 = input;

 var id = tmpv1;

 for (var i=0; i< favorites.length;

i++){… favorites.splice(i, 1);…}

 tmpv0 = favorites;

 var output = tmpv0;

 return output;}//extracted function

Figure 2: Transformed and generated code to insource a functional-
ity DELETE /properties/favorite in realty-rest app

3.2 Identifying the Code to Insource
Next, we present our solution for automating the steps above, real-
ized as the Client Insourcing Refactoring. One of our design goals
was to make sure that this domain-specific refactoring is not too
burdensome for the programmer. We assume that the refactored
applications come with a set of standard test cases, and that the ap-
plication of these cases is automated. It is during the application of
such test cases, when JS-RCI detects the marshalling/unmarshalling
points of the functionality to insource at the client invocations. In-
tuitively, the purpose of detecting these marshalling/unmarshalling
points in the client code is to identify the entry/exit execution points

of the remote functionality to insource. These points correspond
to the locations in the client code, at which remote invocation pa-
rameters are marshalled to be transferred across the network, and
the remote invocation’s results are unmarshalled to be used in the
subsequent client execution.

To extract all the server code of the remote functionality to in-
source, JS-RCI uses symbolic execution. We assume that the server
is implemented in Node.js and define the execution rules as per-
taining to this framework’s architectural conventions. First of all,
JS-RCI normalizes server code to facilitate to detect entry/exit exe-
cution points and extract the executed JavaScript code. To that end,
JS-RCI additionally introduce temporal local variables and makes
JavaScript Statement to have a single operation (i.e., tmpv0 and tmpv1

in Figure 2). For symbolic execution, we use z3 [7], parameterized
with our own set of rules and facts. For example, the profiled param-
eters and return results of a remote functionality are added as new
z3 facts. Figure 4 shows the overall process of Client Insourcing.

3.3 Exploiting Asynchrony
Notice that in a distributed client-server application, the remotely
invoked functionalities running at the server, and the client code in-
voking these functionalities, run in separate address spaces that are
not shared (unless the application runs on top of some distributed
shared memory system [32], which is not a standard option for
web applications). The parameters passed to remote invocations
and the invocation results are copied between the client and the
server heaps, always creating a new copy rather than mutating any
existing program state. Hence, in a distributed application that uses
application-layer middleware (e.g., HTTPClient), the client and the
server parts share no mutable state (See Figure 3). Following this ob-
servation, one can conclude that the client and the server parts have
no non-middleware dependencies between them. That is, in such dis-
tributed applications, the only way for the client code to invoke
a server-side functionality is by making a remote invocation via
middleware. To maintain this semantics, our design also provides a
single entry point to invoke the insourced functionality, a function
previously invoked via a middleware API call at the server. It is
these insights that make it possible to safely execute the insourced
code asynchronously, without any need for synchronization! Our
design of Client Insourcing takes advantage of these insights by
executing the insourced functionality asynchronously by default. In
particular, the generated code makes use of the Promise framework
that exposes asynchronous execution via a standardized interface
that uses the programming idioms congruent with the design of
JavaScript.

For a specific example, consider the code listing in Figure 2 that
shows the generated client code for DEL /favorite. Notice that
the default invocation model for this insourced function is asyn-
chronous, a runtime behavior that is put into effect by creating a
new instance of a Promise closure. Once the asynchronous execution
of j5ga2 completes, the Promise framework invokes the callback
resolve to handle the successful execution. Since our design aims
for versatility, we provide an option for the insourced functionality
to be invoked synchronously as a regular blocking local call. This
behavior can be put into effect by setting the value of the boolean

variable IS_SYNC to true.

Client Insourcing Conference’17, July 2017, Washington, DC, USA

[Client’s Address Space]

[Server’s Address Space]

Client Part’s
Set of
References

Server Part’s
Set of
References

Set of Reachable States
(Client)

Set of Reachable States
(Server)

Middleware

After Client Insourcing
[Client’s Address Space]

No Shared Mutable State

Distributed App

Centralized
Ver.’s Set of
References

Set of Reachable States
(Insourced Part)

Set of Reachable States
(Original Client)

Figure 3: Reachable States between Server and Client parts

4 IMPLEMENTATION SPECIFICS
In this section, we provide some additional details pertaining to
our implementation choices.

4.1 Detecting Marshalling Points in
Client/Server Program

In a full-stack JavaScript application, the client interacts with the
server in the request/response pattern, exchanging data in JSON or
XML formats. Client Insourcing determines which middleware API
calls send and receive the HTTP protocol commands through the
following automatic and application-agnostic procedure.

First, the round-trip traffic of the client/server interactions is
recorded. Then, JS-RCI parses the request/response data to obtain
the deserialized values of client parameters and server return. To
that end, JS-RCI uses the GoReplay [13] tool to capture live network
traffic, not only to record/replay the HTTP interactions, but also
to extract the used HTTP commands. To capture business logic
(as compared to fault handling logic), JS-RCI only processes the
responses with the status code of 400 (i.e., successful execution).

Next, JS-RCI replays the recorded round-trip execution that in-
vokes the remote functionality to insource. Both the client and
server parts are dynamically instrumented to keep track of values
for (1) arguments and returns of the function invocations (2) read-
ing and writing variables. JS-RCI keeps comparing the values of
the invocations and variables to identify the ones equal to client
parameter and server return. To instrument the invocations and
variable accesses, JS-RCI uses the Jalangi2 callback APIs [40].

To identify the entry points at the server, JS-RCI keeps comparing
the values for recorded client parameter of the remote functionality.
That is, the parameter has been unmarshalled and is about to be
used. To identify the exit point at the server, JS-RCI follows a similar
procedure, but looks for the value recorded as the server return of
executing the remote functionality. Finding an equal value read or
written determines the exit point of the remote functionality. That
is, the return value is about to be marshalled and sent across the
network to the client. One may wonder: how does our approach
determine that the equality comparison indeed identifies the entry
and exit points of the remote functionality rather than some inter-
mediate values that also happen to be equal to the values of client
parameter and server return? To identify the entry and exit points
at the server, our analysis identifies the first instance of the client
parameter equality and the last instance of the server return value
equality. Unlike its server-side logic, the analysis identifies the last

instance of the client parameter equality and the first instance of
the server return value equality.

4.1.1 Fuzzing Request/Response Messages. Even with these ar-
rangements in place, it is still possible to misidentify the correct
entry and exit points, particularly if the parameters or return results
are primitive types, such as built-in numbers or strings (i.e., 0 or 1
values of id in findById service). To prevent such misidentification,
JS-RCI populates the original round-trip content by padding the
HTTP header and body data with random bits. A fuzzing dictionary
is also applied to fuzzable primitives types: string has the possible
values “JSRCIStr” and integer has the possible values from “9,000”
and to “1,0000.” For instance, JS-RCI encodes “1” as “9,001”. For a
service without a client parameter (i.e., findAll type services), JS-
RCI fuzzes the request with “JSRCIStr” so JS-RCI can locate the
function block’s begin as the entry point.

4.1.2 Achieving the Idempotency for Record/Replay Executions. De-
spite the stateless nature of the RESTful architecture that guides the
design of WWW, few realistic web applications are truly stateless.
In fact, every HTTP request can change the server’s state. These
changes hinder the precision of our detection of the server’s mar-
shalling points, introducing false-negatives. Even HTTP traffic were
replied with identical requests, a stateful server is likely to behave
differently in 1) marshalling its response output or 2) entering the
remote functionality through a different point (e.g., if a visited entry
is deleted, it cannot be revisited).

Testingweb applications deterministically requires that test cases
be isolated [14, 29]. Otherwise, the same test case can yield dissimi-
lar results when executed with the same input. Restoring the server
to its original state by hand would be expensive in realistic web ap-
plications, requiring a manual reset of the relevant database tables
and a fresh restart of the server. In contrast, JS-RCI fully automates
the process to achieve the idempotent execution of all HTTP re-
quests. To maintain the original server’s state, JS-RCI interleaves an
automatically generated restore operation, run between all succes-
sive record or replay executions. Similarly to a prior approach that
checkpoints PHP web application ([14]), JS-RCI initiates the restore
operation with a special HTTP request. Similarly to manipulating
fuzzed request messages, JS-RCI generates the restore operations by
enhancing original HTTP requests with the new “JSRCIRestore” pa-
rameter. To be able to restore the server state, JS-RCI first saves the
initial values of all server’s global variables, so they can be restored
on demand. Also, as part of its restore operation, JS-RCI executes
transaction control operations between every SQL invocations, so
the database rollbacks to its previous state.

As its specific implementation strategy, JS-RCI uses jalangi2,
whose shadow execution instruments the original JavaScript code,
so the server events can be hooked dynamically. First, JS-RCI detects
all (1) post declarations of global variables (д) and (2) pre/post Call
Expressions of SQL statements (f). Then, it uses two customized
shadow executions at (1), д′ = store(д) to serialize and store the
state of all global variables and restore(д,д′) to reset all global
variables to their original values, hooked by restore HTTP com-
mands. To restore the database state, JS-RCI uses shadow execution
invoke(f , sql_stat), which invokes Call Expression of a SQL state-
ment f with a new SQL clause as the argument. invoke(f ,"Start
TRANSACTION") and invoke(f ,"ROLLBACK") are executed at pre

Conference’17, July 2017, Washington, DC, USA Kijin An and Eli Tilevich

Position
for Remote
Invocation

Extracted
Remote

Functionality

Equivalent
Centralized Code

AST Rewriter

Dependency
Analysis(z3)

REQ/RES
Fuzzer

Record
REQ/RES

Entry/Exit
Points

Fuzzing
HTTP Cmd

Record & Replay
REQ/RES traffics

Restoring
Init State

Re-Engineering

Normalization &
Instrumentation

Client

Server

Server

Client

Full-Stack
JS App

REQ/RES
traffics

Client
JS Code

Server
JS Code

Database-dep Code

Figure 4: Overall process for Client Insourcing

and post invocations of f , respectively. JS-RCI executes these oper-
ations only once for the nested SQL invocations.

4.2 Identifying the Relevant Server Code
One of the factors that complicates the Client Insourcing refactoring
is that the code comprising the functionality of the insourced func-
tionality may not be confined to the boundaries of a single function
or even the same script. While the entry point of the remote exe-
cution can be a JavaScript function, this function can be invoking
other functions or reference variables declared elsewhere. When
insourcing a remote functionality, all this dependent code must be
moved together to the client to create a self-sufficient local call that
no longer relies on any server-based code.

To determine the data dependencies between the entry/exit
points of a distributed application’s remote functionality, we draw
lessons provided by the state-of-the-art JavaScript analysis frame-
works [15, 16, 44]. JSdep [44] logically hypotheses a Data-Dep
relation between JavaScript statements based on read/write facts, a
point-to-analysis model of GateKeeper [15] and a control flow anal-
ysis [16] . For instance, an assignment statement Assign becomes
a fact that implies Read andWrite relations for the variables in-
volved. Read and Write on the same variable between different
statements imply a Data-Dep relation at the statement level. We

Assign(stmt1 ,v1 ,v2) //var v1 = v2 ; v is variable, stmt is statement
Write(stmt1 ,v1) ← Assign(stmt1 v1 ,v2)
Read(stmt ,v2) ← Assign(stmt ,v1 ,v2)

Data-Dep(stmt1 ,stmt2) ← Read(stmt1 ,v1) ∧Write(stmt2 ,v1)
. . .

extend JSdep’s knowledge base with the rules and facts, necessary
to model the execution of middleware-based statements. In particu-
lar, we define the UnMarshal/Marshal rules to identify the entry
and exit points, whoseWrite/Read clauses are inferred from the
logged profiling data. To that end, JS-RCI encodes the Ref facts by
using the logged values to symbolically copy the unmarshalled/-
marshalled values (Vuid

unMar /V
uid
Mar , uid is an unique execution id

such as "J5ga2") into the local variables as follows:

//the entry point at the server
UnMarshal(stmt1 ,vunMar , uid) ←

Write(stmt1 ,vunMar) ∧ Ref(vunMar ,V
uid
unMar)

//the exit point at the server
Marshal(stmt1 ,vMar , uid) ←

Read(stmt1 ,vMar ,uid) ∧ Ref(vMar ,V
uid
Mar)

Based on the resulting knowledge base, JS-RCI can query the ex-
ecuted statements stmtn for the presence of variable uid . Predicate
ExecutedStmts is a conjunction of two clauses: the first clause
expresses the dependent statements for the parameter marshalling
statement, while the second clause expresses the dependent state-
ments for the result unmarshalling statement, both specific to the
server execution. Because the Data-Dep relation is transitive, one
can obtain the executed statements from the entry/exit points, as
expressed by the following set operations:

ExecutedStmts(stmtn ,uid) ←

(Data-Dep(stmtn ,stmt1) ∧Marshal(stmt1 ,v1 , uid)) ∧
(¬Data-Dep(stmtn ,stmt2) ∧ UnMarshal(stmt2 ,v2 , uid))

4.3 Insourcing Database-Dependent Code
Our approach can also insource code that persists data in a rela-
tional database. To that end, we take advantage of the ubiquity of
SQL. Recall that JS-RCI dynamically instruments string values used
as arguments and return values in all function calls. To identify
the entry point for database-related operations, JS-RCI examines
the function calls whose strings arguments represent the CRUD
operations (Create, Read, Update, and Delete). Consider the code
snippet in Figure 1. JS-RCI detects that the following Call Expression
is a READ operation, as it is a SQL SELECT statement:

db.query("SELECT * FROM recipes WHERE id=id", function(result)..);

Although the server and the client are written in JavaScript and
their respective database engines accept the same SQL statements,
the JavaScript APIs of these engines differ. So it would be impossible
to simply move this Call Expression and its dependent statements
(e.g., var db = require('../utilities/SQL');) to the client. Hence, JS-
RCI adapts the server-side database API to that of the client rather
than copying the database-specific statements verbatim. With these
API calls translated, developers can simply migrate the server-side
data schema and tables. Notice that database engines store their
data in dissimilar proprietary formats.

As a specific example, consider how JS-RCI translates the data-
base API calls of MySQL7 to those of alasql8. By extracting the
arguments and return values of function calls, JS-RCI extracts ta-
ble names and their columns, thereby inferring a complete data
schema of the insourced code. Extracting the actual table content
requires a different approach, as the WHERE clause and numerical

7https://github.com/mysqljs/mysql
8https://github.com/agershun/alasql

Client Insourcing Conference’17, July 2017, Washington, DC, USA

functions, such as COUNT, return only a subset of table rows. To re-
trieve all database data, JS-RCI instruments the server code by using
the shadow execution invoke(db.query, “SELECT * FROM recipes”),
which is introduced in Section 4.1.2. To infer the database schema
from the extracted entries, JS-RCI uses tableschema-py9. Finally,
JS-RCI uses the CREATE and INSERT commands with alasql to
create tables and insert the extracted data into them, respectively,
for the client-side database.

5 EVALUATION
To determine how feasible and useful our approach is, we conduct
an empirical evaluation driven by the following questions:
• RQ1. Effort Saved by Client Insourcing :Howmuch pro-
grammer effort is saved by applying JS-RCI ? We measure
the saved effort as the number of lines of code that would
need to be copied and modified by hand. JS-RCI saves this ef-
fort automating these manual source code changes. (Section
5.2)
• RQ2. Correctness of Client Insourcing : Does Client In-
sourcing preserve the business logic of full-stack JavaScript
applications? Are existing standard use-cases still applica-
ble to the centralized variants of the subject applications?
(Section 5.3)
• RQ3. Value for Adaptive Tasks : How much redundant
code can Client Insourcing eliminate by replicating only the
necessary remote functionality? Are our centralized variants
amenable to be redistributed with a third-party automated
distribution tool? (Section 5.4)
• RQ4. Value for Perfective Tasks : How suitable are the
centralized variants of distributed subjects for isolating and
removing common performance bottlenecks? How much
does Client Insourcing reduce the task complexity as com-
pared to the original debugging process? (Section 5.5)

5.1 Evaluation Setup
To evaluate our approach, we have applied it to insource 61 different
remote executions of 10 full-stack JavaScript applications [3, 6, 8,
9, 26, 34–36, 42, 45]. Table 1 summarizes the information about
invoking these remote functionalities for each application. These
remote services differ in their HTTPmethods (e.g., GET, POST, PUT
etc.), types of parameters, return results, and business logic.

To confirm that our approach is widely applicable, we selected
as our evaluation subjects open-source full-stack JavaScript appli-
cations with dissimilar HTTP frameworks used to implement their
client (Tier 1), server (Tier 2) and database (Tier 3) parts: Tier1:
JQuery, Ajax, fetch, axios, AngularJS, and Angular2-TS; Tier2: Ex-
press, koa.js, and Restify, and Tier3:MySql, Postgres, and knex.js.

5.2 Saving Effort with Client Insourcing
Although developers can insource remote components by hand,
the resulting program transformations can quickly become labori-
ous and error-prone, especially for functionalities scattered across
multiple script files and database-dependent code appearing in non-
JavaScript files. Hence, the value of JS-RCI lies in automating the

9https://github.com/frictionlessdata/tableschema-py

Table 1: Subject Distributed Apps and Client Insourcing Results

Subject Apps
(tier1,tier2,tier3)

Remote Services C&P/M
(ULOC)

recipebook
(AngularJS↔Express
↔MySQL)

GET /recipes 22/45
GET/PUT/POST/DEL /recipes:id 72/172
POST /ingredients 25/48
GET/PUT/DEL /ingredients:id 74/207
POST /directions 26/57
GET/PUT/DEL /directions:id 60/130

DonutShop
(Ajax↔Express
↔knex)

GET/POST /donuts 22/88
GET/POST/DEL /donuts:id 29/155
GET/POST /employee 20/71
GET/POST/DEL /employee:id 29/138
GET/POST /shops 16/83
GET/DEL /shops:id 19/128

res-postgresql
(axios↔restify↔Postgres)

GET/POST /user 22/71
GET/PUT/DEL /user 40/120

med-chem-rules
(fetch↔koa.js↔knex)

GET /hbone 9971/9994
GET /molecular 9974/9997

theBrownNode
(JQuery↔Express)

GET /users/search 37/65
GET /users/search/id 36/64

Bookworm
(AngularJS↔Express)

GET /api/ladywithpet 394/409
GET /api/thedea 394/409
GET /api/theredroom 394/409
GET /api/thegift 394/409
GET /api/wallpaper 394/409
GET /api/offshore 394/409
GET /api/bigtripup 394/409
GET /api/amontillado 394/409

realty_rest
(Angular2↔Express)

GET /properties 284/297
GET /properties:id 287/300
GET /brokers 86/99
GET /brokers:id 90/103
GET/POST/DEL /prprts/favorites 34/73
POST /properties/likes 291/304

ConferenceApp
(Angular2↔Express)

GET /findAllSpeakers 13/66
GET /findSpeakerById 15/68
GET /findAllSessions 43/117
GET /findSessionById 46/119

Employee Dir
(Angular2↔Express)

GET /employees 22/44
GET /employees/id 38/60

shopping-cart
(Angular2↔Express)

GET/POST/DEL /cart-items 79/130

total 61 24.9K/26.6K

transformations required to insource these components. With JS-
RCI completely automating the refactoring, the programmer would
not have to modify any code by hand. To estimate the effort saved
by JS-RCI, we use the ULOC (Uncommented Lines of Code) that
would have to be copied at the server and pasted to the client as
well as the ULOC that would have to be modified at the client for
each remote service. Thus, modified client code (M) includes the
copied/pasted code (C&P). For the 61 remote services of 10 applica-
tions, JS-RCI eliminates the need to modify the client code as many
as 26,685 ULOCs in total, 20,073 ULOCs are database code.

5.3 Correctness of Client Insourcing
The applicability of JS-RCI hinges on whether Client Insourcing
preserves the execution semantics (i.e., business logic) of the refac-
tored applications, a property we refer to as correctness. A subject
application’s original and refactored versions are expected to suc-
cessfully pass the same test cases. Some of the tests that come with
our subjects are also distributed, invoking server-side functional-
ities through HTTP middleware. To use their remote parameters
and results as test invariants, we manually transformed these tests
for local execution without middleware. Altogether we ran 61 test
cases against the original and insourced versions of our subject
applications, with all of them successfully passing. It is possible
that for some complex or esoteric cases, the correctness of Client

Conference’17, July 2017, Washington, DC, USA Kijin An and Eli Tilevich

Insourcing would not be as stellar, but by examining why a test
case failed, the programmer can always correct the insourced code.

5.3.1 The Effectiveness and Correctness of Detecting the Marshalling
Points. Recall that in Section 4, we proposed two search strategies—
Idempotent Execution and Fuzzing—to detect the marshalling points
of a refactored application. To compare and contrast the effective-
ness and correctness of these strategies, we ran our analysis proce-
dure with each of these strategies in isolation.

We observed that Idempotent Execution with its Record/Replay
phases removes the false-negatives in the detected marshalling
points for stateful servers. Our results show that subject applica-
tions with only safe (or read-only) operations are not affected by
the restoring process (20/61). However, we discovered that idem-
potent execution is critical for the majority of our subjects (41/61).
Specifically, having been changed by HTTP PUT/POST/DELETE
requests, global variables were restored correctly in realty-rest and
database entries were restored in other subjects.

In contrast, Fuzzing removes false-positives for detecting mar-
shalling points. We discovered that Fuzzing proved effective also
in twelve cases of our subjects (12/61). Hence, to infer the correct
set of marshalling points, while removing both false-negatives and
positives, JS-RCI applies both strategies in turn.

Table 2: Correctness affected by Search Strategies

subject State Data all w/o w/o
-less -Base Fuzzing Idem_Ex

theBrownNode ✓ ✗ 2/2 0/2 2/2
Bookworm ✓ ✗ 8/8 0/8 8/8
ConferenceApp ✓ ✗ 4/4 4/4 4/4
EmployeeDir ✓ ✗ 2/2 2/2 2/2
shopping-cart ✗ ✗ 3/3 3/3 0/3
realty-rest ✗ ✗ 8/8 6/8 2/8
recipebook ✗ ✓ 13/13 13/13 0/13
DonutShop ✗ ✓ 14/14 14/14 0/14
res-postgresql ✗ ✓ 5/5 5/5 0/5
med-chem-rules ✓ ✓ 2/2 2/2 2/2
Total 100%(61/61) 80%(49/61) 32%(20/61)

5.4 Insourcing’s Value for Adaptive Tasks
5.4.1 Value of Automated Enabling of Disconnected Operation. In
lieu of Client Insourcing, developers would have to replicate re-
mote functionalities by hand. Unassisted by program analysis, a
programmer remains unaware which specific code entities com-
prise a remote functionality that needs to be replicated. Hence, a
safe option for manually replicating any non-trivial remote func-
tionality would be to first duplicate the entire server-side source
file at the client, and then adapt the duplicated code as necessary.
Notice that such copy-and-modify procedures invariably introduce
some unnecessary code, which is never used but still needs to be
deployed and maintained. Hence, in our evaluation, we count the
number of lines of such unnecessary code that could result from
copying the entire source file from the server to the client.

To identify the code portions that are indeed unnecessary to
replicate the remote functionalities under consideration, we first
count the total lines of JavaScript code taken to implement the orig-
inal server parts of each subject app (SLOC). To replicate all remote
functionalities, programmers would copy SLOC to the client and

Table 3: Replication

Subject Apps SLOC SCILOC
SLOC - SCILOC

(Unnecessary LOC)
theBrownNode 120 76 44
Bookworm 340 299 41
realty-rest 457 420 37
ConferenceApp 78 51 27
EmployeeDir 56 35 21
shopping-cart 48 26 22
recipebook 624 376 126
DonutShop 455 308 147
res-postgresql 73 28 45
med-chem-rule 10228 9976 252

adapt them as necessary. The copied SLOC are intermingled with
various unnecessary parts, including middleware, fault handling,
or no-longer relevant comments. The values of SLOC are computed
by examining the programmer-written files and their dependencies
deplofyed in the Node.js server. In contrast, Client Insourcing ex-
tracts from the server only the lines of code required to implement
the replication disconnected operation (SCILOC). For simplicity, we
assume that the entire remote functionality is replicated for each
subject application. To estimate the number of lines of code that
Client Insourcing saves from being replicated unnecessarily, we
subtract SLOC from SCILOC as shown in Table 3.

5.4.2 Value of Centralized Variants for Redistribution. Client in-
sourcing creates a redistributable (centralized) application variant
that can be refactored and enhanced using any state-of-the-practice
program transformation tools and then distributed anew using any
state-of-the-art ditribution tools. We applied two JavaScript refac-
toring tools on our centralized variants: Node-SandBox10 for se-
curity enhancements and extremeJS [47] for redistribution. Node-
SandBox prevents untrusted JavaScript code from executing in-
finite loops or consuming large volumes of heap memory in the
isolated code. However, sanboxing frameworks incur a heavy per-
formance penalty on the isolated code, and as such must be used
sparingly, if the application is to remain usable. Hence, the code
to sandbox is typically isolated from the rest of the application to
run in its own process and address space. extremeJS automatically
distributes centralized JavaScript applications at the function level
of granularity.

Appdist −→ JS-RCI
Appcent
−−−−−−−→ node-SandBox

Appsanboxedcent
−−−−−−−−−−−−→

extremeJS
Remote Stub
−−−−−−−−−−→
Client Stub

Appsanboxeddist

In our evaluation, we measure the additional execution time
incurred by sandboxing only a subset of the remote functionality vs.
the entire original remote functionality. This comparison highlights
the importance of isolating only the code that needs to be sandboxed.
Figure 5 shows by how much sandboxing increases the execution
time for two versions of the subject applications: (1) only the needed
subset of the server part is isolated (SandBox_part); (2) the entire
server part is isolated (SandBox_all). The observed differences in
execution time between these two versions are quite striking, clearly
showing that sandboxing the entire server part is impractical.

10Node-SandBox (https://github.com/patriksimek/vm2)

https://github.com/patriksimek/vm2

Client Insourcing Conference’17, July 2017, Washington, DC, USA

0
5
10
15
20
25
30
35
40
45
50

Before SandBox_part SandBox_all

Bookworm

0
0,5
1

1,5
2

2,5
3

3,5
4

Before SandBox_exact SandBox_all

ConferenceApp

0

0,5

1

1,5

2

2,5

Before SandBox_part SandBox_all

EmployeeDir

0
0,2
0,4
0,6
0,8
1

1,2
1,4

Before SandBox_part SandBox_all

Shopping-cart

-0,2
0

0,2
0,4
0,6
0,8
1

1,2
1,4
1,6

Before SandBox_part SandBox_all

theBrownNode

0

1

2

3

4

5

Before SandBox_part SandBox_all

ionic2-realty-rest

Figure 5: Redistribution with Sandboxing

5.5 Insourcing’s Value for Perfective Tasks
Consider the problem of identifying the source of a performance
inefficiency or bottleneck in a distributed application. First, one has
to be able to exclude the reasons of misconfiguration or network
volatility among the potential causes. Then, one has to make sure
the application is free of known architectural anti-patterns [37].
For example, consecutive fine-grained remote invocations can be
batched to take advantage of better progress being made in increas-
ing the bandwidth as compared to the latency characteristics of
modern networks [31]. However, the sources of inefficiency can be
more subtle than those stemming from ill-conceived architectural
decisions. At some point, the debugging focus may need to switch
to the programmer-written code. The JavaScript ecosystem fea-
tures numerous frameworks and libraries, so the same functionality
can be implemented in a variety of ways, each of which may have
its own performance characteristics. Choosing one programming
idiom over another can have a dramatic effect on the overall ap-
plication performance [11, 12]. Given the divergent performance
characteristics of different JavaScript APIs, several prior work direc-
tions have focused on identifying and removing common sources of
inefficiency. The approach presented in [39] empirically identifies
recurring patterns of inefficient program performance, so they can
be restructured, thereby improving the overall performance. That
kind of restrucuring is a common example of perfective modifica-
tions. However, the majority of the state-of-the-art approaches that
identify and remove performance inefficiencies target centralized
programs. Client Insourcing can make these approaches applicable
to distributed applications.

We applied the approach presented in [39] to the centralized
variants of our subject applications produced by means of Client
Insourcing. Out of 61 subjects, 11 ended up containing some known
patterns of performance inefficiency. For example, Bookworm repet-
itively misused unoptimized string API patterns: data.split("..."
).join("asdf").split(".").join("asdf"). By taking the network and
middleware functionality out of the list of suspected causes of per-
formance problems, Client Insourcing enables so-called “isolated
profiling,” which isolates the programmer-written code to be used
as the sole target of analysis and optimization efforts. To demon-
strate the value of Client Insourcing, we removed all the pointed-out
11 performance bottlenecks from both the original subjects and
their centralized variants. As it turns out, the bottleneck removals

1,0089, 1,556

0

5

10

15

20

25

30

35

0 5 10 15 20 25 30 35

/api/offs
misused APIs

Inefficient loop

/api/amont

/favorite

/users/search

/users/search/id

/api/thed

/api/big
/api/wall

/api/theg

/api/thered
/api/lady∆"#$%&(%)

∆"*+,&(%)

y = 0,9117x - 0,2015

0

5

10

15

20

25

30

35

0 5 10 15 20 25 30

Figure 6: Scatter Plot and Regression Test for ∆Tdist versus ∆Tcent

improved the performance of both versions (distributed and cen-
tralized) of each subject. Figure 6 summarizes the observed perfor-
mance improvements. For the original distributed subjects (∆Tdist),
the improvements range between 29.5% and 2.0%. For their cen-
tralized variants (∆Tcent), the improvements range between 34.8%
and 1.6%. We also applied a linear regression analysis to compute
how closely ∆Tdist and ∆Tcent correlate with each other, resulting
in ∆Tcent = 1.0089 ∗ ∆Tdist + 1.556. This equation shows that
∆Tcent and ∆Tdist are almost perfectly correlated, so centralized
variants can indeed serve as reliable and convenient proxies for an
important class of performance debugging and optimization tasks.

In addition, Client Insourcing reduces the complexity of the de-
bugging process by streamlining the debugged subject’s execution
flow: from the complexity of distributed execution over the Web to
the simplicity of centralized execution. To quantify the actual value
of debugging the centralized variant of a web application instead
of its original distributed version, we compared the total execution
time taken by invoking distributed functionalities vs. their local
insourced counterparts. We assumed that the debugging task was
identifying performance bottlenecks, so we heavily instrumented
our benchmarks before measuring their execution performance. As
it turns out, insourcing reduces a distributed functionality’s exe-
cution time by more than 90% on average. Given that debugging
typically involves repeated executions, having much faster subjects
to debug should improve the efficiency of the debugging process.

5.6 Threats to Validity
The validity of our evaluation results is subject to both internal and
external threats that we discuss in turn next.

Internal Threats. One of our evaluation criteria is the performance
of the JavaScript code generated by our implementation of the
Client Insourcing refactoring. The performance of JavaScript code
is known to be heavily affected by specific design and implemen-
tation choices. Similarly, our own JavaScript coding practices are
likely to have affected the observed performance characteristics. For
example, rather than directly inject the insourced code segments
into the client source files, we choose to create brand new source
files for each insourced languages declaration, with the new files
simply included in the original files. Client Insourcing could have

Conference’17, July 2017, Washington, DC, USA Kijin An and Eli Tilevich

been implemented in a variety of other ways, possibly yielding
different software engineering and performance metrics.

External Threats. All our performance measurements were per-
formed on (Dell-OptiPlex5050, running the JavaScript V8 En-
gine(v 6.11.2). Due to the popularity of JavaScript, the issue of
maximizing the efficiency of JavaScript engines has come to the
forefront of system design[39]. Although V8 is a state-of-the-art
JavaScript engine, it has its competitors, such as SpiderMonkey.
Hence, the absolute performance of our experiments could differ if
our measurements were run in a different execution environment.

6 DISCUSSION
Our approach works only with relational databases interfaced with
by means of SQL queries. Some non-SQL databases, such as Mon-
goDB, use a distinct syntax in its client API. It should be possible
to support the dissimilar CRUD operations of non-SQL databases,
and we plan to explore such support as a future work direction.

For various reasons, some remote functionalities cannot be in-
sourced to run on the client, thus making it impossible to create
a centralized variant of certain distributed applications. In those
cases in which distribution is inevitable, some application resources,
naturally remote to the rest of the functionality, cannot change their
locality. For instance, news readers display the stories deposited to
some centralized repository. It would be impossible to move the
news functionality away from the repository to the client, with-
out manually creating some mock components that realistically
emulate the appearance of news content locally. In other words,
some remote functionalities may depend on resources that cannot
be easily migrated away from their host environment for reasons
that include relying on server-specific APIs or being dependent on
some hard-to-move infrastructure components.

In addition to standard commands, HTTP also provides a sepa-
rate WebSocket interface that opens a dedicated TCP/UDP connec-
tion after a round-trip handshake. WebSocket-based communica-
tion is fundamentally asynchronous and is used mostly in stream-
ing scenarios. Although Client Insourcing can also help in the
re-engineering of web applications that use WebSocket for non-
streaming scenarios, we left the support for this part of HTTP as a
future work direction.

Some web applications may span across more than two tiers.
Our reference implementation assumes a two-tier client-server
application with a possible server-side SQL database, in which both
tiers are implemented in JavaScript. It should be possible to extend
Client Insourcing to multi-tier applications, perhaps by applying
the two-tier technique pairwise to each respective pair of tiers.
At the same time, flattening tiers may not work well for mobile
execution environments, which are known to be resource-scarce.

7 RELATEDWORK
Several prior approaches conquer the complexity introduced by
middleware functionality through abstraction and modeling tech-
niques. A dynamic analysis platform analyzes full-stack JavaScript
applications by abstracting away middleware communication, so
it can be emulated in dynamic profiling scenarios [5]. [1] studies
implicit relations between asynchronous and event-driven entities
that are spread over the client and server sides of a distributed

execution. JS-RCI is unique in its ability to remove the no-longer-
necessary middleware functionality and compute the server-side
dependent source code, which may not even be declared in the
same source file as the insourced functionality’s entry point.

Several recent techniques automatically integrate portions of a
program’s source in another program with systems such as Code-
CarbonReply [43] and Scalpel [2] supporting this functionality for
C/C++ programs. However, these works studied how to integrate
two independent centralized programs.

Our reference implementation of Client Insourcing, JS-RCI, re-
lates to advanced program analysis techniques for JavaScript, due to
its target domain—cross-platformmobile applications. The JavaScript
language constructs for programming event-based applications that
communicate asynchronously (i.e., callback, promises) have been
statically analyzed via formal reasoning based on a calculus [23, 24].
Existing dynamic analysis tools [20, 40] are known to scale poorly
to handle whole JavaScript program analysis. In dynamic symbolic
execution (DSE), a program is symbolically executed in place of
concrete input values [38]. MultiSE[41] effectively generates testing
input values of a JavaScript program by using a value summary in
Jalangi2 to speed-up dynamic symbolic execution.

JS-RCI is related to re-engineering tools that automatically trans-
form applications [10, 33, 48]. Guided by scalable zero-knowledge
proofs, the ZØ compiler[10] preserves user privacy by splitting ex-
isting code into distributed multi-tier applications. Cloud offloading
[48] improves the energy efficiency of a mobile app by splitting it
into the client and server parts.

JavaScript debugging is an active research area. BLeak [46] and
MemInsight [18] identify memory leaks by checking for sustained
memory growth patterns between consecutive executions. JSweeter
[49] detects performance bottlenecks caused by JavaScript type mu-
tations. However, these tools work only with centralized JavaScript
applications that are run on a single V8 engine.

8 FUTUREWORK AND CONCLUSION
We designed and implemented our approach with the assumption
that it would be applied to monolingual execution environments,
such as that of full-stack JavaScript applications. However, many
modern distributed applications aremultilingual, with the client and
server parts written in different languages, often quite dissimilar.
It might be possible to extend Client Insourcing to such multilin-
gual environments by supplementing our design with automatic
cross-language translation. In other words, to extend the applica-
bility of Client Insourcing to multilingual distributed applications,
one can build upon our design and reference implementation by
adding a cross-language translation component to the last phase of
the refactoring process. This new component would automatically
translate the insourced code from the server language to that of the
client. When invoking the insourced translated code, the differences
between the calling conventions would have to be reconciled.

We have presented an approach that facilitates the profiling,
adaptation, and securing of full-stack JavaScript applications. The
approach is enabled by Client Insourcing, a novel automated refac-
toring that integrates remote functionalities with local code, thereby
creating a semantically equivalent centralized variant of a dis-
tributed application.We showed how this centralized version can be

Client Insourcing Conference’17, July 2017, Washington, DC, USA

analysed and modified more easily than its distributed counterpart,
to be then redistributed automatically with all the modifications
in place. The pervasiveness of distribution highlights the need for
novel automated techniques for the re-engineering of web appli-
cations, and Client Insourcing can potentially become a useful
building block for such techniques.

ACKNOWLEDGMENTS
This research is supported by the NSF through the grants # 1650540
and 1717065.

REFERENCES
[1] Saba Alimadadi, Ali Mesbah, and Karthik Pattabiraman. 2016. Understanding

Asynchronous Interactions in Full-stack JavaScript. In Proceedings of the 38th
International Conference on Software Engineering (ICSE ’16). ACM, New York, NY,
USA, 1169–1180. https://doi.org/10.1145/2884781.2884864

[2] Earl T. Barr, MarkHarman, Yue Jia, AlexandruMarginean, and Justyna Petke. 2015.
Automated Software Transplantation. In Proceedings of the 2015 International
Symposium on Software Testing and Analysis (ISSTA 2015). ACM, New York, NY,
USA, 257–269. https://doi.org/10.1145/2771783.2771796

[3] Bookworm. 2019. https://github.com/davidwoodsandersen/Bookworm. (2019).
[4] Eric J Byrne. 1992. A conceptual foundation for software re-engineering. In

Proceedings of the Conference on Software Maintenance. IEEE, 226–235.
[5] Laurent Christophe, Coen De Roover, Elisa Gonzalez Boix, and Wolfgang

De Meuter. 2018. Orchestrating Dynamic Analyses of Distributed Processes
for Full-stack JavaScript Programs. In Proceedings of the 17th ACM SIGPLAN
International Conference on Generative Programming: Concepts and Experiences
(GPCE 2018). ACM, New York, NY, USA, 107–118. https://doi.org/10.1145/3278122.
3278135

[6] ConferenceApp. 2019. https://github.com/tkssharma/Ionic-conferenceApp.
(2019).

[7] Leonardo De Moura and Nikolaj Bjørner. 2008. Z3: An efficient SMT solver. In
International conference on Tools and Algorithms for the Construction and Analysis
of Systems. Springer, 337–340.

[8] Donuts. 2019. https://github.com/VinniiOtchkov/Donuts. (2019).
[9] EmployeeDir. 2019. https://github.com/ccoenraets/employee-directory-services.

(2019).
[10] Matthew Fredrikson and Benjamin Livshits. 2014. ZØ: An Optimizing Distribut-

ing Zero-Knowledge Compiler. In 23rd USENIX Security Symposium (USENIX
Security 14). USENIX Association, San Diego, CA, 909–924. https://www.usenix.
org/conference/usenixsecurity14/technical-sessions/presentation/fredrikson

[11] Liang Gong, Michael Pradel, and Koushik Sen. 2015. JITProf: Pinpointing JIT-
unfriendly JavaScript Code. In Proceedings of the 2015 10th Joint Meeting on
Foundations of Software Engineering (ESEC/FSE 2015). 357–368.

[12] Liang Gong, Michael Pradel, Manu Sridharan, and Koushik Sen. 2015. DLint:
Dynamically Checking Bad Coding Practices in JavaScript. In Proceedings of
the 2015 International Symposium on Software Testing and Analysis (ISSTA 2015).
94–105.

[13] GoReplay. 2018. (2018). https://github.com/buger/goreplay.
[14] Marco Guarnieri, Petar Tsankov, Tristan Buchs, Mohammad Torabi Dashti, and

David Basin. 2017. Test execution checkpointing for web applications. In Pro-
ceedings of the 26th ACM SIGSOFT International Symposium on Software Testing
and Analysis. ACM, 203–214.

[15] Salvatore Guarnieri and Benjamin Livshits. 2009. GATEKEEPER: Mostly Static
Enforcement of Security and Reliability Policies for JavaScript Code.. In USENIX
Security Symposium, Vol. 10. USENIX, Montreal, Canada, 78–85.

[16] Salvatore Guarnieri, Marco Pistoia, Omer Tripp, Julian Dolby, Stephen Teilhet,
and Ryan Berg. 2011. Saving the World Wide Web from vulnerable JavaScript. In
Proceedings of the 2011 International Symposium on Software Testing and Analysis.
ACM, 177–187.

[17] Michael Hilton, Arpit Christi, Danny Dig, Michał Moskal, Sebastian Burckhardt,
and Nikolai Tillmann. 2014. Refactoring local to cloud data types for mobile apps.
In Proceedings of the 1st International Conference on Mobile Software Engineering
and Systems. ACM, 83–92.

[18] Simon Holm Jensen, Manu Sridharan, Koushik Sen, and Satish Chandra. 2015.
MemInsight: platform-independent memory debugging for JavaScript. In Pro-
ceedings of the 2015 10th Joint Meeting on Foundations of Software Engineering.
ACM, 345–356.

[19] Young-Woo Kwon and Eli Tilevich. 2014. Cloud refactoring: automated transi-
tioning to cloud-based services. Automated Software Engineering 21, 3 (01 Sep
2014), 345–372. https://doi.org/10.1007/s10515-013-0136-9

[20] Guodong Li, Esben Andreasen, and Indradeep Ghosh. 2014. SymJS: Automatic
Symbolic Testing of JavaScript Web Applications. In Proceedings of the 22nd ACM

SIGSOFT International Symposium on Foundations of Software Engineering (FSE
2014). 449–459.

[21] Mario Linares-Vásquez, Kevin Moran, and Denys Poshyvanyk. 2017. Continuous,
evolutionary and large-scale: A new perspective for automatedmobile app testing.
In 2017 IEEE International Conference on Software Maintenance and Evolution
(ICSME). IEEE, 399–410.

[22] Qingzhou Luo, Farah Hariri, Lamyaa Eloussi, and Darko Marinov. 2014. An
Empirical Analysis of Flaky Tests. In Proceedings of the 22Nd ACM SIGSOFT
International Symposium on Foundations of Software Engineering (FSE 2014). ACM,
New York, NY, USA, 643–653. https://doi.org/10.1145/2635868.2635920

[23] Magnus Madsen, Ondřej Lhoták, and Frank Tip. 2017. A Model for Reasoning
About JavaScript Promises. Proc. ACM Program. Lang. 1, OOPSLA, Article 86
(Oct. 2017), 24 pages.

[24] Magnus Madsen, Frank Tip, and Ondřej Lhoták. 2015. Static Analysis of Event-
driven Node.Js JavaScript Applications. In Proceedings of the 2015 ACM SIGPLAN
International Conference on Object-Oriented Programming, Systems, Languages,
and Applications (OOPSLA 2015). ACM, New York, NY, USA, 505–519. https:
//doi.org/10.1145/2814270.2814272

[25] Josip Maras, Jan Carlson, and Ivica Crnkovi. 2012. Extracting Client-side Web
Application Code. In Proceedings of the 21st International Conference on World
Wide Web (WWW ’12). ACM, New York, NY, USA, 819–828. https://doi.org/10.
1145/2187836.2187947

[26] med-chem rules. 2019. https://github.com/acarl005/med-chem-rules. (2019).
[27] James Mickens, Jeremy Elson, and Jon Howell. 2010. Mugshot: Determinis-

tic Capture and Replay for Javascript Applications. In Proceedings of the 7th
USENIX Conference on Networked Systems Design and Implementation (NSDI’10).
USENIX Association, Berkeley, CA, USA, 11–11. http://dl.acm.org/citation.cfm?
id=1855711.1855722

[28] Marija Mikic-Rakic and Nenad Medvidovic. 2006. A classification of disconnected
operation techniques. In 32nd EUROMICRO Conference on Software Engineering
and Advanced Applications (EUROMICRO’06). IEEE, 144–151.

[29] Kivanç Muşlu, Bilge Soran, and Jochen Wuttke. 2011. Finding Bugs by Isolating
Unit Tests. In Proceedings of the 19th ACM SIGSOFT Symposium and the 13th
European Conference on Foundations of Software Engineering (ESEC/FSE ’11). ACM,
New York, NY, USA, 496–499. https://doi.org/10.1145/2025113.2025202

[30] Kivanç Muşlu, Bilge Soran, and Jochen Wuttke. 2011. Finding bugs by isolating
unit tests. In Proceedings of the 19th ACM SIGSOFT symposium and the 13th
European conference on Foundations of software engineering. ACM, 496–499.

[31] David A Patterson. 2004. Latency lags bandwith. Commun. ACM 47, 10 (2004),
71–75.

[32] Jelica Protic, Milo Tomasevic, and Veljko Milutinovic. 1996. Distributed shared
memory: Concepts and systems. IEEE Parallel & Distributed Technology: Systems
& Applications 4, 2 (1996), 63–71.

[33] Distributed Object Protocol. 2019. https://distributedobjectprotocol.org/. (2019).
[34] Realty rest. [n. d.]. https://github.com/ccoenraets/ionic2-realty-rest. ([n. d.]).
[35] recipebook. 2019. https://github.com/9bitStudios/recipebook. (2019).
[36] res postgresql. 2019. https://github.com/u4bi-sev/node-postgresql. (2019).
[37] Ganesh Samarthyam, Girish Suryanarayana, and Tushar Sharma. 2016. Refac-

toring for software architecture smells. In Proceedings of the 1st International
Workshop on Software Refactoring. ACM, 1–4.

[38] Prateek Saxena, Devdatta Akhawe, Steve Hanna, Feng Mao, Stephen McCamant,
and Dawn Song. 2010. A symbolic execution framework for JavaScript. In 2010
IEEE Symposium on Security and Privacy. IEEE, 513–528.

[39] M. Selakovic and M. Pradel. 2016. Performance Issues and Optimizations in
JavaScript: An Empirical Study. In 2016 IEEE/ACM 38th International Conference
on Software Engineering (ICSE). 61–72.

[40] Koushik Sen, Swaroop Kalasapur, Tasneem Brutch, and Simon Gibbs. 2013.
Jalangi: A Selective Record-replay and Dynamic Analysis Framework for
JavaScript. In Proceedings of the 2013 9th Joint Meeting on Foundations of Soft-
ware Engineering (ESEC/FSE 2013). ACM, New York, NY, USA, 488–498. https:
//doi.org/10.1145/2491411.2491447

[41] Koushik Sen, George Necula, Liang Gong, and Wontae Choi. 2015. MultiSE:
Multi-path Symbolic Execution Using Value Summaries. In Proceedings of the
2015 10th Joint Meeting on Foundations of Software Engineering (ESEC/FSE 2015).
ACM, New York, NY, USA, 842–853. https://doi.org/10.1145/2786805.2786830

[42] shopping cart. 2019. https://github.com/ComeAlongErica/full-stack-express-lab-
shopping-cart. (2019).

[43] Stelios Sidiroglou-Douskos, Eric Lahtinen, Anthony Eden, Fan Long, and Martin
Rinard. 2017. CodeCarbonCopy. In Proceedings of the 2017 11th Joint Meeting on
Foundations of Software Engineering (ESEC/FSE 2017). ACM, New York, NY, USA,
95–105. https://doi.org/10.1145/3106237.3106269

[44] Chungha Sung, Markus Kusano, Nishant Sinha, and Chao Wang. 2016. Static
DOM Event Dependency Analysis for TestingWeb Applications. In Proceedings of
the 2016 24th ACM SIGSOFT International Symposium on Foundations of Software
Engineering (FSE 2016). ACM, New York, NY, USA, 447–459. https://doi.org/10.
1145/2950290.2950292

[45] theBrownNode. 2019. https://github.com/clintcparker/theBrownNode. (2019).

https://doi.org/10.1145/2884781.2884864
https://doi.org/10.1145/2771783.2771796
https://github.com/davidwoodsandersen/Bookworm
https://doi.org/10.1145/3278122.3278135
https://doi.org/10.1145/3278122.3278135
https://github.com/tkssharma/Ionic-conferenceApp
https://github.com/VinniiOtchkov/Donuts
https://github.com/ccoenraets/employee-directory-services
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/fredrikson
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/fredrikson
https://github.com/buger/goreplay
https://doi.org/10.1007/s10515-013-0136-9
https://doi.org/10.1145/2635868.2635920
https://doi.org/10.1145/2814270.2814272
https://doi.org/10.1145/2814270.2814272
https://doi.org/10.1145/2187836.2187947
https://doi.org/10.1145/2187836.2187947
https://github.com/acarl005/med-chem-rules
http://dl.acm.org/citation.cfm?id=1855711.1855722
http://dl.acm.org/citation.cfm?id=1855711.1855722
https://doi.org/10.1145/2025113.2025202
https://distributedobjectprotocol.org/
https://github.com/ccoenraets/ionic2-realty-rest
https://github.com/9bitStudios/recipebook
https://github.com/u4bi-sev/node-postgresql
https://doi.org/10.1145/2491411.2491447
https://doi.org/10.1145/2491411.2491447
https://doi.org/10.1145/2786805.2786830
https://github.com/ComeAlongErica/full-stack-express-lab-shopping-cart
https://github.com/ComeAlongErica/full-stack-express-lab-shopping-cart
https://doi.org/10.1145/3106237.3106269
https://doi.org/10.1145/2950290.2950292
https://doi.org/10.1145/2950290.2950292
https://github.com/clintcparker/theBrownNode

Conference’17, July 2017, Washington, DC, USA Kijin An and Eli Tilevich

[46] John Vilk and Emery D Berger. 2018. BLeak: automatically debugging memory
leaks in web applications. In Proceedings of the 39th ACM SIGPLAN Conference on
Programming Language Design and Implementation. ACM, 15–29.

[47] Xudong Wang, Xuanzhe Liu, Ying Zhang, and Gang Huang. 2012. Migration and
execution of JavaScript applications between mobile devices and cloud. In Pro-
ceedings of the 3rd annual conference on Systems, programming, and applications:
software for humanity. ACM, 83–84.

[48] HuamingWu,William Knottenbelt, KatinkaWolter, and Yi Sun. 2016. An Optimal
Offloading Partitioning Algorithm in Mobile Cloud Computing. In Quantitative
Evaluation of Systems, Gul Agha and Benny Van Houdt (Eds.). Springer Interna-
tional Publishing, Cham, 311–328.

[49] Xiao Xiao, Shi Han, Charles Zhang, and Dongmei Zhang. 2015. Uncovering
JavaScript performance code smells relevant to type mutations. In Asian Sympo-
sium on Programming Languages and Systems. Springer, 335–355.

	Abstract
	1 Introduction
	2 Re-engineering Web Applications
	2.1 Example Apps
	2.2 Adapting to Disconnected Operation
	2.3 Enhancing Privacy
	2.4 Improving Performance
	2.5 Client Insourcing to the Rescue

	3 Design & Reference Implementation
	3.1 Design Overview
	3.2 Identifying the Code to Insource
	3.3 Exploiting Asynchrony

	4 Implementation Specifics
	4.1 Detecting Marshalling Points in Client/Server Program
	4.2 Identifying the Relevant Server Code
	4.3 Insourcing Database-Dependent Code

	5 Evaluation
	5.1 Evaluation Setup
	5.2 Saving Effort with Client Insourcing
	5.3 Correctness of Client Insourcing
	5.4 Insourcing's Value for Adaptive Tasks
	5.5 Insourcing's Value for Perfective Tasks
	5.6 Threats to Validity

	6 Discussion
	7 Related work
	8 Future work and Conclusion
	Acknowledgments
	References

