
A Programming Model for Reliable and Efficient
Edge-Based Execution Under Resource Variability

Zheng “Jason” Song and Eli Tilevich
Software Innovations Lab, Virginia Tech

{songz,tilevich}@cs.vt.edu

Abstract—Edge computing applications use the computational,
sensor, and networking resources of nearby mobile and stationary
computing devices. Because dissimilar devices can provide these
resources, one cannot predict which exact combinations of
resources will be available at runtime. The resulting variability
hinders the development of edge computing applications. To
address this problem, we present a new programming model that
employs a domain-specific language (DSL), through which the
developer declaratively specifies a collection of microservices and
how they invoke each other. Given a concise declarative service
suite specification, the DSL compiler automatically generates an
execution plan, carried out by our distributed runtime. The
resulting programming model is both reliable and efficient. The
reliability is achieved by enabling the developer to provide
equivalent microservices as switch-over recovery strategies. The
efficiency is achieved by the DSL compiler orchestrating the
speculatively parallel execution of certain equivalent microser-
vices. Our evaluation demonstrates the reliability, efficiency,
and expressiveness of the programming model, which can help
developers who need to cope with variable resources at the edge.

I. INTRODUCTION

In contrast to cloud computing, edge computing processes
data locally near its source (i.e., at the “edge” of the net-
work), thereby reducing the network transmission load and
communication latency. In addition, by leveraging the edge
environment’s sensor and networking resources, edge comput-
ing applications can take advantage of the local context and
accelerate data transfer [3], [11], [4], [5], [9], [15], [2], [10].

The need to access nearby sensors and to reduce commu-
nication latencies requires that edge resources be orchestrated
for a reliable and efficient execution. Nevertheless, software
developers lack adequate programming support to be able to
engineer such edge computing applications [18], [17], [16].
In recent years, microservices [1] have been embraced as
an architecture that structures distributed systems modularly
to clearly separate concerns. Microservices fit naturally the
domain of edge computing, which coordinates the execution
of multiple dissimilar computing devices. However, extant mi-
croservice frameworks are inherently cloud-based, and cannot
be directly applied to edge-based environments.

Two primary factors hinder the use of microservices at the
edge: (1) Cloud-based microservice architectures require that
all executable resources be pre-deployed on the participating
devices, which can be accessed by querying an Internet-based
registry service. However, connected via local-area networks,
edge-based resources can only be accessed within a limited
physical area. (2) As a result, edge environments differ in

their setups, making it impossible to rely on any standard
set of edge-based resources. Hence, robust and efficient edge
computing applications should be able to adapt to the available
sets of resources in dissimilar runtime environments.

Consider obtaining environmental sensor data, such as tem-
perature, humidity, or CO2. A mobile application may need to
keep track of up-to-date environmental data, specific to the
device’s current geo location. However, edge environments
often possess dissimilar resources that can provide the nec-
essary data. For instance, temperature can be read from a
local sensor or be obtained by passing the location parameter
to a web-based weather service. To fulfill these application
requirements, developers need to either implement complex
logic that covers all possible combinations of available edge
resources, or hardcode the implementation for a particular edge
environment with pre-deployed resources.

In this paper, we present a novel programming model
for orchestrating reliable and efficient execution in edge en-
vironments with variable resources. Our model features a
declarative domain-specific language (DSL) for orchestrating
the execution of microservices at the edge. Our language is
called MOLE (Microservice Orchestration LanguagE). The
MOLE compiler takes as input the declarative specification of
microservices and produces a platform-independent execution
plan. The MOLE runtime takes the generated execution plan
as input, and adaptively steers the execution of the expressed
functionality on the set of available devices.

The contribution of this paper is four-fold:
1) We present MOLE—a declarative DSL that enables

programmers to express edge-based application as an
ensemble of microservice executions; MOLE naturally
supports redundant execution to adapt to opportunistically
available resources.

2) We describe the MOLE compiler that generates platform-
independent execution plans; the compiler automatically
parallelizes microservice execution.

3) We design a novel microservice-based runtime architec-
ture that supports MOLE programs to execute microser-
vices on the available edge devices.

4) We evaluate MOLE, its compiler, and runtime system on
a set of benchmarks and case studies.

The rest of this paper is organized as follows: Section
II analyzes the problem of variable resources at the edge;
Section III gives an overview of MOLE and its infrastructure;
Section IV and V details the design of MOLE language and

its runtime. Section VI discusses our implementation and
empirical evaluation. Section VII compares MOLE to the
related state of the art. Section VIII concludes this paper.

II. PROBLEM ANALYSIS

In this section, we demonstrate the difficulties of program-
ming edge computing applications.

A. High Resource Variability at the Edge
Developing software for edge computing environments dif-

fers from that for the cloud. Developers can reasonably assume
the high availability and reliability of cloud-based resources.
Cloud providers are bound by the terms of Service Level
Agreements (SLAs) to ensure their services remain up and
running. Hence, because most failures in cloud-based sys-
tems are recovered from quickly, a simple retry to contact
a temporarily inaccessible cloud service is a reasonable fault
handling strategy [8]. However, in edge-based environments,
the resource availability is likely to cause execution failures,
triggered by the differences in the resource setups of edge
environments.

Nevertheless, edge programming models [8], [12] continue
to follow the fault handling strategies, originally introduced
for cloud-based microservices — handling faults by retries
and adjusting minor configuration setups (e.g., switching net-
work connectivity methods, switching to devices capable of
providing the same functionalities).

require: temperature

read from nearby sensor read from Internet

require: null require: current location

get location from GPS get Location from Cell-ID

preferable

Fig. 1. Increasing Dependability by Increasing Redundancy.

We observe that edge environments can provide the same
application functionality in a variety of ways. In the motivating
example, the developer can either read a local temperature
sensor or parameterize a web-based weather service with the
user’s geo location. As another example, consider detecting
the breakout of fire in a building, different sensors (e.g.,
temperature, dust level, CO2 level, etc.) can be combined to
ascertain whether there is fire.

Hence, given the high variability at the edge, our pro-
gramming model centers around the concept of resource
redundancy and makes it natural for the developer to specify
alternative ways to provide the same functionality. Continuing
with the temperature example above, Fig. 1 shows a possible
design flow, in which the developer first considers obtaining
temperature by reading a local sensor, but then realizing that
such sensors may be unavailable or disabled, would specify
a back-up alternative of obtaining the required information
from a web-service. Both alternatives provide equivalent func-
tionalities with minor caveats. Local sensors are likely to

provide higher accuracy, while weather web services are
highly reliable, even when given a coarse-grained geo location.
To obtain the location, multiple localization methods (e.g.,
GPS based, cell-id based, WiFi based) are equally suitable.

B. Complexity of Orchestrating Edge Microservices

To implement the redundancies, developers typically need
to engineer high-complexity code, particularly if the resulting
execution has efficiency requirements.

Read temperature from Sensor

Parallel Start

Parallel End

Get GPS Location Other Localization Methods

Read temperature from web

Start

Success

FailSuccess

Fig. 2. Execution Sequence of Example Edge Application.

Let us revisit the temperature example above. Some local-
ization methods can experience unexpectedly high latencies.
To accelerate the overall execution, the developer may want
to take advantage of speculative parallelism: spawn multiple
localization methods at once, and proceed once any one
of them returns successfully. Fig. 2 shows how speculative
parallelism can be integrated into the execution flow.

There is an impedance mismatch between the simplicity of
how developers can divide a required functionality into distinct
functions (Fig. 1), and the complexity of orchestrating these
functions to execute correctly and efficiently (Fig. 2). Exist-
ing programming models require that functions be explicitly
arranged into an execution flow, thus unnecessarily burdening
the developers.

III. MOLE OVERVIEW

Next, we give a brief overview of how developers can use
MOLE to provision for edge applications. First we briefly
introduce the system architecture, and then explain the basic
system execution flow of MOLE applications.

A. System Architecture

Fig. 3 shows the MOLE system architecture, which com-
prises four major components: 1) a client device that requires
distributed resources to accomplish an application functional-
ity; 2) a local device that serves as a gateway by maintaining
an up-to-date mapping between the available nearby devices
and their resource capacities; 3) a microservice market, a
cloud-based repository of executable code of all available

2

Microservice Gateway

Mobile Devices

IoT Devices

Wearable Devices

Edge Server

Cloud Server

Client Resource Provisioning Devices

Cloud-based Microservice Market

Programmer

1.Call “getTemp” Service Suite

2.Download Executable File of Service Suite

3. Invoke Microservices

MOLE Script of “getTemp”

Fig. 3. Solution Overview.

microservices; 4) a set of local devices that provide their
resources to applications.

Gateways: A typical microservice architecture features
a centralized service registry, a collection of registered
microservice-to-device mappings, with a remote interface
through which clients can bind themselves to the microservices
they want to invoke. Notice that if the registry is not replicated,
it becomes vulnerable to the single point of failure. Besides,
edge-based applications need to invoke microservices on the
devices reachable via short-range communication methods
(e.g., WiFi, Bluetooth), rendering cloud-based registries in-
applicable. To meet these requirements, MOLE features a
novel system component: an edge gateway, thus replacing the
standard cloud-based service registry. Similarly to its cloud-
based counterparts, the edge gateway maintains a registry of
all the microservices provided by edge devices. At runtime,
clients interact with the reachable gateway in its vicinity to
execute microservices; the gateway interacts with the available
devices on its clients’ behalf. Since gateways form a network,
in case a device hosting a gateway fails, clients proceed
contacting the remaining gateways until reaching one of them.

Cloud-based Microservice Market: Our design leverages
the MicroService Market (MSM for short), a cloud-based
network component that combines features of application
markets and service repositories [14]. By following the ap-
plication market model, MSMs enable devices to automati-
cally download the needed microservices for execution. By
following the service repositories model, MSMs enable edge
application developers to implement the needed functionalities
as microservices, to be executed by the available devices in a
given edge computing environment.

B. Service Suite Execution Model

To understand the general MOLE system flow, recall the
“getting the temperature” example. An application running on
a client device sends the request to execute getTemp service
suite to a nearby gateway (Step 1). The gateway downloads the
getTemp service suite from a cloud-based MSM (Step 2), and
executes it by orchestrating the microservice invocations on the
available devices at the edge (Step 3). The gateway continu-
ously collects the microservice execution results, which drive

the orchestration of the microservice invocations involved.
Upon completing the service’s execution, the gateway returns
the final results to the client.

In the example above, getTemp comprises a collection
of microservice invocations, which can be initiated by edge
applications to obtain the functionality at hand. In the rest of
the manuscript, we refer to such collections as a service suite.

Definition 1. Service Suite: implements an application func-
tionality by orchestrating a collection of microservices.

The MOLE programming model enables service suite devel-
opers to declaratively specify how to orchestrate the execution
of microservices. The MOLE compiler then translates these
specifications into an execution graph, while optimizing the
resulting edge based execution via speculative parallelism.
The MOLE distributed runtime finally discovers the available
devices to execute the specified microservices on them, as
directed by the compiled MOLE specifications.

IV. MOLE DSL DESIGN

Fig. 4 defines the syntax of MOLE in EBNF. Some of the
key features are as follows:

• Each service suite is identified by a unique id, Service
Identity. Service suites may take Service
Parameter, which must be passed when the suite is
invoked.

• A service suite comprises one or more Microservice
Invocation’s, identified by unique IDs, and containing
additional attributes explained next.

• A microservice invocation comprises the following at-
tributes: 1) the Device Selection rules that guide
how to select a device to run on; 2) the Input Params
that specify the microservice’s invocation parameters,
some of which are hardcoded (indicated by set) while
others are passed at runtime (indicated by req – short
of “require”); 3) the After Execution Rules that
specify what results should be returned (ret), and what
the next suite execution step should be (could be either
exiting service suite , or invoke another MS).

• The execution procedure of a microservice can be
controlled by execution parameters (ep), which is

3

1 <Service_Suite> ::= <Service_Identity> <Service_Description>
2 <Service_Identity> ::= "Service "String
3 <Service_Description> ::= "{"[<Service_Parameter>] <Microservice_Invocations>"}"
4 <Service_Parameter> ::= "global_input: "[<Input_Parameter_Name> ","]
5 <Microservice_Invocations> ::= [Microservice_Invocation]+
6
7 <Microservice_Invocation> ::= "MS:" <MS_Identity> "{" [<MS_Detail>]+ "}"
8 <MS_Identity> ::= String
9

10 <MS_Detail>::= <Device_Selection>|<Input_Params>|<After_Execution_Rules>
11 <Device_Selection> ::= "device:" [<Select_Rule> "."]+
12 <Select_Rule> ::= "select"|"sort" "(" String ")"
13 <Input_Params> ::= ("req": [<Param Name> ","]+)|("set:" [<Param_Name> "to" <Param_Value> ","]+)
14 <After_Execution_Rules> := "on." <Condition> ":" [<return> ";"] [<redirection>]
15 <Condition> ::= "success"|"fail"|"res."<Param_Name><Operation><Value> |"ep."<Param_Name><Operation><Value>
16 <return> ::= "ret" [String ["as" String] ","]+
17 <redirection> :== <MS_Identity>|"exit"

Fig. 4. DSL EBNF Definition.

1 Service getTemp {
2 MS: getTempSensorReading {
3 device: select("Sensor.Temperature")
4 on.success: ret temp
5 on.fail: getTempbyLocation
6 }
7 MS: getTempByLocation {
8 device: select("Internet")
9 req: location

10 set: ep.max_retry to 3
11 on.success: ret temp
12 }
13 MS: getLocationByGPS {
14 device: select("Location.GPS_PROVIDER")
15 on.success: ret loc as location
16 }
17 MS: getLocationByCellID {
18 device: select("Location.NETWORK_PROVIDER")
19 on.success: ret loc as location
20 }
21 }

Fig. 5. Source File of getTemp Service Suite

a special kind of Input Params. ep contains a
fixed set of directives: maxExecutionTime, maxRetry,
retryOnOtherDevices, and counter.

As a concrete example, consider the MOLE script in Fig.
5, which describes the getTemp service suite. Service
Identity is getTemp, a service suite that takes no pa-
rameters. It comprises four Microservice Invocation:
getTempSensorReading (m1), getTempbyLocation (m2),
getLocationbyGPS (m3), and getLocationbyCellID

(m4). Each microservice has Device Selection rules and
After Execution Rules, while only m2 needs Input.

A pair of microservices (m1, m2) can relate to each other
in two ways: 1) forward relationship: m1 invokes m2 based
on the suite’s business logic; 2) backward relationship: m1

has an input parameter, whose value must first be computed
by invoking m2. In a given suite, developers orchestrate the
execution of microservices based on the concepts of forward
and backward relationships.

To provide an intuitive programming model, MOLE requires
that only the forward relationship be explicitly defined
(e.g.,invoke m2 iff m1 fails). Backward relationships are

automatically inferred based on the naming correspondences
between the input and output parameters of the microservices
in a suite (e.g., m2 requires input parameter ‘a’, m3 produces
‘a’ as its execution result, so the compiler orchestrates the
correct execution sequence of {m1, m3, m2}).

V. MOLE COMPILER AND RUNTIME

Fig. 6 shows how a MOLE script file is compiled, opti-
mized, and executed. Upon completing a microservice suite,
developers upload them to the mobile service market (MSM)
containing the referenced microservices. Recall that MSMs
are network components that combine features of service
repositories and app markets. An MSM has the facilities
for error checking, compiling, and optimizing MOLE suite
specifications. The end result of processing a specification is
an executable containing the service suite’s Execution Graph,
a self-contained repository for all the information required to
efficiently execute the suite. Once a client invokes the edge
application, the edge’s gateway component downloads the
compiled Execution Graph from the MSM and starts executing
it. The execution also involves downloading the referenced
microservices to the devices selected to execute them. If the
gateway fails for any reason, the edge app’s client can always
start interacting with an alternate gateway component, thus
providing a fail-over fault handling strategy. Upon successfully
completing its execution, the suite returns the results back to
the client, or an error if the execution failed for any reasons.

We first describe execution graphs, and then explain how
MOLE scripts are compiled into execution graphs. Finally, we
discuss how the MOLE distributed runtime executes execution
graphs using a distributed microservice gateway.

A. Execution Graph Definition

An execution graph G = (N,E, P) comprises a set N =
{n|n = (t,m, d, p)} of nodes, a set E = {e|e = (ns, nt, c, a)}
of edges, and a set of global parameters P that must be bound
before an execution can start.

A node n = (t,m, d, p) comprises the type t of the node,
the microservice m related to the node, the device selection

4

MOLE Service Suite Script

MS Objects Execution Graph

MSM: Compile MOLE Script

Mobile Client at the Edge

AST Parse Generate
Execution Graph

Execution Graph

Serialialize

Request
Service Suite

Download Corresponding Service Suite

Gateway on the Edge

MS invocationsService Suite
Execution Runtime

Available Edge Devices
Fig. 6. DSL Parsing and Execution.

rules d of the node, and a set of required execution parameters
p. An edge e = (ns, nt, c, a), also written as:

e = ns
c−→
a

nt

indicates that when the execution results of a microservice
node s fits a condition c (c = null if the type of ns is not a
microservice), the next microservice node to visit is nt, with
a set of arguments a passed to it. ns is called the source of e,
nt is called the target of e, e is an outgoing edge of ns, and
e is an incoming edge of nt.

The possible type of nodes t ∈ [M,E,ES,EF, PS, PE],
where M stands for a microservice node, E for the entry node
of the service suite, ES for the successful exit node, EF for
the failure exit node, PS for a parallel start node, PE for a
parallel end node. There can be only one entry node (nE), one
successful exit node (nES) and one failure exit node (nEF).

The PS and PE nodes designate the start and the end of
a speculative parallel execution block, respectively. Upon
entering a PS node, all parallel branches start executing their
first nodes (linked by the outgoing edge of the PS node) in
parallel. A parallel branch may have multiple MS nodes to
execute, and all parallel branches aggregate at the peer PE
node. When all required parameters of the PE node have
been provided by any combination of branches, the PE node
starts to execute its next MS node, disregarding the completion
statuses of the remaining parallel branches.

B. Generating Execution Graphs

The MOLE compiler transforms an input script file into
an execution graph. The key idea of the transformation is to
run a two-phase analysis: (1) control-flow analysis adds edges
between pairs of microservices on the control path (e.g., if ns

fails, invoke nt) and (2) data-flow analysis adds edges between
microservices with data dependencies, (e.g., nt takes as input
the ns’s execution result). The required parallel blocks are
added into the execution graph during the second phase.

Algorithm 1 controls the transformation in four basic steps:
(1) Initialize Nodes (Line 3 - 5): convert each microservice

declared in the source script into “MS” nodes. The node
structures encapsulate the microservice invocations, device
selection rules, and required input parameters. Each graph also

Algorithm 1 Generate Execution Graph.
1: function GENERATEEXECUTIONGRAPH()
2: ExecutionGraph eg ← ExecutionGraph()
3: // Step 1: init nodes
4: eg.nodes ← ParseMicroserviceNodes()
5: eg.nodes ← eg.nodes + NE , NES , NEF NN

6: // Step 2: init edges by control flow analysis
7: for all node ∈ eg.nodes do
8: for all c ∈ node.conditions do
9: if c.type == “invoke microservice” then

10: e ← Edge(node, c.target, c.condition, c.params)
11: eg.edges ← eg.edges + e
12: else
13: e ← Edge(node, NN , c.condition, c.params)
14: eg.edges ← eg.edges + e . link to node Null
15: end if
16: end for
17: end for
18: // Step 3: add edges by data flow analysis
19: dataEdges ← NN .getIncomingEdges() . GIE() for short
20: loopNodes ← eg.nodes - specialNodes - dataEdges.s
21: loopNodes.BFS() . Breadth-First-Search for adding edges
22: // Step 4: find entry node
23: entryNodeSet ← EmptySet
24: for all n ∈ eg.nodes do
25: if n.type==”ms” AND n 6∈ dataEdges.s AND n.GIE()=null then
26: entryNodeSet ← entryNodeSet + n
27: end if
28: end for
29: if entrySet.size!=1 then
30: Raise CompileError(”Cannot Find Entry Node”)
31: else
32: eg.edges ← eg.edges + (NE , entrySet[0], null, null)
33: end if
34: return eg
35: end function

includes four special nodes: NE (entry node), NES (execution
success) , NEF (execution failure), and Null Node NN , a
temporary placeholder used at graph construction time.

(2) Initialize Edges via Control Flow Analysis (Line 6 - 17):
parse the MOLE script to extract the conditional statement for
each “MS” node. Recall that only the forward relationships
must be defined explicitly. If a node’s conditional statement is
linked to another node (could be either “MS”, NES , or NEF

node, which define the forward relationships), add an edge
to the execution graph connecting the two nodes; otherwise,
if it only generates data as output (e.g., ‘on.success: ret

5

loc as location”, which can be used to infer the backward
relationships), add an edge to the graph, connecting the node
with the special NN node.

(3) Add Edges via Data Flow Analysis (Line 18 - 21):
generate a set, initialized with the “MS” nodes, except those
connected to the NN node. All edges leading to the NN

node become “dataEdges” to provide missing arguments for
other microservices. For each node’s incoming edges, calculate
whether the incoming edge’s bound arguments can serve
as the microservice’s required parameters. If not, check if
the missing parameters can be provided by “dataEdges”. If
only one “dataEdge” can provide the missing parameter(s),
add the source of the “dataEdge” to the graph, between the
current node’s source node and the current node. If more
than one “dataEdge” can provide the missing parameter(s),
add a pair PS, PE of parallel blocks between the source
node of the current node and the current node, and then add
all “dataEdges” into the parallel blocks. When new edges are
added, the edges’ source nodes are added to the set, so they
can be also properly processed. This step is actually applying
the breadth-first search algorithm.

(4) Find Entry Node (Line 22 - 34): for all “MS” nodes,
find those without any incoming edges or connected by
“dataEdges”. If only one such node is found, add an edge
between the entry node and the found node. Otherwise, throw
a compile error.

C. MOLE Runtime

MOLE features a distributed runtime system that efficiently
and reliably executes compiled scripts. The runtime’s pivotal
component is an edge gateway, responsible for collecting
the real-time status of surrounding edge devices, accepting
service suite execution requests, downloading the correspond-
ing compiled MOLE scripts from MSMs, and invoking the
constituent microservices. Each microservice-executing device
runs a light-weight HTTP server, which dispatches the ref-
erenced microservices by invoking their execution packages,
provided on demand by MSMs.

To execute a compiled MOLE script, the edge gateway’s
runtime starts the execution at the entry node, moving through
the connected nodes to the end node. The execution goes
from node to node as follows. When visiting a microservice
node, the runtime invokes the microservice, and determines
what the next node should be based on the invocation results.
For a parallel start node, the runtime spawns concurrent
branches, with each branch proceeding along its own path
and finally aggregating at the following parallel end node.
For a parallel end node, the runtime waits until either the
concurrent branches provide the required parameters, or all of
them experience faults or timeouts.

VI. EVALUATION

In this section, we evaluate the MOLE programming model
and performance in a realistic use cases. Our evaluation seeks
answers to the following questions:

• Can MOLE programs adapt to resource variability?

• Does MOLE offer acceptable execution efficiency?
• How hard is it to develop a MOLE program?

A. Setups

The following discussion first describes the experimental
setup, then introduces the executed service suites, and finally
reports on the performance characteristics.

The evaluation hardware setup comprises: 1) a wireless
router, running the OpenWrt OS; 2) a Chromebook; 3) two
Android smartphones; 4) a Raspberry PI; 5) a Dell desktop
serving as the edge server, and 6) an AWS cloud-based server
(not shown in the Figure). Devices 2)-5) are connected to the
wireless router, thus forming a wireless local area network.

A DS18B20 temperature sensor is connected to the Rasp-
berry Pi via general purpose input/output (GPIO). The Rasp-
berry PI hosts a web server that handles POST requests by
invoking the corresponding microservice executables. “getSen-
soryTemperature” is pre-deployed on this device.

The NanoHttpd servers on Android devices invoke the
corresponding microservices via reflection in response to
incoming HTTP POST requests. One of these devices is
configured to provide a fine-grained location, while the other
one a coarse-grained one.

The Dell desktop plays two roles: the edge gateway and the
edge server. It runs an HTTP server, and a MySQL database.
Each edge device communicates with the edge gateway via
HTTP to register their microservices; the gateway then persists
this information in its database. As an edge server, it runs
microservices, such as querying a web service to get the
temperature in a given location.

B. Service Suite Execution

Read temperature from Sensor

Parallel Start

Parallel End

Get GPS Location Cell-ID Location

Read temperature from web

Start

Success

FailSuccess

Execution Flow 1: 1.28s
Execution Flow 2: 1.77s
Execution Flow 3: 3.40s

Fig. 7. Execution Time of Different Availability of Microservices.

End users access a dynamic web page from the Chrome-
book, which contains a JavaScript function that retrieves
the service suite’s name, connects to the local gateway (by
querying the wireless router), sends the service suite execution
request to the gateway, and blocks until receiving the results.

6

To evaluate how MOLE programs adapt to resource vari-
ability, we run our experiments in three dissimilar execution
environments. The execution results fit the generated execution
graph, as shown in Fig. 7:

A Make the Raspberry PI and the temperature sensor avail-
able. In this execution environment, the overall execution
result obtained by the Chromebook is the temperature
measured by the temperature sensor. The average execu-
tion time of 5 runs is 1.28 seconds.

B Shut down the Raspberry PI, to make the temperature
sensor unavailable. In addition, enable the fine/coarse-
grained localizations for the two Android devices. In this
run, the overall execution result is the temperature of a
geo-area, which differs from the first result. The overall
execution takes 1.77 seconds. Please note that in our
implementation, the GPS localization takes 2 seconds and
the cell-network localization takes less than 1 seconds.
This result indicates that even though two localization
methods are all initialized, the execution continues when
the cell-network location is returned.

C Disable both the temperature sensor and two localization
methods. In this run, the parallel start node initializes
two threads for two localization methods, but none of
them goes to the parallel end node. The timeout for the
latch count down is set to 3 seconds, with the parallel
end node being reached after the timeout. The parallel
end node fails to collect all necessary parameters for
its connected node (getTempByLocation), so it triggers
the execution fail condition of its connected node, thus
causing the “Execution Failure” of the service suite. The
average execution time of 5 runs is 3.4 seconds.

C. Programming Effort

Fig. 5 lists the source code of the getTemp service suite.
It takes only 21 lines of code to specify the parameterization
of and control-flow between 4 realistic microservices. Under
any programming model, programmers have to implement
the application functionalities, but representing them as mi-
croservices eases reuse. Each microservice is likely usable in
multiple scenarios.

A particular strength of the MOLE programming model is
how it accommodates change. Consider adding an alternate
localization method for MS getTemperatureByLocation.
Unlike the current two localization methods, the new method
operates in two steps: 1) obtain the current IP address; 2) get
the location from the IP address using a web service. This
change requires only 6 additional lines of code.

D. Reliability Evaluation

To assess how reliable MOLE programs are, we simulate
the execution of a suite under different failure conditions.
This simulation varies the failure rate of each microservice
execution between 10%, 20%, 30%, and 90%. Two types
of failures apply: (1) no device is available to execute a
given microservice; (2) the selected device fails to success-
fully execute a given microservice. We compare the resulting

Read temperature from Sensor

Parallel Start

Parallel End

GPS Location Cell ID Location

Read temperature from web

Start

Success

FailSuccess

IP to Location

Get IP

Location

New Localization Method

Fig. 8. New Execution Graph.

1 Service GetTemp {
2 ...
3
4 MS: getIP{
5 device:has("INTERNET")
6 on.success:ret ip;
7 }
8
9 MS: IP2Location{

10 req:ip
11 on.success:ret location;
12 }
13 }

Fig. 9. Adding a new localization method to the service suite

reliability levels of three scenarios: 1) obtain temperature from
a temperature sensor; 2) execute service suite GetTemp with
two localization methods; 3) execute this service suite with
one additional IP-based localization method. Fig. 10 shows
that compared with scenario 1, the service suite improves
its reliability, especially when the failure rate is around 50%
(it improves the reliability of scenario 1 by 37.5%). Besides,
by comparing scenarios 2 and 3, we see how introducing an
alternative localization method increases the overall reliability
of the service suite execution. When two existing localization
methods fail, the suite can still successfully complete its
execution. However, the increase may not seem as striking,
as the two alternative localization methods already exhibit
considerable reliability.

E. Efficiency Evaluation

Next, we measure how efficient a MOLE program is. We set
the execution failure rate of each microservice between 10%,
20%, 30%, and 90%. We compare the total execution time
of three scenarios: 1) sequential execution, which runs one
microservice at a time; 2) the GetTemp service suite executing
its two localization methods in parallel; 3) the improved
GetTemp service suite executing three localization methods
in parallel. For each failure level, we repeat each execution
scenario 100 times, and record the average execution time.
Fig. 11 shows that MOLE can increase the base line of the

7

37.5%

40.6%

Fig. 10. Reliability W/ W/O MOLE.

39.0%

Fig. 11. Efficiency W/ W/O MOLE.

sequential execution by 12-17% by leveraging speculative par-
allelism. At most, MOLE saves 39% of execution time when
the failure rate is 30%. Besides, because IP-based localization
is known to be more efficient than other location methods, MS
getTemperatureByLocation can proceed without waiting
for the other two slower localization methods to complete, thus
improving the overall efficiency.

VII. RELATED WORK

Recent survey papers treat the issue of programming edge
applications as both a serious technical challenge and a re-
search opportunity [17], [16]. [7] introduces a P2P message
exchange based programming model, by which programmers
develop functionalities for each distributed component and
handle their communication. However, such programming
models can only be applied to execution environments with
fixed resources. [13] considers the resource dynamicity of edge
computing environments, and models edge service provision
as a QoS-constrained resource selection problem. [6] provides
a data-flow based programming model, also applicable to
edge environments with dynamic resources. However, these
approaches neglect failure handling, an essential provision
given the high failure ratio of edge-based execution.

VIII. CONCLUSION

This paper has presented MOLE, a declarative DSL for
developing reliable and efficient edge computing applications.

MOLE adopts the microservice architecture, with edge func-
tionalities provided as microservices, downloaded and exe-
cuted by available devices at runtime. MOLE enables devel-
opers to concisely express how to parameterize microservices,
and automatically orchestrates their execution flow. MOLE
exploits the presence of equivalent microservices to orchestrate
both fail-over and speculatively parallel execution workflows.
Our evaluation has demonstrated the expressiveness, reliabil-
ity, and efficiency of the MOLE programming model.

ACKNOWLEDGEMENT

This research is supported by the National Science Founda-
tion through the Grant CCF-1717065.

REFERENCES

[1] What are microservices. http://microservices.io/.
[2] A. Amiri Sani, K. Boos, M. H. Yun, and L. Zhong. Rio: a system

solution for sharing i/o between mobile systems. In MobiSys’14, pages
259–272. ACM, 2014.

[3] K. Bhardwaj, S. Sreepathy, A. Gavrilovska, and K. Schwan. Ecc: Edge
cloud composites. In MobileCloud’14, pages 38–47. IEEE, 2014.

[4] X. Chen. Decentralized computation offloading game for mobile cloud
computing. IEEE TPDS, 26(4):974–983, 2015.

[5] X. Chen, L. Jiao, W. Li, and X. Fu. Efficient multi-user computation
offloading for mobile-edge cloud computing. IEEE/ACM TON, 2015.

[6] N. K. Giang, R. Lea, M. Blackstock, and V. C. Leung. Fog at the edge:
Experiences building an edge computing platform. In IEEE EDGE’18,
pages 9–16. IEEE, 2018.

[7] K. Hong, D. Lillethun, U. Ramachandran, B. Ottenwälder, and B. Kold-
ehofe. Mobile fog: A programming model for large-scale applications
on the internet of things. In Proceedings of the second ACM SIGCOMM
workshop on Mobile cloud computing, pages 15–20. ACM, 2013.

[8] Y.-L. Hu, Y.-Y. Cho, W.-B. Su, D. S. Wei, Y. Huang, J.-L. Chen, Y. Chen,
and S.-Y. Kuo. A programming framework for implementing fault-
tolerant mechanism in iot applications. In International Conference on
Algorithms and Architectures for Parallel Processing, pages 771–784.
Springer, 2015.

[9] B. Jones, K. Dillman, R. Tang, A. Tang, E. Sharlin, L. Oehlberg,
C. Neustaedter, and S. Bateman. Elevating communication, collabora-
tion, and shared experiences in mobile video through drones. In DIS’16,
pages 1123–1135. ACM, 2016.

[10] H. Liang, H. S. Kim, H.-P. Tan, and W.-L. Yeow. Where am i?
characterizing and improving the localization performance of off-the-
shelf mobile devices through cooperation. In IEEE NOMS’16.

[11] R. Loomba, R. de Frein, and B. Jennings. Selecting energy efficient
cluster-head trajectories for collaborative mobile sensing. In GLOBE-
COM’15, pages 1–7. IEEE, 2015.

[12] S. Qanbari, S. Pezeshki, R. Raisi, S. Mahdizadeh, R. Rahimzadeh,
N. Behinaein, F. Mahmoudi, S. Ayoubzadeh, P. Fazlali, K. Roshani,
et al. Iot design patterns: Computational constructs to design, build and
engineer edge applications. In IoTDI’16, pages 277–282. IEEE, 2016.

[13] O. Skarlat, M. Nardelli, S. Schulte, and S. Dustdar. Towards qos-aware
fog service placement. In Fog and Edge Computing (ICFEC), 2017
IEEE 1st International Conference on, pages 89–96. IEEE, 2017.

[14] Z. Song, M. Le, Y.-W. Kwon, and E. Tilevich. Extemporaneous micro-
mobile service execution without code sharing. In HotPOST’17, pages
181–186. IEEE, 2017.

[15] S. Sur, T. Wei, and X. Zhang. Autodirective audio capturing through
a synchronized smartphone array. In Proceedings of the 12th annual
international conference on Mobile systems, applications, and services,
pages 28–41. ACM, 2014.

[16] B. Varghese and R. Buyya. Next generation cloud computing: New
trends and research directions. arXiv preprint arXiv:1707.07452, 2017.

[17] B. Varghese, N. Wang, S. Barbhuiya, P. Kilpatrick, and D. S. Nikolopou-
los. Challenges and opportunities in edge computing. In IEEE
SmartCloud, pages 20–26. IEEE, 2016.

[18] S. Yi, C. Li, and Q. Li. A survey of fog computing: concepts,
applications and issues. In Proceedings of the 2015 Workshop on Mobile
Big Data, pages 37–42. ACM, 2015.

8

