
Cloud Twin: Native Execution of Android
Applications on the Windows Phone

Ethan Holder, Eeshan Shah, Mohammed Davoodi, and Eli Tilevich
Dept. of Computer Science

Virginia Tech, Blacksburg, VA 24061, USA
{eholder0,eeshan9,mdavoodi,tilevich}@cs.vt.edu

Abstract—To successfully compete in the software marketplace,
modern mobile applications must run on multiple competing
platforms, such as Android, iOS, and Windows Phone. Compa-
nies producing mobile applications spend substantial amounts of
time, effort, and money to port applications across platforms.
Creating individual program versions for different platforms
further exacerbates the maintenance burden. This paper presents
Cloud Twin, a novel approach to natively executing the function-
ality of a mobile application written for another platform. The
functionality is accessed by means of dynamic cross-platform
replay, in which the source application’s execution in the cloud
is mimicked natively on the target platform. The reference
implementation of Cloud Twin natively emulates the behavior of
Android applications on a Windows Phone. Specifically, Cloud
Twin transmits, via web sockets, the UI actions performed on
the Windows Phone to the cloud server, which then mimics the
received actions on the Android emulator. The UI updates on the
emulator are efficiently captured by means of Aspect Oriented
Programming and sent back to be replayed on the Windows
Phone. Our case studies with third-party applications indicate
that the Cloud Twin approach can become a viable solution to
the heterogeneity of the mobile application market.

I. INTRODUCTION

The current market for mobile applications is highly frag-
mented between the plurality of platforms, including Android,
iOS, Blackberry, and Windows Phone. There is great economic
benefit to supporting successful mobile applications on all ma-
jor platforms, so as to maximize the potential customer base.
Unfortunately, porting a mobile application across platforms
incurs software development costs. Furthermore, supporting an
application across multiple mobile platforms exacerbates the
maintenance burden, as each bug fix and feature enhancement
have to be applied to all the supported platforms.

Recognizing the need for heterogeneity, mobile application
designers have created frameworks for cross-platform mobile
development, such as PhoneGap [18]. These platforms typi-
cally leverage the mobile web browser that executes applica-
tions written in JavaScript and CSS. Despite the widespread
use of cross-platform mobile frameworks, developing native
applications remains the preferred practice in the mobile
software market. Native applications (i.e., written for a specific
platform using the platform’s API) have a unique look-and-
feel expected by the customers; they also take advantage of
platform-specific features such as the platform’s native maps
(Google Maps for Android [5], Apple Maps for iOS [6], and
Bing Maps for Windows Phone [7]).

In this paper, we present a solution to the heterogeneity
problem of the mobile application market that does not require
manual porting of applications nor shifting the development
into cross-platform frameworks. Our solution, called Cloud
Twin, makes it possible to execute mobile applications written
for one platform natively on another platform. The basic
idea behind Cloud Twin is that a mobile application has two
isomorphic versions: the source, executed on a cloud-based
edge server, and the target, executed on a local mobile device.

A mobile application is preprocessed, and its source UI
screen is automatically translated to the target platform. Then
the UI actions performed on the target are captured and sent to
the source, at which time they are replayed using an emulator.
The resulting UI changes on the source are then detected,
transfered, and applied to the target application. In addition
to its basic services, Cloud Twin also specially handles sensor
input as well as time and location services. In other words, it
ensures the target’s environment is used by both versions of
the application. The reference implementation of Cloud Twin
natively executes Android applications on the Windows Phone.

The most surprising insight we have derived from experi-
menting with our prototype implementation is that the mim-
icking functionality of Cloud Twin is quite efficient, with the
resulting latencies not adversely affecting the user experience.
With the edge server running within the same administrative
domain and connected to by a Wi-Fi network, the latencies of
executing common UI actions in a typical application never
surpassed the one second threshold [19], thus making the
Cloud Twin approach feasible and useful. In particular, we
were able to natively execute several small but real Android
applications natively on the Windows Phone, with the users not
suspecting that they were natively interacting with applications
written for a different platform. Although these initial experi-
ences were only informal trials, they nonetheless indicate that
Cloud Twin has the potential to become a practical solution
to the problem of making a mobile application available on a
variety of platforms.

The rest of this paper is structured as follows. Section II
gives an overview of the main components of Cloud Twin.
Section III provides the initial evaluation results. Section
IV discusses the advantages and limitation of Cloud Twin.
Section V compares Cloud Twin to the related state of the art,
and Section VI outlines future work directions and presents
concluding remarks.



1 if (view instanceof Button) {
2 Element newElement = document
3 .createElement("Button");
4 Button button = (Button)view;
5 addComponentProperties(view, newElement,
6 "button");
7 newElement.setAttribute("text", button
8 .getText() + "");
9 newElement.setAttribute("textSize",

10 button.getTextSize() + "");
11 newElement.setAttribute("textColor",
12 String.format("#%06X", button.
13 getCurrentTextColor() & 0xFFFFFF));
14 int[] location = new int[2];
15 button.getLocationOnScreen(location);
16 newElement.setAttribute("xPos",
17 location[0] + "");
18 newElement.setAttribute("yPos",
19 location[1] + "");
20 element.appendChild(newElement);
21 }

Fig. 1. Aspect code that captures a button’s properties.

II. CLOUD TWIN DESIGN AND IMPLEMENTATION

Cloud Twin first automatically translates the initial screens
of the source. Then it continuously captures, transmits, and
replays user actions and UI updates, until the user switches
to another application. In the following discussion, we detail
each major component of Cloud Twin in sequence.

A. Preprocessing

At the source application, Cloud Twin intercepts the execu-
tion point at which the UI is created but not yet displayed to
the user. Then it examines the runtime UI tree to detect the
constituent interface components and the listeners attached to
them. This step of the approach extends on our prior work [1].
The interception is accomplished by means of Aspect-Oriented
Programming (AOP) (we use AspectJ [12]), and the UI tree is
walked by means of reflection. Cloud Twin features an aspect
library that can capture all the UI components for the Android
platform [4]. Figure 1 shows sample AOP code to intercept
a button object and its properties. Thus, Cloud Twin assumes
that the source application’s language has an AOP extension
and supports reflection, an assumption that holds true for the
majority of mobile platforms.

B. Runtime Processing

Cloud Twin represents the running source application as a
collection XML structures, modeling each application view.
The mapping between the actual UI and its XML repre-
sentation is defined for each major Android [4] layout and
component including: LinearLayout, ScrollView, ListView,
RelativeLayout, Spinner, Button, TextView, and MapView.
Figure 2 shows a sample Android source XML layout and the
corresponding intermediate form’s XML structure generated
from the sample. Although this selection of UI elements
does not encompass the full range of available layouts, it
covers the most common cases. Furthermore, the Cloud Twin

1 // Android XML Page Layout
2 <?xml version="1.0" encoding="utf-8"?>
3 <LinearLayout xmlns:android=
4 "http://schemas.android.com/apk/res/android"
5 android:layout_width="fill_parent"
6 android:layout_height="fill_parent"
7 android:orientation="vertical"
8 android:id="@+id/mainPanel0">
9

10 <TextView android:id="@+id/textView0"
11 android:background="#000000"
12 android:textColor="#FFFFFF"
13 android:layout_width="fill_parent"
14 android:layout_height="50dp"
15 android:textSize="40dp"
16 android:text="0" />
17 </LinearLayout>
18

19 // Intermediate Language XML
20 <?xml version="1.0" encoding="UTF-8"?><Layout>
21 <LinearLayout id="mainPanel0" height="430"
22 width="320" background="null"
23 visible="true" orientation="vertical">
24 <TextView id="textView0" height="50" width="320"
25 background="#000000" visible="true" text="0"
26 textSize="40.0" textColor="#FFFFFF" xPos="0"
27 yPos="50"/>
28 </LinearLayout>
29 </Layout>

Fig. 2. Sample Android XML page layout and corresponding intermediate
language XML.

framework enables the developer to easily support customized
UI elements.

Fig. 3. The reference implementation of Cloud Twin.

C. The Source Setup

The source application runs on an emulator, whose function-
ality is exercised by means of an event handler. The emulator
replays the UI events captured on the target. An aspect library
intercepts all the updates to the source’s views to encode and
apply them to the target’s view. The actions being triggered



Fig. 4. Android Application (The Source) Fig. 5. Windows Phone Application (The Target)

on the target application related to the events taking place on
the source application are similar in nature to the differences
in client and server-side scripting.

A typical UI processing scenario is the target application
executing a listener to process an event. However, the listeners
are modified to capture the events they trigger, so that the
triggered events’ parameters are transmitted to the source.
There, the event is replayed on the source application using
the emulator, with the resulting differences in the source’s UI
sent back to the target. Thus, the source emulator has to repeat
the UI interactions performed on the target.

Figure 3 outlines the execution process. To repeat the UI
interactions on the source, Cloud Twin takes advantage of
the MonkeyRunner test-automation framework [14], which
interfaces with the emulator. To translate Windows Phone
screen positions to equivalent Android emulator positions,
Cloud Twin features a collection of simple Python scripts.

D. The Target Processing

Cloud Twin utilizes the XML intermediate form created by
the source application to subsequently generate a target lan-
guage application. In the reference implementation of Cloud
Twin, Windows Phone applications are created by generating
XAML and XAML.CS files from the intermediate XML files.
The reference implementation utilizes Visual Studio 2012
[11] with WebSocket4Net [16] and WPtoolkit [17] plugins
to expedite target application generation and processing.

When translating the intermediate XML files, each XML
object’s fields, such as height, width, id, position, etc., are con-
verted to XAML fields. To process events, the corresponding
objects’ listeners [15] in the XAML.CS files are overwritten
to communicate with the emulator via persistent web sockets.
However, when it comes to referencing the target application
for sensor processing (e.g., obtaining location or accelerometer
data), the emulator utilizes another collection of aspect files.
By modularizing these steps into intermediate objects, we

aimed at making Cloud Twin extensible to be able to support
other source and target mobile platforms in the future.

E. The Source Execution

The final major component of Cloud Twin is executing
the target application by communicating with the source’s
emulator. This piece of functionality takes advantage of web
sockets with persistent connections as a means of ensuring
efficient distributed asynchronous communication. One of the
key design objectives of Cloud Twin is to ensure that re-
motely replaying UI interactions does not incur high latencies.
Using persistent web sockets reduces the aggregate latencies
by establishing and maintaining a single connection. The
Cloud Twin communication protocol is also fundamentally
asynchronous and event-based. As a result of these design
decisions, we have never experienced the latency of processing
a single UI interaction surpassing the one second boundary.

III. EVALUATION

In our preliminary evaluation of Cloud Twin, we aimed
at showing that the approach is useful and feasible. To
demonstrate the usefulness of Cloud Twin, we executed several
small Android applications on the Windows Phone. To show
feasibility, we micro-benchmarked the latency of Cloud Twin
processing various UI events.

The example applications that we managed to execute
successfully came from open-source tutorials for programming
the Android platform. One such application combines the
features of a calculator, a map, and an alarm. Figures 4 and 5
shows the screenshots of this application in the source Android
version and the target Windows Phone version, respectively.
The calculator functionality demonstrates how Cloud Twin
supports the use of major UI components, including buttons,
text boxes, and linear layouts. In addition, this application
demonstrates an interesting range of smartphone functionality,
such as the use of the GPS receiver and the alarm facility.
In particular, to provide a meaningful user experience, the



Fig. 6. Measurements of the latency of the network.

executed application must use the GPS receiver and alarm
of the Windows Phone (the target application). To that end,
Cloud Twin redirects such location-specific operations to the
target application by intercepting the appropriate API calls in
the source by means of aspects.

To assess how feasible the Cloud Twin approach is, we
isolated the following latency parameters:

1) Latency of Network Communication
2) Latency of a Complete UI Update
3) Latency of Interacting with Windows Phone
We have measured the latency of network communication

and that of performing a complete UI update. Based on these
measurements, we then extrapolated the latency of interacting
with the Windows Phone when using Cloud Twin.

A. Latency of Network Communication

We isolated the latency of network communication using
web sockets by measuring the total time it takes to send a
message from the target’s web socket and receive a response
(i.e., a network roundtrip). Thus, this measurement sheds light
on how long it takes to send a message, to process the message
at the source, and to transmit a response back to the target. The
physical network used in this benchmark is a Wi-Fi network
of 100mbps.

Figure 6 shows the numbers for a 100 network roundtrips.
For each roundtrip, the average latency is about 290 millisec-
onds, with a maximum of 641 milliseconds and minimum of
281 milliseconds. Although Wi-Fi networks may not always
be available when executing mobile applications, these latency
numbers should be comparable to using a high-end cellular
network such as 4G.

B. Latency of a Complete UI Update

We isolated the latency of a complete UI update by mea-
suring the total time it took between pressing a button on the
target application and updating a text label in response. This
measurement encompasses the following sequence of events:

Fig. 7. Measurements of the latency of the overall UI update process.

(1) the button pressed, (2) the resulting event is captured and
transmitted to the source application, (3) the press is replayed
on the source, (4) the text label update is intercepted, (5)
the update is sent back to the target, (6) the target’s label
is updated with the received data. Thus, this measurement
demonstrates a realistic response time a user would encounter
when interacting with the reference implementation of Cloud
Twin. Note that this measurement includes the latency of
network communication discussed above.

Figure 7 shows the numbers resulting from repeating the
measured operation a 100 times. The overall average latency
was 314 milliseconds, with a maximum of 846 milliseconds
and minimum of 281 milliseconds. The measured UI scenario
is typical for modern user interfaces. The important insight
is that the response time never exceeded the one second
threshold, thus not compromising the user experience [19].
Future work will assess whether Cloud Twin can achieve
comparable efficiency when processing more complex UI
scenarios.

C. Latency of Interacting with Windows Phone

We isolated the latency of the user interacting with a Win-
dows Phone target application by computing the differences
between the results of the complete UI update benchmark
and the average network latency (i.e., 291.05 milliseconds).
Figure 8 show the resulting extrapolated latency incurred by
the Windows Phone device itself. The average latency of only
23.15 milliseconds, with a maximum of 554.95 milliseconds
(846 - 291.05) and minimum of -10.05, indicate that the
Windows Phone executes quite efficiently. However, there are
still some peaks with higher than average latency that could
potentially jeopardize the user experience.

IV. DISCUSSION

A. Advantages

Cloud Twin provides several software engineering benefits
when companies need to make their mobile applications



Fig. 8. The theoretical latency of the Windows Phone emulator.

available on multiple heterogeneous platforms. When fully
realized, the Cloud Twin platform should be able to support
the principle of “Write Once, Run on any Mobile Platform.”
Not only does Cloud Twin execute mobile applications on
other platforms, but it does so natively, using the platform
UI components and sensors. In the presence of a high-end
network, Cloud Twin imposes only a modest latency overhead,
almost undetectable for most users. Executing the majority of
functionality on the edge server also provides the benefits of
saving battery power [8]. The net effect of these advantages
leads to reducing software development efforts and costs as
well as reducing power consumption.

B. Limitations

The main limitation of Cloud Twin lies in its range of
applicability. Applications with custom UI components, espe-
cially those that make use of animations, can not be translated
by Cloud Twin without additional input from a user. One
such domain is mobile gaming, for which the Cloud Twin
approach is inapplicable. Thus, we envision that the primary
beneficiaries of the Cloud Twin technology would be business
users who want to access productivity-enhancing applications
on their own mobile devices. Business applications commonly
feature a standard UI structure, which Cloud Twin already
supports natively. If some customized UI components become
mainstream, the Cloud Twin framework can be extended to
support them, thus benefiting the average user.

Another drawback to Cloud Twin is that the latency of
multiple operations is not composable: the aggregate latency
is the sum of the time taken by each individual UI operation.
To optimize this inefficiency, we could batch individual UI
operations to minimize the network communication latency.
We may indeed pursue this optimization as a future work
direction. Having said that, our experiences with the refer-
ence implementation of Cloud Twin indicate that the average
latency never becomes unreasonably high to frustrate the user.

Another potential limitation of Cloud Twin concerns how

the approach affects security, particularly the permission
scheme in place. Although the distributed communication in
Cloud Twin is indistinguishable from those in standard Web-
enabled mobile applications, the very introduction of network
interaction may weaken security.

The approach also circumvents the built-in mobile permis-
sion schemes on both the source and the target to enable
emulated execution and sensor access. The assumption is that
the source is secured on a server. However, in future work, we
plan to explore with supporting more fine-grained permission
schemes during the translation process. Thus far, we have not
taken a close look at security. Once the approach matures, an
increased focus will be placed on security.

Yet another limitation to Cloud Twin’s applicability is lack-
ing support for platform-specific hardware, such as Near Field
Chip (NFC) on Android. Cloud Twin cannot support the UI
interactions that involve platform-specific hardware, without
equivalents on all major platforms. However, the extensible
architecture of Cloud Twin makes it possible to support newly
introduced hardware components.

Lastly, the overhead of maintaining cloud-based emulators
can become an obstacle to widespread use of the technology.
Cloud Twin requires the availability of numerous dedicated
edge servers, as running multiple emulators may take inordi-
nate amounts of memory and processor resources. Depending
on the underlying cloud infrastructure cost model, Cloud Twin
may not scale well for high-volume commercial deployments.

V. RELATED WORK

Cloud Twin builds on our prior work in which we
used aspect-oriented programming and reflection to reverse-
engineer UIs at runtime with the purpose of subsequently
translating them to other platforms [1]. Cloud Twin employs
the same strategy for extracting UI elements. Specifically,
this mechanism is used to produce the initial UI screen of
the target application. While in our prior work, we focused
on extracting UIs and statically translating them to multiple
additional platforms, Cloud Twin translates and updates UIs
across platforms continuously at runtime.

Cloud Twin conceptually relates to the work performed to
map various platform APIs to one another. Mobile platform
vendors commonly provide publicly accessible mappings that
show which APIs of the target platform can be used to
emulate the functionality of the source platform. For example,
Microsoft provides such mappings between Android and the
Windows Phone [9]. These mappings specifically relate API
calls from one language to equivalent API calls in the other
language in a dictionary-like fashion. Cloud Twin differs by
using an intermediate form that abstracts away the logic of
either language. Thus, Cloud Twin differs by lending itself to
being easily extended to other platforms and languages. As
long as the source language can be represented by means of
the Cloud Twin intermediate language, the source platform
application can be supported on other target platforms.

The intermediate UI form of Cloud Twin resembles the
universal UI representations of independent UI models, such



as those used in UIML [10] and the aforementioned Phone-
Gap [18]. UIML and PhoneGap enable platform independent
design and development of user interfaces. UIML employs an
XML base language to subsequently generate user interfaces
in a desired language. However, these and other platform
independent approaches require that mobile applications be
constructed using a particular language and the accompanying
framework. By contrast, Cloud Twin assumes that mobile
applications have already been constructed using their native
platform APIs. Thus, Cloud Twin enables the execution of
such applications natively on other mobile platforms.

VI. FUTURE WORK AND CONCLUSIONS

The reference implementation of Cloud Twin makes it pos-
sible to execute Android applications natively on the Windows
Phone. The ultimate goal of Cloud Twin is to combine the ben-
efits of full source-level cross-platform porting and designing
for a particular mobile platform. The reference implementation
has demonstrated that the Cloud Twin approach is feasible
and useful. However, to turn Cloud Twin into a practical
software tool, we plan to enhance our implementation along
the following lines.

A. Increasing the UI Component Coverage

Since more UI components are available than the ones
chosen for the Cloud Twin prototype, extending the existing
set would allow for more complete coverage when translating
the UI tree. Additionally, customized components that are
largely used within the community, such as the Android
Sherlock Action Bar, could be added to the existing set.

B. Supporting Additional Platforms

The reference implementation can only translate from an
Android-based application to a Windows Phone-based ap-
plication. However, Cloud Twin can be extended to other
source platforms. As the only requirements are the support
of AOP and having a test-automation framework, other mo-
bile platforms are amenable to this approach as the source,
including the Windows Phone and iOS platforms. A fixed
intermediate form and the modular nature of the Cloud Twin
implementation should facilitate future extensions.

In addition to source platforms, Cloud Twin could also be
extended to allow additional target platforms, as the benefits
multiply when generating a plurality of target applications.
Utilizing the existing intermediate form as a starting point
and using the current basic grammar as a template, future
work could extend Cloud Twin to support the targets including
Android and iOS.

C. Automating Adoption of API Evolution

Based on the work described in projects, including Rosetta
[2] and MAM [3], Cloud Twin can be enhanced with the
ability to automatically update itself in response to the changes
in source and target APIs. The current Cloud Twin im-
plementation defines exactly which components on Android
are written to the intermediate language and exactly what

those intermediate language components are written to in the
Windows Phone. The ideas presented in Rosetta and MAM
allows for analysis of different language APIs to map them
to each other. Enhancing with such technology, Cloud Twin
should be able to continuously update itself in response to the
updates in platform APIs by analyzing the differences between
the source and target APIs in different application versions.

D. Collaborative Mobile Applications

Based on the work in Cloud Twin to abstract an appli-
cation’s UI away from its backend source, it is conceivable
that multiple applications could be combined into one by
connecting to multiple sources at once via one unified UI.
One group UI could easily be comprised out of multiple
translated UIs by simply adding page changes in each in-
dividual UI to direct control flow. Then each translated UI
could communicate separately with its own backend source
via its own emulator service. The ability to dynamically
combine arbitrary application UIs could foster novel mobile
development paradigms.

ACKNOWLEDGMENTS

This research is supported by the National Science Founda-
tion through the Grant CCF-1116565.

REFERENCES

[1] E. Shah and E. Tilevich. Reverse-engineering user interfaces to facilitate
porting ot and across mobile devices and platforms. In Workshop on Next-
generation Applications of Smartphones, 2011.

[2] A. Gokhale, V. Ganapathy, and Y. Padmanaban. Inferring Likely Map-
pings Between APIs. In ICSE, 2013.

[3] H. Zhong, S. Thummalapenta, T. Xie, L. Zhang, and Q. Wang. Mining
API mapping for language migration. In ICSE, 2010.

[4] Google. Android API reference. http://developer.android.com/reference/
packages.html.

[5] Google. Google Maps Android API v2. https://developers.google.com/
maps/documentation/android/.

[6] Apple. Map Kit Framework Reference. http://developer.apple.com/library/
ios/documentation/MapKit/Reference/MapKit Framework Reference/.

[7] Microsoft. Bing Maps APIs. http://msdn.microsoft.com/en-us/library/
dd877180.aspx.

[8] B. Zhao, B. C. Tak, and G. Cao. Reducing the Delay and Power
Consumption of Web Browsing on Smartphones in 3G networks. In
ICDCS, 2011.

[9] Windows phone interoperability: Windows phone API mapping. http://
windowsphone.interoperabilitybridges.com/porting.

[10] M. Abrams, C. Phanouriou, A. L. Batongbacal, S. M. Williams, and J.
E. Shuster. UIML: an appliance-independent XML user interface language.
Computer Networks, 31(11-16):1695-1708, 1999.

[11] Microsoft. Visual Studio 2012. http://www.microsoft.com/visualstudio/
eng/products/visual-studio-ultimate-2012#product-edition-ultimate.

[12] Eclipse. AspectJ: Crosscutting Object for Better Modularity. http://www.
eclipse.org/aspectj/.

[13] Eclipse. Eclipse Downloads. http://www.eclipse.org/downloads/.
[14] Google. MonkeyRunner Android Development Tools. http://developer.

android.com/tools/help/monkeyrunner concepts.html.
[15] Microsoft. Windows Phone API Reference. http://msdn.microsoft.com/

en-us/library/windowsphone/develop/ff626516(v=vs.105).aspx.
[16] Apache. WebSocket4Net. http://websocket4net.codeplex.com/.
[17] Microsoft. Windows Phone toolkit 4.2012.10.30. http://phone.codeplex.

com/.
[18] R. Ghatol and Y. Patel. Beginning PhoneGap: Mobile Web Framework

for JavaScript and HTML5. Apress, 2012.
[19] R. B. Miller. Response Time in Man-Computer Conversational Trans-

actions. In AFIPS, 1968.

http://developer.android.com/reference/packages.html
http://developer.android.com/reference/packages.html
https://developers.google.com/maps/documentation/android/
https://developers.google.com/maps/documentation/android/
http://developer.apple.com/library/ios/documentation/MapKit/Reference/MapKit_Framework_Reference/
http://developer.apple.com/library/ios/documentation/MapKit/Reference/MapKit_Framework_Reference/
http://msdn.microsoft.com/en-us/library/dd877180.aspx
http://msdn.microsoft.com/en-us/library/dd877180.aspx
http://windowsphone.interoperabilitybridges.com/porting
http://windowsphone.interoperabilitybridges.com/porting
http://www.microsoft.com/visualstudio/eng/products/visual-studio-ultimate-2012#product-edition-ultimate
http://www.microsoft.com/visualstudio/eng/products/visual-studio-ultimate-2012#product-edition-ultimate
http://www.eclipse.org/aspectj/
http://www.eclipse.org/aspectj/
http://www.eclipse.org/downloads/
http://developer.android.com/tools/help/monkeyrunner_concepts.html
http://developer.android.com/tools/help/monkeyrunner_concepts.html
http://msdn.microsoft.com/en-us/library/windowsphone/develop/ff626516(v=vs.105).aspx
http://msdn.microsoft.com/en-us/library/windowsphone/develop/ff626516(v=vs.105).aspx
http://websocket4net.codeplex.com/
http://phone.codeplex.com/
http://phone.codeplex.com/

	Introduction
	Cloud Twin Design and Implementation
	Preprocessing
	Runtime Processing
	The Source Setup
	The Target Processing
	The Source Execution

	Evaluation
	Latency of Network Communication
	Latency of a Complete UI Update
	Latency of Interacting with Windows Phone

	Discussion
	Advantages
	Limitations

	Related Work
	Future Work and Conclusions
	Increasing the UI Component Coverage
	Supporting Additional Platforms
	Automating Adoption of API Evolution
	Collaborative Mobile Applications

	References

