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Abstract—Equivalent services deliver the same functionality
with dissimilar non-functional characteristics, including latency,
accuracy, and cost. With these dissimilarities in mind, developers
can exploit the combined execution of equivalent services to
increase accuracy, shorten latency, or reduce cost. However, it
remains unknown how to effectively combine equivalent ser-
vices to satisfy application requirements. With the recent surge
in popularity of machine learning, different vendors offer a
plethora of equivalent services, whose characteristics are mostly
undocumented. As a result, developers cannot make an informed
decision about which service to select from a set of equivalent
services. To address this problem, we explore different service
combination strategies (i.e., majority voting, weighted-majority
voting, stacking, and custom) to ascertain their impact on non-
functional characteristics. In particular, we study how these
strategies impact the accuracy, cost, and latency of the face
detection task and validate our findings on the sentiment analysis
task. We consider the combined executions of commercial web
services, deployed in the cloud, and open-source implementa-
tions, deployed as edge services. Our evaluation reveals that
the combined execution of equivalent services is most effective
for improving cost and latency. Informed by our experimental
results, we formulate practical guidelines to help developers
identify the best execution strategy for a given set of services.

Index Terms—Equivalent Services , Combined Use, QoS Op-
timization

I. INTRODUCTION

Due to the proliferation of the service-oriented architecture
(SOA), both web services, provided by different cloud ven-
dors, and edge services, hosted on local computing resources
can satisfy the same functional requirements. For example,
competing cloud vendors (e.g., Google, IBM, Amazon, and
etc.) provide machine learning (ML) web services that in-
clude face detection, speech recognition, language translation,
and event detection. Numerous popular open-source libraries,
hosted on in-house devices and exposed as edge services, also
provide the same functionality. Equivalent services satisfy the
same functional requirement, but can differ widely in their
non-functional characteristics, thus presenting an implementa-
tion choice to the developer.

Quality of service (QoS) is a meta-descriptor that en-
compasses various non-functional characteristics, including
latency, cost, and accuracy. When exposing a functionality
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as a service, developers face a difficult dilemma: which
equivalent service would best meet given QoS requirements. A
straightforward procedure for identifying the optimal service
is to compare the available equivalent services, and select the
one whose actual performance is the closest to the require-
ments. Meanwhile, prior research [1] indicates that combining
multiple equivalent services can better meet the QoS require-
ments. Nevertheless, none of the prior works have focused
on assessing the impact of combined service execution on the
overall accuracy of the combination. That is, existing works
focus on either enhancing accuracy itself via majority voting,
stacking, or weighted voting, or optimizing reliability, cost,
and latency via service composition. As a result, developers
lack actionable insights for optimally leveraging the combined
executions of equivalent service to efficiently improve the
accuracy, especially for cognitive tasks.

Without such insights, developers mostly rely on their
intuition, which can be misleading. For example, the intuition
would suggest that accuracy would improve if the majority
voting strategy were applied to the results of executing multi-
ple equivalent services [2]. However, our findings indicate that
this intuition is in-fact incorrect. Meanwhile, we observe that
applying the stacking strategy reduces both latency and cost.
This paper bridges the knowledge gap of how developers can
exploit the combined use of equivalent services to better meet
the QoS requirements.

We experimentally study the combined execution of equiv-
alent services and the resulting QoS impact. We choose face
detection as an exploration use case, and sentiment
analysis as a validation use case. For both use cases,
we derive the performance characteristics of five equivalent
services. Three of them are hosted by major cloud providers;
the other two are locally hosted edge services based on
open-source implementations. The use case 1 studies the
accuracy, cost, and latency of different combined executions of
these services to form practical guidelines for finding optimal
execution strategies. The use case 2 validates and bolsters
our guidelines. In particular, we apply the majority voting,
weighted-majority voting, stacking, and our custom execution
strategies to ascertain their performance impact on accuracy
and QoS.
The contribution of this paper is three-fold:

1) An experimental study that explores how the combined



execution strategies above impact non-functional charac-
teristics.

2) A customized execution strategy, a new approach that
combines the execution of equivalent services to fulfill
the QoS requirements better than the existing strategies.

3) Practical guidelines that inform developers about which
service or a combination thereof would meet the QoS
requirements.

The rest of this paper is organized as follows: Section II
introduces the conceptual foundations for our study. Section
III introduces our study’s experimental setup. Section IV
presents our observations and guidelines. Section V validates
and generalizes our guidelines. Section VI expands on the
experimental caveats of our evaluation. Section VII discusses
the limitations of our approach and the future work. Section
VIII summarizes the related state of the art. Section IX
presents concluding remarks.

II. CONCEPTUAL FOUNDATIONS

This work’s conceptual foundations are grounded in SOA
and the strategies used to select, fuse, and execute services.
We introduce these concepts in turn next.

A. Services Composition

Microservices, an SOA variant, has become immensely
popular in enterprise software development [3]. An application
is structured as a collection of loosely coupled microservices,
with each providing a distinct functionality. The problem
of composing microservices to create new functionalities by
aggregating different services has been studied extensively
[34]. Prior research proposes and evaluates approaches that
select microservices based on their QoS characteristics. Some
approaches select microservices based on their execution se-
mantics; they define a QoS ontology and extend QoS attributes
to select microservices [4], [5]. Other approaches compute the
QoS characteristics of microservices to meet the user’s overall
requirements [6]–[10]. Some strategies compute the microser-
vice characteristics using advanced computational techniques
that include Integer Programming [11], Genetic Algorithms
[6], [8], and Constraint Programming [12]. Some prior re-
search [1], [35] focuses on combining equivalent microservices
to improve QoS, and provide different approaches to estimate
the cost, latency, and reliability of equivalent microservice
combinations. However, none of these existing works apply
service composition to improve QoS with accuracy. In this
work, we exploit the combined execution of web services with
accuracy as one of the major QoS concerns.

B. Service Fusion Strategies

We expand the traditional notion of QoS with the accuracy
characteristic, which is specific to the ML domain. To the best
of our knowledge, the accuracy characteristic has not yet been
explored in concert with the traditional QoS characteristics
for the problem of selecting services. Furthermore, we draw
inspiration from a large body of prior works in the domain of
classifier fusion [13]–[17]. These works study how various

fusion methods applied to a classifier improve the overall
accuracy for the same classification task. They also explore
how the diversity of the classifiers impacts the overall accuracy
of their combination. In this work, we choose to explore three
fundamental effective fusion strategies, described in turn next:

1) Majority Voting: The majority voting fusion methods
work as follows. From a set of N classifiers, the combined
execution of N services predicts “c” as the class label if
“c” is the most frequently predicted label. In other words,
we look at the individual predictions of each service and
choose the label which was predicted the largest number of
times. Prior research shows how majority voting applied to
individual classifiers can improve overall accuracy [17], [18].
In our study, we enumerate all possible combinations of 5
services for N = {2, 3, 4, 5}. 5 services can be combined in(
5
2

)
+
(
5
3

)
+
(
5
4

)
+
(
5
5

)
= 10+ 10+ 5+ 1 = 26 different ways.

Further, we execute the services comprising a combination
in parallel and calculate the cost, accuracy, and latency of
each combination. The cost of a combination is calculated by
summing up the costs incurred by each comprising service.
The latency of the combination is calculated by measuring
the maximum latency among the comprising services. The
accuracy is calculated by comparing the predicted outcome
of the combination against the ground truth value.

2) Weighted Majority Voting: In vanilla majority voting,
we assume that all services are equally accurate. For example,
when fusing three services, an agreement between any two
of them is sufficient to determine the outcome. It may be
the case that two equally inaccurate services would agree
more often, thus bringing down the overall accuracy of the
combined execution. Therefore, we also examine the strategy
of weighted majority voting, in which weights are assigned
to the predicted outcome of each service. In our experiments,
we assign weights by exhaustively enumerating all possible
weight combinations with the step size of 0.05. The weight
distribution determines how accurate a given combination is
expected to be. For classification tasks, the predicted label
which has the highest weight attached to it becomes the
combination’s prediction. Table I illustrates five services A-E,
their respective weights, and their respective predictions for
one data point. The maximum weight is attached to label “-1”
i.e. 0.40. Hence, the combination predicts “-1” as the label for
this setting. The characteristics of cost, latency, and accuracy
are calculated similarly to Majority Voting.

Service A B C D E
Weights 0.20 0.20 0.10 0.35 0.15
Predicted Label -1 -1 0 1 0

TABLE I
WEIGHTED MAJORITY VOTING

3) Stacking: The Ensemble methods execute multiple ML
algorithms to improve the predictive performance. A typical
Ensemble method involves training constituent algorithms us-
ing the outcome of previously executed algorithms. In contrast,
the Stacking Ensemble method trains a meta-algorithm on the
predictions of individual learning algorithms. The predicted
values from each algorithm are used as the feature set for



the meta-learner. The new model shares the same prediction
objective with the constituent algorithms. Stacking has become
a popular fusion strategy, as it strikes a good balance between
its ease of implementation and effectiveness. Simple statistical
models, such as logistic regression, are often used as the meta-
learner to improve overall accuracy. Consider three classifiers
C1, C2, C3. For an incoming picture xi, the predicted labels
of C1, C2, C3 are y1, y2, y3. The set {y1, y2, y3} is passed as
input to a logistic regression model for predictions. Again, we
consider all possible 26 enumerations for 5 services and train
the vanilla logistic regression model with default parameters.
We choose default parameters and only have one layer of
stacking, so as to keep the process simple, avoiding any
unnecessary engineering overhead. The characteristics of cost,
latency, and accuracy are calculated similarly to majority
voting.

C. Our Custom Service Execution Strategy

The aforementioned fusion strategies process the results of
individual services and process them differently to reach the
final prediction. An issue that is orthogonal to processing the
results is how these services are invoked. A set of services can
be invoked in sequence, in parallel, or in combination thereof.
These execution strategies have a strong impact on various
non-functional characteristics. In practical applications, ac-
curacy can rarely be treated as the only relevant concern.
Hence, we further consider how to balance different QoS
characteristics while maximizing the overall utility for the
combined execution of services. Next, we define our custom
execution strategy.

Our execution strategy comprises a sequence of steps. Each
step executes a set of services in parallel, with their execution
results evaluated to see if they agree. The execution proceeds
until the current step’s result determines the final outcome. For
our running example, the outcome of a step is determined via
majority voting: if over 50% of the executed services agree on
one category (i.e., detecting a face or not), the agreed upon
category becomes the final outcome. Otherwise, if one half of
the results agrees on one category, while the other half agrees
on the other category, the final outcome cannot be determined,
so the execution proceeds to the next step.

By combining services in such sequential steps, the exe-
cution strategy above can greatly reduce the incurred costs
as compared with having to execute all services at once.
To reduce the overall latency, services with longer response
time can be executed in the last steps. Although executing
all services at once would yield a higher accuracy, custom
execution strategies can improve the overall utility by reducing
the execution cost and latency.

In the subsequent discussion, we use the following notation.
“∗” denotes services executed in parallel, and “−” denotes
consecutive sequential groups of services. For a set of services
s1, s2, s3, s4, s5, s1 ∗s2−s3 ∗s4 ∗s5, s1 ∗s2−s3 ∗s4−s5, and
s1 ∗ s2 ∗ s3 ∗ s4 ∗ s5 represent possible strategies. Our custom
strategy can be generally expressed as (2n)∗−(2n+1), where
n is a positive integer. The last group must have an odd number

of services, while every other group must have an even number
of individual services.

III. EXPERIMENTAL SETUP

In this section, we discuss our experimental dataset and the
evaluated services used in our analysis.

A. Dataset and Services

1) Face Detection: We first study the task of detecting a
human face in an image: determine if a given image contains a
face. This task is widely performed in social media analytic. In
general, facial recognition is used to infer user demographics
to study trends and target advertisements. Traditionally requir-
ing tedious manual processing, facial recognition has become
automated due to recent advances in ML [19]. In fact, we
found several public web services that offer this functionality.
Specifically, in our experiments, we use cloud-based services
provided by IBM [20], Microsoft [21], and Face++ [22]. We
also deploy two edge services that offer the same functionality,
implemented by means of OpenCV [23] and Deep Learning
[24], popular open-source software packages. We choose these
particular packages due to their high stargazer counts on
GitHub.

For our experimental evaluation, we construct a large
balanced dataset of 8,000 images. 4,000 images come from
the IMDB-Wiki dataset [25], picked at random. Each image
has at least one face appearing in it. The rest of 4,000 images
are chosen at random from the Caltech 101 dataset [26], with
none of the images containing a face.

2) Sentiment Analysis: We validate our findings on the task
of analyzing the sentiment in a body of text: determine if a
given body of text’s sentiment is positive, neutral, or negative.
This functionality is commonly applied in e-commerce for
product recommendations based on customer reviews. The
sheer volume of customer reviews posted online defeats man-
ual analysis, making automatic sentiment analysis a valuable
mechanism in modern e-commerce applications. In fact, we
found several cloud-based services that offer this functionality,
provided by IBM [27], Microsoft [28], and Google [29]. In
addition, we locally deploy two edge services that offer the
same functionality by means of TextBlob [30] and Vader
[31], popular open-source packages. We select these packages
because they have the highest startgaze counts across all
Python implementations. We choose the Twitter dataset [32],
comprised of labelled tweets about various airlines. We choose
1,945 tweets for each label (i.e., positive, neutral, and nega-
tive). Unfortunately, we could not identify a larger labelled
dataset for sentiment analysis, as larger datasets were only
labelled with the positive and negative sentiments. Choosing
a stratified data set (i.e., in which all classes are equally
represented) is essential to minimize evaluation bias.

B. Individual Service Characteristics as the Benchmark

We empirically evaluate the undocumented non-functional
characteristics for each single service (i.e., accuracy and



Service IBM MS Face++ DL OpenCV
Cost($)/1000 Requests 4 1 1 0.01 0.01
Latency(in ms) 737.51 94.99 95.73 65.6 56.44
Accuracy(%) 96.07 86.43 95.51 82.16 88.02

TABLE II
NON-FUNCTIONAL CHARACTERISTICS OF FACE DETECTION SERVICES

Service IBM MS Google Blob Vader
Cost($)/1000 Requests 3 2 1 0.01 0.01
Latency(in ms) 155.19 73.53 126.93 1.08 13.25
Accuracy(%) 66.74 62.51 61.92 54.25 58.44

TABLE III
NON-FUNCTIONAL CHARACTERISTICS OF SENTIMENT ANALYSIS

SERVICES

latency) by invoking each service to record its classification
outcome and execution time. Thereafter, we average all the
data points to compute the overall accuracy and the average
latency. Vendors always explicitly specify the cost of invoking
a cloud service. We approximate the cost of invoking an edge
service as two orders of magnitude less than the cheapest cloud
service for the same functionality. This cost model accounts
for the local deployment of an edge service consuming re-
sources, such as CPU processing and power. Tables II and III
summarize our empirical findings for the images and tweets
data sets, respectively.

Observation 1. Compared to commercial cloud services,
open-source edge services offer lower latency, cost, and ac-
curacy.

Even given the numbers in Table II, a developer would still
find it difficult to select the best service for an application
scenario. For example, IBM offers the maximum accuracy,
but it also incurs the maximum cost and latency. We use
the numbers reported in Table II and III as benchmarks to
evaluate how well service combinations perform. Since in both
use cases IBM offers the best accuracy, our goal is to find
combinations that outperform IBM.

IV. FORMULATING GUIDELINES: USE CASE 1

By carrying out this use case, we formulate our service
combination guidelines.

A. Exploring Impact on Accuracy

For ML services, accuracy is a major non-functional char-
acteristic and an important target of our study. We evaluate
and explore how each of the following four strategies impacts
the accuracy of combined executions in this use case.

1) Majority Voting: Counter-intuitively, the majority voting
strategy offers no increase in accuracy. Trying to understand
why, we notice that the services are correlated and dependent.
That is, if one service is observed to return incorrect result for
a data point, it is highly likely that the others will do the same
for the said data point. Fig 1 depicts a sample of images that
all services misclassify.

This correlation is further revealed by calculating the joint
probabilities of the services. The probability of a service
being correct is the same as its accuracy. We define P (A)
as the probability of classifier A being correct, and P (AB)

as the probability of classifiers A and B being both correct.
Theoretically, we expect accuracy to improve if the services
are not correlated. For example, when using majority voting,
the combined accuracy for three equivalent services A, B, and
C is: P (AB) + P (BC) + P (AC) - 2P (ABC). If we plug in
P (A), P (B), and P (C) with P (IBM) = 96.07%, P (MS)
= 86.43%, and P (Face++) = 95.51% as shown in Table II.
Assuming the IBM, MS, and Face++ are not correlated, their
expected combined accuracy would be 98.72%, a significant
improvement over the accuracy of each individual service;
however, the actual combined accuracy is only 96.02% due
to the services being strongly correlated.

Observation 2. Correlation/dependence among the individual
services limits majority voting from offering higher overall
accuracy.

2) Weighted Majority Voting: Our initial motivation for
exploring weighted majority voting was to reduce the negative
impact of inaccurate services by assigning them lower weights.
After observing that the services are correlated, we want to
reduce the impact of the correlation as well by experimenting
with the weights.

For our running example of face detection, we observe an
increase in accuracy. However, this increase is accompanied by
an increase in cost. We do find a select few combinations that
both improve accuracy and reduce cost as compared to IBM.
However, the improvement in accuracy for such combinations
ranges between 0-2%. Table IV reports the combinations, their
respective weights, and the accuracy improvements.

3) Stacking: As expected, stacking increases the overall
accuracy for the combined execution. Similar to weighted
majority voting, the increase in accuracy is accompanied by
an increase in cost and the combinations with comparable cost
report an insignificant (i.e., 0-2%) increase in accuracy. Table
V reports the combinations, their respective weights, and the
accuracy improvements.

Observation 3. Irrespective of correlation, weighted majority
voting and stacking can increase the overall accuracy by
adding services to a combination.

4) Our Custom Execution Strategy: Our custom execution
strategy provides no combination with improved overall ac-
curacy. Similar to aforementioned strategies, it does provide
combinations with comparable accuracy while reducing the
incurred cost and latency. Table VI reports some of the com-
binations found by our custom execution strategy. Algorithm 1
below describes how the characteristics of our custom strategy
are computed.

Three out of the four strategies offer us combinations with
comparable overall accuracy with reduced incurred cost and
latency. Hence, we further explore in search of combinations
offering better overall utility. Following section summarizes
our exploration.

Observation 4. Irrespective of correlation, weighted majority
voting, stacking, and our custom execution strategy can reduce



Fig. 1. Images with faces misclassified by all services

Combination Weights Accuracy(%) Cost($) Latency(ms)
IBM 1 96.07 4 737.51
MS & Face++ 0.50,0.50 97.19 2 95.37
Face++ & OpenCV & DL 0.50,0.45,0.05 96.31 1.02 95.37
Face++ & OpenCV 0.50,0.50 96.37 1.01 95.37
Face++ & DL 0.50,0.50 96.31 1.01 95.37

TABLE IV
INCREASE IN ACCURACY WITH WEIGHTED MAJORITY VOTING

Combination Accuracy(%) Cost($) Latency(ms)
IBM 96.07 4 737.51
MS & Face++ & OpenCV 97.19 2.01 95.37
MS & Face++ & DL 97.19 2.01 95.37
Face++ & OpenCV 96.37 1.01 95.37
Face++ & DL 96.31 1.01 95.37

TABLE V
INCREASE IN ACCURACY WITH STACKING

cost and latency while offering comparable accuracy.

B. Exploring QoS Balance

1) Calculating the Utility Index: Our goal is to find a
combination that improves the overall utility. Utility is defined
as the overall performance of a service, used as a singular
metric for selecting services. Based on prior work [33], we
use Eq. 1 to define the utility u(e) of a combined execution e
as follows:

u(e) = wa ∗
ae − al
arange

+ wc ∗
ch − ce
crange

+ wl ∗
lh − le
lrange

, (1)

where wa, wc, and wl denote the weights of accuracy, cost,
and latency, respectively, while arange, crange, and lrange
denote their ranges. ch and lh denote the higher bound of
cost and latency, while al denotes the lower accuracy bound.
The ranges, higher, and lower bounds are derived by using the
evaluation values of individual services. In general, to improve
the utility of a combined execution, a developer can increase
its overall accuracy and/or decrease its cost and latency.

2) Estimating QoS Characteristics for Custom Execution
Strategy: Algorithm 1 details the procedure, which estimates
the cost, latency, and accuracy of our custom execution plan.
P (E, a, b) denotes the possibility that for a set E of equivalent
services, a of them would generate accurate results, and b of
them would generate inaccurate results.

3) Results: Through an exhaustive search, we find an
optimal execution strategy for a given set of QoS weights.
We estimate the QoS characteristics of all possible execution
strategies using Algorithm 1 and calculate their respective

Algorithm 1 Estimating the QoS of Our Custom Execution
Strategy

Input Execution plan EP = E0−E1−....−En, where En

denotes the nth parallel group, i.e., En = e0n ∗ e1n ∗ ... ∗ emn .
|En| = m+ 1, number of services in a parallel group
For E0, E1, ...En−1, (m+ 1)%2 == 0;
For En, (m+ 1)%2 == 1.

Output Accuracy Acc, Cost C, Latency
Lat;

1: Acc, C, Lat ← 0;
2: for i← 0 to n do
3: PpreviousFail =

∏i−1
j=0 P (Ej , |Ej |/2, |Ej |/2);

4: currCost =
∑|Ei|

k=0 Cost(eki );
5: currLat = max(Lat(eki )) : k ∈ Z ∧ 1 ≤ k ≤ |Ei|);
6: if i! = n then
7: PiSucceed =

∑|Ei|
k=|Ei|/2+1 P (Ei, k, |Ei| − k);

8: else
9: PiSucceed =

∑|Ei|
k=(|Ei|+1)/2 P (Ei, k, |Ei| − k);

10: end if
11: Acc + = PpreviousFail ∗ PiSucceed;
12: C + = PpreviousFail ∗ currCost;
13: Lat + = PpreviousFail ∗ currLat;
14: end for

utilities according to Eq. 1. For a given set of weights, we
retain the execution strategy with the highest U(e).

We vary the weights of the QoS characteristics to simulate
different concerns and evaluate the execution strategies that
can satisfy them. We allot the highest weight to one charac-
teristic at a time, demarcating it as the major QoS concern.
Table VI shows the generated execution strategies that offer the
maximum utility for different QoS concerns. We observe that
by combining edge and cloud web services, a developer can
balance the QoS characteristics and achieve a higher overall
utility than by invoking individual services.

Observation 5. Custom execution strategy offers the most



Weight (a, c, l) generated strategy (acc(%), cost($), latency(ms))
(high, low, low) MS ∗ FaceP lusP lus− IBM (94.2,2.31,156)
(low, high, low) DL ∗OpenCV − FaceP lusP lus (92.6,0.14,76)
(low, low, high) DL ∗OpenCV − FaceP lusP lus (92.6,0.14,76)

TABLE VI
QOS CONCERNS AND GENERATED PLANS

Combination Weights Accuracy(%) Cost($) Latency(ms)
IBM 100 66.77 4 155.19
MS & Google & Blob 15,45,40 64 3.01 126.93
MS & Google & Vader 40,35,25 65.48 3.01 126.93

TABLE VII
IMPROVING COST AND LATENCY WITH WEIGHTED MAJORITY VOTING

optimal combination in terms of the utility provided for
varying QoS concerns.

C. Guidelines

Based on our observations, we recommend that developers
follow a systematic approach to select and combine services.
Our guidelines are as follows:

1) If accuracy is the only concern and should be improved,
utilize the stacking strategy. Combining a higher number
of individual services is expected to provide higher
overall accuracy.

2) If the cost and latency need to be considered as well,
utilize either weighted majority or stacking. Both strate-
gies offer combinations with comparable accuracy, with
reduced cost and latency.

3) If the overall utility is the deciding criterion, our custom
execution strategy offers combinations with the most
optimal overall utility.

V. VALIDATING THE GUIDELINES: USE CASE 2

In this section, we check whether our findings of the face
detection in the use case 1 apply to the unrelated use case 2.
We choose the domain of sentiment analysis. If both use cases
yield similar insights, this outcome would bolster our claims,
generalizing our guidelines.

A. Impact on Accuracy

By evaluating the service probabilities, we find that the
expected probability of a combination formed via majority vot-
ing differ from the observed probability. Hence, the evaluated
services are again correlated. Therefore, no useful combination
via majority voting can increase the overall accuracy, thus
confirming our prior findings.

For weighted majority voting and stacking, as long as
combinations exclude IBM, none of them is more accurate
than IBM, possibly due to the low size of the training data
set. However, both strategies offer combinations, whose overall
accuracy is comparable, but cost and latency are lower. Table
VII reports the combinations and weights for the weighted
majority voting strategy that improve cost and latency, without
significantly decreasing accuracy. Similarly, Table VIII reports
the combinations for the stacking strategy.

Combination Accuracy(%) Cost($) Latency(ms)
IBM 66.77 4 155.19
MS & Google & Blob 67.01 3.01 126.93
MS & Google & Vader 66.4 3.01 126.93
MS & Blob & Vader 66.3 1.02 73.53

TABLE VIII
IMPROVING COST AND LATENCY WITH STACKING FOR SENTIMENT

ANALYSIS

B. QoS Balance

Table IX shows the most optimal strategies for given sets
of weights assigned to QoS characteristics. For each set, our
custom execution strategy offers the highest overall utility, thus
confirming the guideline 3 above.

Compared to the most accurate single service, our custom
execution strategy provides a combination with: 0.003% in-
crease in accuracy, 68.6% decrease in cost, and 40% decrease
in latency, when accuracy is the primary concern; 0.011%
decrease in accuracy, 89% decrease in cost, and 47% decrease
in latency, when cost is the primary concern; and 0.003% in-
crease in accuracy, 68.6% decrease in cost, and 40% decrease
in latency, when latency is the primary concern.

VI. EXPERIMENTAL HEURISTICS

In this section, we touch upon some of the most impor-
tant heuristics we developed to overcome the caveats of our
problem domain.

A. Class Labels for Sentiment Analysis

While evaluating the accuracy of services for sentiment
analysis, we found that four of the services return back a score
and not a label. The fifth service, IBM, returns a label and a
score. Meanwhile, out of the four services returning scores,
only one of them specifies how to interpret the score. Vader
in its documentation instructs to treat a body of text with the
score above 0.05 as containing a positive sentiment, one with
the score below -0.05 as containing a negative sentiment, and
one with the score between -0.05 and 0.05 as containing a
neutral sentiment. For the remaining three services, we lack
any specifications for the treatment of the returned scores. This
omission presents a complication, as without specific labels we
are unable to gauge the accuracy of these services.

We optimize the classification ranges for these three services
through the following procedure. Find a value x that can be
used to interpret the returned score. A score value above x
is assigned a positive label, one below −x a negative label,
and one between −x and x a neutral label. We also observe



Weight (a,c,l) generated strategy (acc(%), cost($), latency(ms))
(high, low, low) Blob ∗ V ader − IBM (67, 1.25, 93)
(low,high,low) Blob ∗ V ader −Google (66, 0.44, 81)
(low,low,high) Blob ∗ V ader −MS (65, 0.85, 59)

TABLE IX
QOS CONCERNS, GENERATED PLANS, AND EXECUTION RESULTS

that while the Microsoft service returns scores between [0, 1],
the other ones return scores between [−1, 1]. We reconcile
this discrepancy by redefining Microsoft’s scores greater than
0.50 + x as positive, ones smaller than 0.50− x as negative,
and ones in between as neutral. We derive x for each service
by minimizing the categorization error as follows. We vary
x from 0.01 to 0.99 with a step size of 0.01, calculating the
classification error over a training data set chosen at random
from the original data set, without replacement.

B. Reducing the Number of Combinations to Explore

In all of our strategies, we combine services by exhaus-
tively enumerating them. This practice is only feasible for
combinations of up to about 5 services. However, for larger
combinations, this approach can introduce a prohibitively large
overhead. Hence, we introduce a heuristic that reduces the
number of explored combinations, required to find the optimal
combinations. In the three utilized fusion strategies, the cost
of the combined execution comes from summing the costs
of the comprising services. The latency of the combined
execution comes from the maximum of the latency of the
comprising services. A combination’s cost and latency are
always higher than those of any of its comprising services.
A combination can offer a higher utility only if the overall
accuracy is higher than that of any of its comprising services.
Moreover, without achieving any increase in accuracy, the
extra effort required to explore a combined execution cannot
be justified. Hence, we filter out all the combinations whose
overall accuracy is smaller than the maximum accuracy of
the comprising services. This filtering heuristic reduces the
number of combinations that need to be evaluated, making
our experiments manageable.

VII. LIMITATIONS AND FUTURE WORK

Although our custom execution achieves the best overall
utility, we were unable to find a strategy that increases accu-
racy while keeping the remaining QoS characteristics in check.
We are intrigued by the ubiquitous presence of correlation
among the individual equivalent services. Hence, we plan to
further study that correlation in order to devise a strategy that
leverages its presence. One possible direction is to utilize the
correlation coefficient between services to develop a combined
execution strategy in which the constituent services augment
each other, thus increasing the overall accuracy.

Having been meticulous in our experiments, we validated
our findings with a completely unrelated use case to be able to
generalize our guidelines. We now plan to empirically validate
them against additional use cases, especially those with a high
number of classes. To that end, we are on the lookout for the
right mix of web services and labelled data. Because different

services return class labels inconsistently, the current strategies
cannot predict the label for a combination.

Lastly, we plan to explore how our research findings can
be applied to service composition. One direction is leveraging
our insights for choosing services for each sub-task. Further,
we would evaluate if we can improve the QoS offered by the
composition as a whole and compare the improvement with
existing approaches.

VIII. RELATED WORK

Various aspects of the service selection problem have been
studied extensively. Liu et al. [7] presented an open, fair, and
dynamic QoS model for selecting web services by implement-
ing a QoS registry in a market place application that provisions
phone services. Alrifai et al. [33] study service composition,
in which component services are selected to satisfy end-to-
end QoS requirements (e.g., availability, response time, cost)
by combining global and local optimization. Huang et al. [34]
efficiently select services in two different contexts: single QoS-
based service discovery and QoS-based optimization of service
composition. Hiratsuka et al. [1] reduce the costs of combina-
tional use when selecting services to satisfy QoS requirements.
Their experimental results show that the computational costs of
effective service combinations can be reduced irrespective of
the number of services and their QoS values. However, prior
research has not considered accuracy or aimed at achieving
QoS balance. Combinations of equivalent services rather than
a single service have not been explored either.

Classifier fusion has been used to increase accuracy. Kittler
et al. [13]’s theoretical framework combines classifiers using
distinct pattern representations. By experimentally comparing
various combinations, they discover that the sum-rule and its
derivatives (developed under the most restrictive assumptions)
offer the best performance. Woods et al. [14] combine classi-
fiers by estimating each individual classifier’s local accuracy in
small regions of the feature space surrounding an unknown test
sample, putting forward a method that determines how to best
mix individual classifiers. Ruta et al. [15] revise the classifier
selection methodology and evaluate the practical applicability
of diversity measures in the context of combining classifiers
by majority voting. Furthermore, their novel design of multiple
classifier systems recurrently applies selection and fusion to a
population of the best combinations of classifiers rather than
to the single best ones. Kuncheva et al. [16] derive upper and
lower limits on the majority vote accuracy with respect to
individual accuracy p, the number of classifiers in the pool (L),
and the pairwise dependence between classifiers, measured by
Yules Q statistic. Whitaker et al. [17] show, by means of an
enumerative example, how combining classifiers can increase
or decrease accuracy as compared to each single classifier.



Service composition [1], [35], [36] optimize reliability, cost,
and latency by the combined use of equivalent services. These
approaches estimate the reliability, cost, and latency of various
service combinations and apply different algorithms to find
an optimal combination. However, none of these approaches
have taken accuracy into consideration. For cognitive tasks,
no services can be 100% accurate, thus service composition
for enhancing accuracy is an important unaddressed problem.
Different from other QoS attributes, the accuracy of different
equivalent services may be correlated, rendering the existing
QoS estimation algorithms directly inapplicable to estimate the
accuracy of a service combination.

Our work draws inspiration from these lines of works. We
apply the findings from accuracy improvement efforts to those
that select services based on QoS. By exploring combinations
of equivalent services to better meet the QoS requirements,
which include accuracy, we increase the overall utility of
cognitive services.

IX. CONCLUSION

To help developers choose from a set of equivalent services,
we study the impact of the combined execution of equiva-
lent services on non-functional characteristics. Three widely
used strategies process/combine the results of each service to
predict outcome of the combination. We also offer a novel
custom execution strategy that helps better meet the QoS
requirements. Two case studies explore and validate the QoS
satisfaction of these strategies, respectively. No strategy can
significantly improve accuracy without increasing cost and/or
latency. However, some combinations in both use cases reduce
cost and/or latency while providing comparable accuracy, as
compared to the most accurate single service. Based on our
findings, we suggest the following developer guidelines for
selecting services:

1) In the absence of a labelled training data, intuitively
select the best service from a set of equivalent services.

2) Otherwise, record the predictions and the time taken for
each equivalent service over the training data.

3) Check if the services are correlated by evaluating their
joint probabilities

4) In the absence of correlation, apply majority voting to
exploit combinations and try to improve accuracy with
lower cost and latency.

5) Otherwise, apply stacking and weighted majority voting,
in order. These strategies can help find combinations
that provide comparable accuracy with lower cost and
latency. Hence, the combination can better meet non-
functional requirements.

6) To achieve QoS balance, apply our custom execution
strategy that offers combinations with the most optimal
utility values.
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