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Abstract
Java HotSpot VM provides a facility for replacing classes at
runtime called HotSwap. One design property of HotSwap
is that the signature of a replaced class must remain the
same between different versions, which significantly con-
strains the programmer modifying a class to be replaced.
Specifically, the programmer is precluded from adding new
methods, constructors, or fields, or even changing the sig-
natures of existing methods or fields. This paper presents a
novel approach that overcomes these constraints of HotSwap
by using binary refactoring, a technique that rewrites the bi-
nary representation of a program without affecting its func-
tionality. A series of micro and macro benchmarks we con-
ducted demonstrate that the approach is extensible and ef-
ficient. In particular, the new binary refactoring technique,
which enables the approach, produces highly-efficient refac-
tored application versions, outperforming a widely-used
prior technique by as much as an order of magnitude. These
initial results indicate that by rewriting the bytecode of a
swapped program, one can effectively overcome constraints
of HotSwap with minimal performance overhead.

Categories and Subject Descriptors D.1.2 [Programming
Techniques]: Automatic Programming—program modifica-
tion, program transformation; D.2.3 [Software Engineer-
ing]: Coding Tools and Techniques—object-oriented pro-
gramming

General Terms Languages, Experimentation

Keywords HotSwap, Binary Refactoring, Virtual Super-
class, JVM Languages,
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1. Introduction
Among the advanced facilities provided by the JVM is the
HotSwap API [1], which makes it possible to replace loaded
classes in a running application. However, the signature of
a replaced class must remain the same, and only method
bodies could change. Thus, adding a new method, field, or
constructor, or even changing the signature of an existing
method or field will render a class invalid for HotSwap.
While this design facet of HotSwap simplifies its implemen-
tation, as there is no need to update the state of objects cre-
ated using an older version of a class, the programmer mod-
ifying the swapped classes is significantly constrained.

To overcome these constraints of HotSwap, this paper
presents a novel approach based on bytecode rewriting
and code generation, enabling the programmer to change
swapped classes as required and still use HotSwap to replace
the changed functionality in a running JVM. The approach
uses Binary Refactoring, a technique we introduced earlier
[15] that uses automated tools to change the binary repre-
sentation of a program without affecting its functionality.

The approach uses binary refactoring to introduce indi-
rect referencing (i.e., a Proxy pattern) to a target application.
The indirection enables updated classes to comply with the
restrictions of HotSwap, even if unsupported changes are
present. While proxies as a mechanism to enable dynamic
updates of Java applications have been proposed by Orso et
al. [12], their approach suffers from two limitations. First,
similarly to HotSwap, they disallow changes to class signa-
tures. Second, their implementation of the Proxy pattern in-
curs significant performance overhead on the rewritten pro-
grams. By contrast, our approach supports changes to class
signatures and implements the Proxy pattern in a novel way
that offers an order magnitude speed-up on average.

The rest of this paper is structured as follows. Section
2 describes our approach that overcomes limitations of
HotSwap. Section 3 details our performance results through
micro and macro benchmarks as well as a case study. Sec-
tion 4 compares our approach to existing state of the art.
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Targets Updates
Method M1: Addition of a new method

M2: Removal of an existing method
M3: Addition of formal arguments of a method
M4: Removal of formal arguments of a method
M5: Change to the return type of a method
M6: Change to method modifiers

Field F1: Addition of a new field
F2: Removal of an existing field
F3: Change to the type of a field
F4: Change to field modifier

Table 1. Limitations of HotSwap. The addressed limitations
are shaded.

Section 5 summarizes our contributions and outlines future
work directions.

2. Background and Approach Overview
Next we detail the constraints imposed by the standard JVM
HotSwap as well as how they can be overcome using binary
rewriting.

2.1 Limitations of HotSwap
Table 1 summarizes the constraints of the JVM HotSwap.
Whenever programmers try to perform these updates listed
in the second column using the JVM HotSwap, the JVM
throws java.lang.UnsupportedOperationException.
In short, HotSwap disallows any changes to the signature of
a class. The swapped class has to contain the same set of
methods and fields as the currently deployed version, and all
the allowed changes must be within method bodies.

HotSwap constraints are particularly restrictive, because
one cannot assume a one-to-one correspondence between
source files and their compiled binary class versions. To
further clarify this point, consider how Java inner classes are
commonly translated. To allow inner classes to access non-
public members of their enclosing classes, the Java compiler
silently adds synthetic access methods to the enclosing
classes. Thus, the programmer will be completely unaware
that an unrelated change in a method body of an inner class
has caused the compiler to add a method to another class.
Further, HotSwap will unexpectedly fail trying to update
such an enclosing class due to the restriction on adding new
methods.

2.2 Virtual Superclass Binary Refactoring
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Figure 1. Virtual superclass binary refactoring

To address limitations of HotSwap described in Section
2.1, our approach changes direct references into proxy ref-
erences. A commonly-used implementation of indirect ref-
erencing is described by a binary refactoring that we call
Virtual Interface.1 The Virtual Interface binary refactoring
transforms a class into proxy, interface, and implementa-
tion classes. The bytecode instrumentor does not change the
client part of the target version, but makes it refer to the
proxy class in the refactored version. However, the virtual
interface style proxy indirection can incur as much as 30%
performance overhead, according to our measurements [14].

Thus, to alleviate this performance overhead, we created
a new technique for introducing indirect referencing that we
call Virtual Superclass. Similar to Virtual Interface, Virtual
Superclass introduces an indirection to a target class, but it
does so without incurring the often prohibitive overhead of
Virtual Interface. Each application class initially loaded into
the JVM, first goes through the Virtual Superclass refactor-
ing at the bytecode level; Figure 1 describes the refactoring
transformations involved. This refactoring changes class A
to extend a virtual superclass Super A. In other words, the
virtual superclass is inserted into the class’s inheritance hier-
archy. The original class A becomes a proxy, and the virtual
superclass contains all the original functionality, including
method bodies and fields.

The performance efficiency of Virtual Superclass stems
from the sophisticated optimization capabilities of mod-
ern JVMs. Among their advanced optimization facilities is
the ability to inline delegating method calls, if the delega-
tion does not involve dynamic dispatch. In Figure 1, the
call to super.foo is translated into the invokespecial
bytecode instruction, reserved for invoking constructors and
methods in superclasses. Modern JVMs can effectively in-
line this call, completely eliminating any indirection over-
head in most cases. By contrast, Virtual Interface uses the
invokeinterface instruction in its implementation. While
the performance of invokeinterface has been improved
significantly in modern JVMs [3], this instruction imple-
ments a form of dynamic method dispatch, and as such can-
not be safely inlined. Thus, it is the JVM method invocation
instructions used that explain the performance differences of
these two implementations of the Proxy Design pattern.

2.3 Translating Updates for HotSwap Conformance
Our approach still uses the standard HotSwap to replace
classes in a running JVM, but all the deployed classes are
first enhanced with additional capabilities at the bytecode
level. It is these capabilities that enable a full-range of
changes to be made to the replaced classes, without violating
constraints of the HotSwap API.

1 The adjective virtual emphasizes the fact that the introduced interface
is not seen by the client program and is only used as an implementation
artifact. The client code never accesses the introduced “virtual” interface
directly.
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Figure 2. Supporting a full range of dynamic updates using HotSwap.

At the first phase illustrated in Figure 2, the updat-
ing system refactors all the loaded classes at the bytecode
level and generates their corresponding virtual superclasses.
The virtual superclasses have actual methods implementing
application-specific logic and are swapped by the updating
system. Therefore, the output of the bytecode rewriting is
updateable software, which is structurally different from the
original version and can be deployed on a virtual machine.
When the initial program is changed, the programmer gives
the changed classes as input to the updating system, which
refactors them into virtual superclasses and special helper
classes. HotSwap can then replace older class versions of
virtual superclasses with newer versions, as they have the
same schema. Helper classes make the updates conform to
the HotSwap API when new methods or fields are added.
The new members are added to helper classes, so that the
signatures of virtual superclasses remain the same.

Our prototype uses the Javassist library[8] and consists of
a class differencing module and code generators for proxy,
virtual superclass, and helper classes. The differencing algo-
rithm operates at the bytecode level, and its output param-
eterizes the code generators and the bytecode rewriter. The
rewriter translates newly-added methods, constructors, and
fields to helper classes as follows:

Adding new methods/constructors: A special invoke
method is added to all the instrumented classes as a facil-
ity to invoke newly-added methods without changing the
updated class’s signature. Each new method is translated
into a method in a helper class, whose invocation logic is
added to the body of the invoke method. Each call site of
a newly added method becomes a call to invoke, with the
added method name as the first argument.

Figure 3 shows an example of adding a new method; the
newer version of A has a new method bar. The first and
second columns in Figure 3 illustrate class diagrams repre-
senting classes and their relationships at the source code and
the corresponding bytecode, respectively. The special helper
class HelperClass contains the new method bar and each

proxy class contains the invoke method. Each invocation of
bar is translated to invoke invoke instead.

Each new constructor is translated into an invocation of a
”do-nothing” constructor and a special initialization method
that contains the added constructor’s logic.
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Figure 3. Adding a new method

Adding new fields: New fields are translated according to
two approaches, one optimized for performance, while the
other for space. The first uses a separate helper class for the
new fields whenever a class is replaced with a newer version.
The second uses a single class that contains a mapping data
structure that represents all the added fields for all classes.

Object state update: One complication of using HotSwap
for updating running applications is that it can only update
classes–HotSwap has not facilities for upgrading objects
created from an older version of a class to a newer version.
In dynamic update systems, this operation is called Object
State Update. Our approach also can efficiently transfer state
between old and new objects, enabling instances of different
versions of a class to coexist in the running application. Our
system updates the state between old and new helper objects
for new fields, based on their respective version numbers.
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Specifically, the update system checks if the version of a
helper object is older than the latest version. If so, a special
helper object is instantiated for the newly added state (i.e.,
extra fields). The values of the fields in the older helper
object then are copied to the corresponding fields in the
newer helper object.

3. Experimental Results
We show the efficiency and extensibility of our approach
through benchmarks and a case study updating a server-side
RMI application.

3.1 Performance Evaluation
To measure the performance overhead of the Virtual Su-
perclass binary refactoring, we conducted micro and macro
benchmarks. All the measurements were performed on a
workstation with an Intel Pentium 4 (3.6GHz) processor,
1GB RAM, running Ubuntu Linux 7.10 (Gutsy Gibbon),
JDK version 1.5.0 14.

Figure 4 shows the overhead of indirecting a single
method invocation. The cost of indirection depends on the
amount of computation performed by the indirected method.
In this benchmark, the indirected method performed two,
four, and eight multiplications, increments, and test opera-
tions. Each invocation is repeated 1 ∗ 109 times. The max-
imum overhead of less than 2% makes this refactoring ap-
plicable for introducing indirection to most performance-
sensitive applications.22.7 34.6 68.36
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Figure 4. Overhead of binary refactoring microbenchmark.
(SC–SuperClass; IF–Interface)

To assess the overhead imposed by the virtual superclass
indirection in more realistic programs, we used five different
programs from the SpecJVM98 benchmark [2]. The suite
contains a set of test programs, with some of them being real
applications, such as 201 compress and 202 jess. Figure 5
shows the overhead of bytecode rewriting using the virtual
superclass for the SpecJVM98 test programs. Similar to the
numbers obtained for the microbenchmark, the indirection
overhead for all benchmark programs never exceeds 2%, as
shown in Figure 5.
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Changes Implementations
Add methods Add transfer(float, Account)
Change deposit(float) → deposit(boolean, float)
method withdraw(float) → withdraw(boolean, float)
signatures transfer(float, Account) → transfer(boolean,

float, Account)
Add fields Add a new field coowner and getter/setter
Call sites *.transfer(..) → *.invoke(”transfer”, ...)

Table 2. Dynamic updates to the Banking program

3.2 Case Study: Updating an RMI-based Application
Dynamically

As a case study, we used a Remote Method Invocation
(RMI)-based program as an example of a long-running
server application that can benefit from being updated at run-
time. The program consists of a remote interface Account
and its implementation AccountImpl. The update cases are
illustrated in Table 2, which are adding a method, changing
the signature of a method, and adding a new field.

To add a new method, transfer, our updating system
generates a proxy class with the invoke method and a
helper class with the transfer method. All invocations to
transfer are replaced with invocations to invoke method
of the proxy class.

To modify the signatures of remote methods, we added a
new argument access that checks the user’s permission.

To add a new field, coowner which holds the value of a
co-owner’s name, our system generates a special helper class
containing the new field. The virtual superclass will return
the helper class when any object tries to access the field.

4. Related Work
Due to space constraints, we will focus only on closely
related research on dynamic updates for Java applications.
Existing state of the art includes program transformation,
custom virtual machines or runtime libraries, and special
programming models.

Our approach is based on refactoring transformations,
which change the structure of a program without affecting
its functionality. Orso et al.’s technique [12] also transforms
the code to enable its dynamic updates. The Virtual Inter-
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face refactors each class into wrapper, implementation, inter-
face, and state classes. As discussed above, Virtual Interface
incurs significant performance overhead, making it inap-
plicable for performance-sensitive applications. In addition,
their technique does not support changes to the signatures of
swapped classes. Bialek et al.’s system [4] also rewrites the
updated software at the source or bytecode levels to enable
its dynamic replacement, but it does not use HotSwap, and
thus, does not need to overcome its constraints.

Several approaches [9, 11, 13] have introduced custom
virtual machines to support dynamic updates of Java appli-
cations. These approaches, however, require installing a cus-
tom JVM, which may have limited functionality and interop-
erability.

Some approaches [10, 7, 16, 5] introduce new languages
features, middleware systems, or require that software devel-
opers abide by specific component models or programming
rules. Warth et al. presents Expanders [16], a programming
language construct that allows adding new methods, fields,
and interfaces. Expanders enable the programmer to express
new methods and fields to be added to an existing program.

Bierman et al.’s UpgradeJ [5] is a Java-like language
for dynamically upgrading classes with guaranteed type-
safety. UpgradeJ allows for safe co-existence of classes with
different versions by including an explicit version number as
part of a class signature. UpgradeJ supports adding methods
and fields, changing type hierarchies, and modifying method
bodies. An upcoming implementation of UpgradeJ will also
use HotSwap as the underlying technology.

5. Future Work and Conclusions
As future work, we plan to apply our approach to facili-
tate the updates of programs written in JVM-based, high-
productivity languages such as X10 [6]. High performance
computing applications are often long-running, and their
parts may have to be updated without stopping the JVM.
The efficiency of our approach makes it promising for this
domain.

We presented a new binary rewriting approach that can
overcome constraints of HotSwap. The micro and macro
benchmarks we conducted demonstrate that our approach is
viable and does not incur unreasonable performance over-
head. Furthermore, as dynamic reconfiguration and mainte-
nance have become an indispensable part of modern soft-
ware system evolution, the techniques that we introduced
can benefit the broader maintenance community, and our ap-
proach can become a valuable tool in the toolset of program-
mers using JVM-based languages.
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