EdgStr: Automating Client-Cloud to
Client-Edge-Cloud Transformation

Kijin An
Software Engineering Team
Samsung Research
Seoul, South Korea
kijin.an@gmail.com

Abstract—To harness the potential of edge resources, two-tier
client-cloud applications require transformation into three-tier
client-edge-cloud applications. Such transformations are hard for
programmers to perform correctly by hand. Many cloud services
maintain a runtime state that needs to be replicated at the edge.
Once replicated, this state must then be synchronized efficiently
and correctly. To facilitate the transition to edge computing,
we present a framework that automatically transforms client-
cloud apps to their client-edge-cloud versions. Our framework,
EdgStr, automatically replicates cloud-based services at the edge.
EdgStr synchronizes the replicated service state by relying on
a third-party Conflict-Free Replicated Data Type (CRDT). It
generates code that connects service state changes to CRDT
update operations, thus ensuring that the state changes at each
replica eventually converge to the same replicated state. As
an evaluation, we applied EdgStr to transform representative
distributed mobile apps for deployment in dissimilar network
and device setups. EdgStr correctly replicates cloud services
(targeting the important domain of Node.js), deploying the
resulting replicas on an ad-hoc edge cluster, hosted by Raspberry
PI devices. As long as eventual consistency is congruent with
the functionality of a cloud service, EdgStr can automatically
replicate this service and deploy the replicas at the edge,
thus offering the performance benefits of edge-based execution,
without the high costs of manual program transformation.

I. INTRODUCTION

With its superior and elastic computing resources, cloud-
based execution has long provided performance and scalability
benefits to remote clients. With the emergence of edge com-
puting, transforming a two-tier (cloud/client) application into
its three-tier (cloud/edge/client) counterpart can become an
effective means of enhancing scalability and performance [1],
[2]. When such transformation takes place, one must take
into account the inherent differences in resource availability
between cloud and edge environments. While cloud environ-
ments are resource-abundant, edge environments are typically
resource-scarce. In addition, edge devices are often connected
via unstable and limited networks [3].

To take advantage of edge resources, distributed applications
can be developed from scratch. However, a more common
scenario is when developers need to introduce edge processing
to existing cloud applications as a performance optimiza-
tion [4]. To integrate edge-based processing, an existing cloud-

The first author conducted a substantial portion of this research during his
Ph.D. studies in the Dept. of Computer Science at Virginia Tech.

Eli Tilevich
Software Innovations Lab
Dept. of Computer Science, Virginia Tech
Blacksburg, VA, United States
tilevich@cs.vt.edu

based application is modified, so it retains its functionality
while its architecture is transformed from two-tier (client-
cloud) into three-tier (client-edge-cloud). To transform such
an app correctly by hand, so its performance would improve
as intended, is non-trivial. Developers first have to understand
the app’s distributed runtime behavior to identify those cloud-
based functionalities that can benefit from edge-based process-
ing. Then, developers have to determine whether these func-
tionalities maintain their state and how to keep it consistent
once replicated. Finally, developers have to manually modify
distributed communication protocols, commonly implemented
using special frameworks with complex APIs.

To facilitate this process, this paper introduces EdgStr, a
novel approach that automatically replicates cloud services at
the edge, thereby transforming two-tier applications into their
three-tier variants. EdgStr operates by first instrumenting live
HTTP traffic between the client and the cloud to determine the
available services for replication. It then identifies the subset
of the server code to replicate via profiling and constraint
solving. Finally, it replicates live the relevant server state, thus
transforming the original client-cloud application to integrate
edge replicas, whose states are kept eventually consistent with
each other and that of the cloud server. To provide the required
eventual consistency for the newly replicated state, EdgStr
takes advantage of a third-party Conflict-Free Replicated Data
Type (CRDT) [5]. It generates code that connects the service’s
state changes to the corresponding CRDT update operations.
The CRDT’s built-in eventual consistency ensures that the
connected replicated state’s changes are reliably and efficiently
propagated across the participating edge replicas.

In summary, EdgStr brings the performance advantages of
edge processing to pre-existing two-tier applications, eliminat-
ing the need for costly manual program analysis and transfor-
mation. By describing EdgStr’s design, implementation, and
evaluation, this paper makes the following contributions:

1) A novel approach for seamlessly integrating edge re-
sources into pre-existing client-cloud applications. The
approach involves analyzing the calling patterns of cloud
services and identifying specific functionalities within
these services that can be replicated at the edge. Doing
so enables leveraging the differences between the avail-
able WAN and LAN capacities to enhance performance.

2) A reference implementation of our approach, EdgStr,
which supports the popular Node.js cloud services.

3) An evaluation of EdgStr’s automatic transformation of
third-party client-cloud applications into their client-
edge-cloud counterparts, showcasing its effectiveness in:

a) minimizing synchronization requirements for repli-
cated service states;
b) reducing response latency in replicated services;
¢) managing fluctuations in client request traffic and
minimizing device energy consumption.
The rest of this paper is organized as follows. Section II
presents a motivating example and describes our approach;
Section III discusses the design and implementation of EdgStr;
Section IV presents our evaluation and its findings; Section V
compares our approach with the related state of the art; and
Section VI presents concluding remarks.

II. MOTIVATION AND APPROACH

We start by presenting a motivating example and then
introduce EdgStr and its redistribution model.

A. Motivating Example

Figure 1 depicts the dataflow of a third-party distributed
mobile app, firebase-objdet-node, which is distributed across
a mobile client and a cloud server. Specifically, the client
captures images and sends them to the server for processing.
The server analyzes the received images, returning the analysis
results back to the client. To that end, the server performs
computationally intensive operations that localize and identify
the constituent objects in the received images, as guided by the
pre-trained model of a deep learning framework. The server
then transfers the results to the client, which uses them to draw
the boundaries of and descriptions around the identified objects
in the captured images. Assume that the app is deployed for
a mission-critical task, such as security monitoring, so it is
essential to achieve the requisite levels of response latency.

//Highlighted Cloud Program
const tf = require('@tensorflow/
tfjs-node'),gImg = require('..")
app.post('/predict', (req,res)
=>{const getImg = new gImg(req)
../ /Downloading image
getImg('finish', (b)=>{.
//unmarshaling param
let img = new Uint8Array(b)
let model = loadModel()
model.then((m) => {
let ret = //marshaling result
format(m.predict(img))
res.send(ret)
HDHY;
function loadModel() {..}
function format(d) {..}..

gHTTP/I‘ T
iContent-t:..

result r1: idata:/[boxes:..,

ROIs & Labelsi names:...]

Req Hdrs }
i Payload: |

Client
Program | parameter p1:
Sensor Img Data

(a) Client-Cloud HTTP REQ/RES (b) (Un)Marshaling on Cloud Program

Figure 1: Motivating Example:firebase-objdet-node
Modern smartphones typically come with 8-16 megapixel

cameras. An image captured with such cameras would typ-
ically take between 1 and 20 Mbytes. As images are being

transferred to the cloud-based image processing service, the
network’s bandwidth and latency determine the resulting per-
formance. In addition, providers of cloud services can host
them in different geographic regions, not necessarily those co-
located with the client. The service’s actual geographic loca-
tion can drastically affect the round-trip time (RTT) metric.
To demonstrate this insight, we installed our example app’s
remote service on the cloud infrastructures, located on the
same continent and on the nearest neighboring continent'.
The RTT across different continents is an order of magnitude
larger than within the same continent. Because the app is
mission-critical, experiencing such a slowdown in performance
would cause the app to fail in its mission.

To work around the network bottleneck conditions described
above, one can take advantage of edge computing resources,
provided by nearby network-connected computing devices.
Such devices can be accessed in a single hop within the
shared local network but would offer less processing power
than their cloud-based counterparts. In other words, some
image processing can be offloaded to nearby edge devices for
processing, so the app would adaptively take advantage of edge
computing resources for certain combinations of processing
loads and RTTs.

B. EdgStr Framework

The EdgStr framework performs a behavior-preserving au-
tomated program transformation. EdgStr attaches to a running
client-cloud application and captures its live HTTP traffic
between the client and the invoked cloud-based services. Based
on the captured traffic, EdgStr then analyzes and transforms
the original two-tier application to a semantically equivalent
three-tier application. The transformed application continues
delivering the original functionality, but with improved latency
and throughput. The transformation dynamically generates and
instantiates a Remote Proxy: the edge node becomes the cloud
server’s filtering and processing proxy, preserving the original
service interfaces. In brief, certain functionality of a cloud-
based service becomes replicated at edge nodes, co-located
with clients. The service states are then synchronized between
the cloud and the edge replicas in the background.

One could simply duplicate the entire server-side function-
ality at the edge nodes, synchronizing all of the replicated
service states. Because such a naive approach would incur
unacceptably high synchronization costs, the amount of func-
tionality to transfer to and execute by the edge replicas must
be carefully selected. Also, failure handling logic may not
be easily transferable from the cloud to the edge, requiring
managing complex states. To allow for easy replication at the
edge, the edge replicas handle failures by forwarding the failed
service invocations to the master service copy in the cloud.
This scheme reduces the overheads and complexity of not only
handling failure but also of synchronizing states.

'We used Heroku as our cloud provider

C. Redistribution with Remote Proxy

The Remote Proxy pattern [6] describes an architectural
style in which a client communicates with a placeholder for
some remote functionality. In distributed computing, proxies
are used widely to adapt or enhance various remote services.
A Proxy object serves as a surrogate for a real remote service
RealSubject and exposes the same access interface Subject to
its clients Client (Figure 2). The power of the Proxy pattern

Subject

service1...N()

1) 1
synchronizes

service1()
client: | .. edge: cloud:
Client | serviceN()_ | ProxyOfRealSubject| States RealSubject
(backgr-t;und)

Figure 2: Proxy Pattern for Edge-Based Processing

lies in its ability to control the interaction between the client
and the remote service, without having to modify them. In
terms of providing the actual functionality, a proxy can either
forward all client requests to a remote service or provide some
of the services itself. In distributed systems, proxies have been
used to implement functionalities ranging from caching to
authentication. In our approach, the proxy object is responsible
for determining whether a client request is to be forwarded to
a remote server or is to be serviced in place. The requests
serviced in place take advantage of edge processing.

D. Applicability and Limitations

Obviously, EdgStr cannot replicate all cloud services, so we
clarify its applicability and limitations. The EdgStr’s design
relies on a RESTful HTTP protocol that follows request/re-
sponse patterns. If a service is invoked via HTTPS, EdgStr
would need to apply its packet-level sniffer and analyzer after
the server has decrypted the received commands from HTTPS
to plain HTTP, an arrangement that may need assistance from
system administrators.

To keep replicas consistent, EdgStr generates code that
connects the state changes at each replica to a third-party
CRDT’s update operations. The CRDT keeps the resulting
replicated state eventually consistent. CRDTs provide what is
known as strong eventual consistency [5]. Strong eventual con-
sistency might not be congruent with the requirements of all
cloud services, thus limiting the applicability of our approach.
Nevertheless, we argue that EdgStr is widely suitable for the
types of services that process client-collected sensor data. Such
services are CPU-bound, transforming sensor data collections
into computed summaries, persisted for future referencing. The
functionality that such services are expected to deliver allows
their replicas to tolerate being in temporarily inconsistent
states, with the CRDT-provided strong eventual consistency
meeting their functional and non-functional requirements.
While EdgStr can replicate JavaScript objects, disk files, and
relational databases, it is inapplicable to non-SQL databases,

such as MongoDB. Finally, EdgStr relies on the conventions of
the Node.js framework, currently supported by Google Cloud,
Amazon Web Services, and Microsoft Azure, with adopters
including LinkedIn, Netflix, Uber, and PayPal.

III. DESIGN AND IMPLEMENTATION

We implement our approach, as the EdgStr framework,
whose general flow and main components appear in Figure
3. We describe these components in turn.

A. Analyzing HTTP Traffic

A modern Web application’s predominant interaction
paradigm is the RESTful architecture [7]. Cloud-based compo-
nents expose REST APIs, comprising a set of HTTP methods
applied to different URLSs, invoked by client components. Our
approach automatically generates the Subject S part of the
Proxy pattern based on dynamic analysis. Assume RealSub-
ject S comprises N externally invocable RESTful services
$1,...,Sn. To determine the Subject S access interface, our
approach starts from instrumenting all HTTP traffic between
Client and Real Subject in order to decode the parameters of
the client’s HTTP requests pi, ..., pny and the return results of
the server’s HTTP responses 71, ..., 7, with the assumption
of responses being non-empty.

S = (1)

Next, the actual subset of Real Subject is identified. For
this subset of remote functionality, each remote service s;’s
executed code is identified and profiled. First, the entry/exit
points of the identified server code of s; become the boundary
for the Extract Function refactoring, which places that code
into an individually invocable functional unit. By identifying
all the executed statements, the refactoring then infers possible
execution states of s; for Real Subject. These states are
necessary to determine what and where to synchronize in the
subsequent proxied remote execution.

[Sl(pl)"'sN(pnﬂ = [7"1"'7%}

B. Capturing Relevant Server States/Code

EdgStr replicates a subset of the cloud server’s state on edge
servers. To determine which subset to replicate, it analyzes
the runtime traces of the execution of cloud-based services.
Consider a typical life-cycle of a cloud service: (1) the server
initializes itself to the init state state;,;; and (2) the server
receives an HTTP request from the client and unmarshals the
passed parameters p; (unmarshaling, i.e., img in Figure 1), (3)
the server passes the unmarshalled parameters to the invoked
service, which starts executing s;, and (4) upon completing
its execution, the service marshals the response to return it
over HTTP to the client r; (marshaling, i.e., ret in Figure 1).
For brevity, we refer to the above steps (2)(3)(4) as the it"
execution or exec ¢. To infer the subset of the cloud server’s
state to replicate at edge proxies for the subject i** REST API
s;, EdgStr not only extracts the code executed in step (2), but
also captures the subset of the cloud server’s state required to
initialize the edge replicas.

CRDT-Data
. Program States Template
HTTP Extracted Subject ------ ----- N /5
Files S
Records‘_ 5.1 L p1:r1 - S”GPSth/\P,ogmm States Transforming ~
______ - 4) V1V, Prqgram 7z ‘to be sync
g PnIN -_1'._2.1..\/_““_".@?'_?5: Extracted AN by CRDT Sharing
Xtracte
) A 4 "\ varshali —— Function 4 S
lélggg;ahzed Dynamic Po‘;’ﬁs%’ggts) Constraint ££\‘O Y |Generating Edge. Shapehot |
> Analysis . > Solving o Replica | "} init_state}
. . rogram .
\ (jalangi) |stmts (Facts) | (z3 Engine) sg}) Coqapit ?eveloper [N coples)
2-tiers app {optional) 3-tiers app

Figure 3: EdgStr: Main Components and General Flow

What complicates this procedure is that some cloud-based
services are stateful, and as such change their state with
every execution. Hence, it becomes problematic to detect their
relevant subsets of the state to replicate. Even if such stateful
services could be restarted anew for every execution, only
some of their states would be restored, as they also often
persist data in a database.

Therefore, EdgStr isolates state changes when analyzing
the dynamic execution traces of server-based services. This
state isolation ensures that the server’s init state state;,;; and
the service’s execution results remain fixed. After executing
init, EdgStr checkpoints the resulting state, so it can be
restored before executing the service again:
init, exec 4, exect1+1, ---
init, save “init”, exec i, restore “init”, exec i+ 1, restore

Ninit”,. .-

C. Isolating and Replicating States

EdgStr identifies and replicates several different units of
cloud-based services that typically include “a database”,
“files”, and “program variables” [8], [9].

Database Tables: EdgStr monitors dynamic traces of a
Node.js cloud-based service with jalangi [10], a dynamic
JavaScript analysis framework. To identify database-related
statements, EdgStr instruments all function invocations whose
argument values are SQL commands. To that end, EdgStr
modifies the INVOKEFUN(LOC, F, ARGS, VAL) callback API
of Jalangi to be able to examine the arguments parameter,
ARGS. Then, it adds shadow executions into the identified
SQL invocations LOC to trace the changes to the database
state. First, EdgStr appends shadow execution of the original
SQL command with a SQL command to snapshot the en-
tire dependent tables. Next, it adds transactional executions
START TRANSACTION/ROLLBACK against the original
SQL commands, to keep the database tables unchanged.

Files: In cloud-based services, files can be accessed both
locally and remotely. To identify file accesses, EdgStr instru-
ments all invocations whose arguments are file URLs. It then
duplicates the identified files by copying or downloading.

Global variables: EdgStr adds get/set function instrumen-
tation after the declarations of global variables to implement
their save and restore operations. After the server has been

initialized, EdgStr deeply copies all global variables and saves
their states. The restore operation passes the saved states to
each variable’s set function.

D. Determining Whether Eventual Consistency Is Acceptable

In distributed systems, the question of which consistency
model is suitable for replicated data is highly application-
specific. It would be unrealistic to be able to answer this
question outside of the programmer’s purview. Hence, we rely
on the programmer to determine if EdgStr can be applied
successfully. To that end, EdgStr first isolates the state that
would be replicated, as described in Section HI-C. EdgStr
then presents the isolated state information (as specific source
code statements) to the programmer, who then decides whether
the presented state can tolerate being kept consistent via an
eventual consistency model, as that provided by CRDTs (the
Consult Developer step in Figure 3). If eventual consistency
would satisfy the service’s requirements, the programmer
then goes ahead and applies EdgStr that replicates the given
cloud service at the edge. If the programmer misidentifies
the suitability of eventual consistency, then EdgStr-generated
replication might not preserve the user-expected functionality
of the original cloud service. In the presence of a solid testing
procedure, this mistake should be straightforward to identify
and correct by manually implementing a stronger consistency
protocol for the replicated service.

E. Identifying Server Code to Replicate

For Subject, S and S’s n remote services sy, ..., S,, EdgStr
identifies the subset of Real Subject’s server code, in terms
of specific code statements, that need to be replicated at the
edge replicas. EdgStr identifies the entry/exit points of service
executions. Since only application logic is extracted, without
any extraneous functionalities such as fault handling, EdgStr
instruments the entire server-side code, but uses only those
instrumentation results that are generated by the successful
service executions. The resulting entry and exit points of s;
become the boundary for the Extract Function refactoring,
which places the extracted code into a standalone function.
By identifying all the executed statements, EdgStr then sum-
marizes the statements and the execution states of sq,..., Sy
for Real Subject. To determine the entry/exit points, EdgStr

identifies the marshaling and unmarshaling functions that
process parameters and return values. Marshaling (the exit
point) converts program values to a data format suitable for
network transmission; unmarshaling (the entry point) reverses
the process by converting the transmitted data format to regular
program values [11].

function edge_ref_s1(input){
//Adapted Entry

var tvi=input;

var img = tvi;
/**extracted dep stmtsxx*/
var tv2 = ret;

//Adapted Exit

var output = tv2;

return output;
}../x*extracted dep stmtsxx/

//unmarshaling: Entry

var tvi=new Uint8Array(b);
var img = tvi;

/*x*app logic stmts*x/

//marshaling: Exit
var tv2 = ret;
res.send(tv2);

uoI1dUNS 19841X]

Figure 4: Normalization and Extracted Function

Consider the remote service "/predict" (Figure 1). Al-
though this service’s application logic is not explicitly delin-
eated at the function boundary, EdgStr can still extract it by
analyzing the execution exec 1, discovering the unmarshal-
ing parameter p; and the marshaling result r1. Specifically,
to identify these entry/exit points, EdgStr normalizes the
entire server code by introducing temporary variables. For
example, EdgStr normalizes var img =
); and res.send(ret); as shown in Figure 4 (left). EdgStr
examines the app’s execution logs for all read and write
operations that involve the p; and r; values. This examination
reveals that the variable tv1 holds p;, and tv2 holds 7. To
differentiate between the primitive type values related to the
analyzed service and those used by unrelated functionalities,
EdgStr fuzzes the HTTP messages, so the parameter p;
becomes pi,- -, p] and the modified messages are tracked by
means of a fuzzing dictionary. EdgStr identifies the entry/exit
statements as those that read/write the fuzzed values. Between
the entry/exit points, EdgStr extracts all dependent statements
and their states into a new, independently invocable function
(Figure 4).

EdgStr conducts its dependence analysis by means of
declarative logic programming. It represents JavaScript state-
ments and how they relate to each other as logical facts and
predicates, respectively. EdgStr also generates special facts
to represent the statements that unmarshal a parameter and
marshal a return value. The RW-LOG(s1,v1, p1) fact expresses
that the variable v; in the statement s; reads or writes p;.
EdgStr encodes the RW-L0OG-FUZZED fact that describes the
read/write behaviors of the ;" fuzzed version of RW-LOG.
The STMT-UNMAR rule infers the entry point that unmarshals
p1, in which the read/write events occur in the same position.
Similar to STMT-UNMAR, the predicate STMT-MAR is used
to infer the return value 7.

new Uint8Array (buf

STMT-UNMAR(s1,v1,p1) < WRITE(s1,v1) A RW-LOG(s1,v1, p1)
A RW-L0OG-FUZZED(s1,j,v1, p1), Vj € {1,...,m}

STMT-MAR(s1,v1,71) < WRITE(S1,v1) A RW-L0OG(s1,v1, 71)
A RW-L0OG-FUZZED(s1,j,v1, 1), Vj € {1,...,m}

To show the BNF of statements that can mutate program
state, we follow the notation introduced by Livshits et al. [12]:

Table I: JavaScript Statements that can affect state

S =

€ Empty
S8 Sequence
v =new vg(V1,...,Un) Constructor
V1 = Vs Assignment
return v; Return
V=00 (VthissersUn) Call
v = va.f; Load
v1.f = vg; Store
if v goto s Conditional
v=function(vo,...,urn) {8;} FunctionDecl

Several declarative program analysis frameworks [12], [13],
[14] model the runtime behavior of JavaScript programs using
the z3 Datalog engine [15]. EdgStr extends JS-Dep [13], which
analyzes the dependency relationships between JavaScript
statements. To apply the STMT-DEP rule, JS-Dep constructs
a dependency graph between statements, used to support this
rule’s transitive nature:

STMT-DEP(s1,53) + STMT-DEP(s1,52) A STMT-DEP(s2,53).

EdgStr extends the STMT-DEP rule to be able to identify
where function f is declared. Notice that the ACTUAL fact
expresses the invocation of function f.

STMT-DEP(s1,82) < ACTUAL(s1,0, f) A FUNCDECL(s2, f)

EdgStr encodes a control-flow-graph between the state-
ments by using POST-DOM(s1,s3), which expresses that
statement s; post-dominates ss. Expressed in terms of STMT-
DEP, POST-DOM is:

STMT-DEP(S1,52) < POST-DOM(s1,52)

The following Algorithm 1 describes how EdgStr extracts
the relevant application logic from the server program:

S + parseHTTPs(H) > Subject from HTTP records H
states,, « {}, Ftnoy< {}, Stoy« {} > initial state,
extracted functions, and dependent statements for S

forall p;,;r; € S do

Stunmaﬂ" Vunmar <—Stmt-UnMar (Stl r U1, Pi) >
Query unmarshaling JS statement and its variable
Stmar, Umar <Stmt-Mar (st1,v1, ;) > Query
marshaling JS statement and its variable

Sts, —Stmt-Dep (Stmar, st1) AmStmt-Dep (Stunmar
,8t1) > Query all dependent statements in entry/exit
points

ftnsieext ractFtn (Stsi ’ Stunmar r Vunmarr Stmar
, Umar) > Extract Function Refactoring for s;
Stasll(* St:f” U Stsi, Ftnfll%FtnaS“ U ftnsl > Merge
all Execution results

en
statefmterepstates (Stau) > Replicate (copy) the
necessary init state of S based on Jalangi framework

Algorithm 1: Overall EdgStr’s dependency Analysis

EdgStr identifies the entry/exit points by querying the
statements that satisfy the constraints, defined by the STMT-

UNMAR/STMT-MAR rules. Then, it queries for all dependent
statements within the identified boundary. EdgStr applies the
Extract Function refactoring to the remote service s;: it copies
the code fragment St,, to create function ftng,. Then it
adapts Stunmar!Stmar tO pass parameters and return a result
at Vynmar/Umar (see Figure 4). Finally, EdgStr merges the
dependencies of all identified statements in services s1, ..., Sy,
replicating only the necessary cloud-based init state by means
of the dynamic analysis described in Section III-C.

F. Synchronizing States

Figure 5 presents the original two-tier distribution model
(left) and its three-tier counterpart (right), generated by
EdgStr. In the generated three-tier model, each client commu-
nicates with an edge node in its local edge environment. Thus,
each proxy edge node and the cloud node run replicas of the
same service. This description, of course, is a simplification,
as they are not exact replicas but rather share some state.
Each node can modify this shared state concurrently, so these
modifications need to be synchronized.

Client2
(a) Original Client/Cloud Arch.

(b) Transformed with EdgStr

Figure 5: Distribution Models

Because the edge nodes and the cloud server communicate
via a WAN, whose connectivity may not remain constant, our
synchronization follows a weak consistency model. Distributed
systems with weak consistency models allow replicated states
to diverge temporarily. The divergent replicated states then
become eventually merged [16]. To provide the required
weak consistency, EdgStr generates code that connects the
service’s state changes to the corresponding CRDT [5] update
operations, as detailed in Section III-G. A CRDT’s predefined
data structure achieves state convergence with mathemati-
cally sound update strategies. EdgStr’s relaxed consistency
semantics allows the replicated state to be synchronized in a
background process without interfering with the provisioning
of main functionalities [17].

G. Program Transformation

1) Transforming Cloud-based Service: To efficiently syn-
chronize the states across the edge replicas and the cloud-based
server, EdgStr takes advantage of CRDTs [18]. Specifically,
EdgStr wraps the replicated components ‘database’, ‘files’,
and ‘global variables’ into ‘CRDT-Table’, ‘CRDT-Files’, and
‘CRDT-JSON’, respectively. CRDTs provide all the required
machinery to keep the replicas eventually consistent. To keep
track of changes and resolve conflicts, these CRDT-structures
provide the API calls of initialize, getChanges, and apply-
Changes. To synchronize states between the cloud service and

its edge replicas, EdgStr initializes 1) both the master and the
replicas with the same snapshot of the cloud-based service and
then 2) keeps transmitting/applying changes between the cloud
and its edge replicas. The cloud server periodically sends its
state changes to each edge node (via cloud_state messages in
Figure 5-(b)), while each edge node notifies its state changes
to the cloud server (via edge_state messages in Figure 5-(b)).
Specifically, EdgStr identifies all the affected code statements
in each replicated component. rewriting them by means of
CRDT templates’. The changes between the cloud and its
edge replicas are efficiently exchanged via the bidirectional
socket.io APIL.

2) Generating Edge Replicas: Given a list of cloud-based
server functions and a state snapshot, EdgStr then generates
replicas to be deployed on edge nodes. To generate readable
code that can be tweaked by hand, EdgStr uses the handlebars
template framework. To keep the states between the edge
replicas and the cloud service eventually consistent, each
edge node initializes its CRDT data structure with a passed
state snapshot. Once generated and deployed, a replica starts
proxying for the cloud-based service when processing client
requests. It executes a service and responds to the client, while
asynchronously transmitting the state changes by means of its
CRDT data structure to the cloud-based service, which serves
as the cloud-based master copy. As a consequence, the CRDTs
at the replicated edge nodes unconditionally accept all changes
received from the cloud-based CRDTs. The CRDT mechanism
of EdgStr guarantees that all replicas would eventually arrive
to the same state, a property that is tolerant to temporal
state divergence or merging delay between the edge nodes.
However, with relaxed convergence, concurrent updates could
still result in dissimilar final states.

IV. EVALUATION

Our evaluation seeks answers to the following questions:

¢ RQ1. Correctness Does EdgStr preserve the functional-
ity of original client-cloud apps when transforming them
to their client-edge-cloud versions?

o RQ2. Performance How does EdgStr affect the through-
put, latency, and energy consumption of apps? What
impact does EdgStr’s clustering have on latency and
energy consumption when it comes to edge devices?

« RQ3. Efficiency How accurately does EdgStr’s dynamic
analysis identify the portion of the replicated service state
that must be synchronized? How does EdgStr’s proxying
compare with existing distributed proxying techniques in
terms of performance overhead?

A. Subject Applications

We evaluated our approach with 7 open-source distributed
applications and their 42 remote services. To identify these
subjects, we searched GitHub for repositories for distributed
applications, in which both the client and the server com-
municate via HTTP. To that end, we searched the results

Zhttps://github.com/automerge/automerge
3https://github.com/handlebars-lang/handlebars.js

Table II: Subject Services and Their Refactored Services

Edge Throughput:y

Subject Services WAN Traffic/Overhead(KB) Latency(ms)
Apps (HTTP verbs) Sapp WAN, WAN, L, L.
f-objdet /predict(POST) | 22850 2280 [0,0] 393 4830
mnist-rest | /predict-d(POST) | 22740 0.784 0,0] 111 169
Tprpris(GET) 4 34 99
/prprts:id(GET) 0.845 34 69
/favorite:id(DEL) 1.4 28 66
/favorite(GET) 1.4 36 81
realty-rest | 0 oritePosT) | 0100 [L B SR
/likes(POST) 1.1 41 6l
/brokers:id(GET) 0.518 38 59
/brokers(GET) 0.708 40 69
/ladypet(GET) 119.5 116 301
/thedea(GET) 296.8 299 1420
/thered(GET) 722 145 477
/thegift(GET) 38.1 116 328
Bookworm PigiripGeT) | 280 702 0.0 119 433
/offshore(GET) 204 199 944
/wallpaper(GET) 107 160 511
/thecask(GET) 44.8 109 391
/Donuts(GET) 0.521 98 156
/Donuts(POST) 0.561 67 155
/Donuts:id(GET) 0.201 88 145
/Shops(GET) 0.394 58 98
DonutShop /Shops(POST) 8910 0.504 [0, 1.5] 76 120
/Shops:id(GET) 304 64 112
/Emplys(GET) 0.504 113 199
/Emps(POST) 0.534 69 123
/Emps:id(GET) 0.405 67 140
/Emps:id(DEL) 0.534 88 133
/recipes(GET) 2.85 129 210
/rcps:id(GET) 0.2 82 142
/reps:id(DEL) 0.418 72 153
Jreps:id(POST) 0.418 69 108
/igts(GET) 5.47 90 144
. /figts:id(GET) 0.479 76 143
RecipeBook figsidoEry | 070 osss (02131 g1 33
/igts:id(POST) 0.858 66 102
/dirctns(GET) 13.01 87 124
/dirctns:id(GET) 0.271 75 111
/dirctns:id(DEL) 0.542 71 121
/dirctns:id(POST) 0.542 63 99
/hbone(POST) 2.6 116 323
med-chem |, o weosT) | 1370 017 0351 3 30

based on combinations of keywords for popular server and
client HTTP middleware frameworks for Node.js, curated by
the community. For server-side keywords, we used ‘Express’,
‘Koa’, etc., while for client-side keywords we used ‘Ajax’,
‘fetch’, ‘react]S’, ‘Angular’, etc. The selected subjects use
these frameworks to implement the communication logic of
their respective client and server parts. Several subjects also
make use of server-side databases and the TensorFlow frame-
work. Table II describes our subject applications and details
the experimental results; it shows the evaluated remote services
with their HTTP verbs, alongside their network traffic and
latency measurements.

B. Correctness of EdgStr’s Replication

We first checked whether the replicated services continue
to deliver the same functionality as their original cloud-based
versions (RQ1). Specifically, we compared if the replicated
and original versions of our test subjects returned the same
results for a given set of parameters. Given (py, ...p,) sent to
the original service O.S and the replicated service RS, check if
R,s == R,s. To that end, we utilized the regression test cases
that come with the original apps, consisting of clients invoking
HTTP requests against remote services. For this experiment,

Components Specification ~ 600

Cloud Infra 17-7700

(Desktop) (3.6GHzX8) 400 {R;f_’;gmx /

Edge Node Cortex—A53 !

(RPI-3) (14GHzX4) 200 /7 ¥ = 0.044x
Edge Node Cortex—-A72 (RPI-3)
(RPI-4) (1.5GHzX4) 0

Mobile Dev | Snapdragon 0 2000 4000 6000
(Android) -616 Cloud Throughput: x

(a) Processor Specification for Compo- (b) Benchmarking Throughput and
nents Regression Testing

Figure 6: Cloud/Edge Nodes and Mobile Device Setup

after each service execution, we reset the original and the
replicated versions of subject services to their init state via
EdgStr-generated restore operations. Executing the original
regression tests against all subject services did not reveal any
discrepancies between the original services and their replicas
produced via EdgStr (42/42).

C. Performance

We evaluated how network conditions and device process-
ing power impact application performance (RQ2). Here, we
present the results of evaluating performance in terms of
throughput, latency, and consumed energy in turn.

Network Setup: Our system utilizes two network links 1)
an edge network: this local area network has a strong signal
strength of -55dBm or better. 2) a cloud network: this wide
area network (WAN) is configurable with offset parameters for
delay and bandwidth to exhibit different network character-
istics using a system-level network emulator*. For evaluating
EdgStr in a limited cloud network setup, we set the bandwidth:
[100, 1000] Kbps and the latency: [100, 1000] ms), similar to
the environment of our motivating example scenario (Section
II-A).

Cloud/Edge Nodes Setup: The processor speed of the cloud
server far exceeds that of the edge nodes, invoking cloud
services that transmit large volumes of data over limited
networks incurs a heavy performance overhead that can negate
the advantages in processing capacity. Our testbed also com-
prises a powerful cloud server and much slower edge servers.
Specifically, we used DELL-OPTIPLEX5050 as our cloud
infrastructure as well as RPI-3 (Raspberry Pi-3) and RPI-4
(Raspberry Pi-4) devices as our edge nodes (Figure 6-(a)).

Recall that the primary motivation for replicating cloud-
based services at the edge is to reduce latency and increase
throughput under varying network conditions. Hence, in our
measurements, we established a baseline for the throughput
rates as those that are typically reached under good network
conditions (i.e., representative of typical edge network band-
width). To ensure that our subjects exhibit normal performance
characteristics, we applied a linear regression analysis to the
cloud and the edge throughput rates. Because the slopes in

“https://github.com/tylertreat/comcast

Throughput[Req/s]

Throughput[Req/s] 1000 Throughput[Req/s] 1000

=== Cloud

===EdgStr | 100 100

1000 Throughput[Req/s] 1000

Throughput[Req/s] 100 Throughput[Req/s]

=& Cloud

Deluge Index: I oy, e
1000 2000 g

== Cloud == Cloud —o— Cloud
________ 0 _ooPdgsr Y 10 ——-Edgstr B 10 50 ~—+=-Edgstr
)) ---- EdgStr . . === EdgStr . 0 S, +
0 700 1400 2100
28 21 14 07 0 15 12 09 06 03 0 08 06 04 02 0 5 4 3 10 6 4 2 0 5 43 2 10

WAN Speed [MB/s]
(a) f-objdet

WAN Speed [MB/s] WAN Speed [MB/s]

(b) mnist-rest (¢) med-chem-rules

WAN Speed [MB/s]

(d) ionic2-realty-rest

WAN Speed [MB/s] Data TRX_WAN [Kbytes]

WAN Speed [MB/s]

(e) Bookworm (f) RecipeBook (g) Data Deluge Index

Figure 7: Cloud Network Speed versus. Throughput Performance and Deluge Index (Section IV-C)

Figure 6-(b) are far smaller than y = x, one can assume
that all original subjects are well-optimized for a typical
deployment environment: a powerful server connected via a
reliable network. In addition, we applied a linear regression
analysis between the edge nodes running RPI-3 and RPI-4.
According to a processor benchmark [19], the CPU power of
RPI-4 exceeds that of RPI-3 by a factor of 1.8, which is similar
to our measurement value of 1.71 (0.075/0.044) as shown in
Figure 6-(b).

1) Throughput: For each experimental subject, we com-
pared the throughput (numbers of requests per second)
achieved by the original client-cloud versions and their client-
edge-cloud variants. We deployed original subjects in dissimi-
lar network environments, in terms of the speed of their cloud
links. To that end, we configured their bandwidths from 0.1
to 5 MBytes/s for our limited networks (Section IV-C). In
a fast WAN, client-cloud always achieved higher throughput
than their client-edge-cloud variants. As the WAN’s speed
decreased, so did the client-cloud’s throughput, reaching
a threshold at which the client-edge-cloud variants started
achieving higher throughput. The performance advantage of
edge-based execution manifests itself most prominently in
subjects with relatively heavy upload/download data traffic
or low computational loads (Figure 7-(a),(c),(d), and (f)). We
demonstrate this by quantifying the transmitted data.

a) Data Deluge Index.: To obtain deeper insights into
how the amount of transmitted data affects the performance
of cloud-based execution, we introduced Data Deluge index,
a new metric, defined as Igejuge = ANet/ATput. The Tput
variable represents normalized throughput for Figure 7, which
scales the app’s original throughput to the range between 0 and
1. Igeuge is defined as the network resources ANet needed to
increase Tput. /41y ge’s increases for the original cloud service
ended up being proportional to the amount of transmitted data,
whereas the volumes of transmitted data over WAN did not
affect EdgStr’s throughput (Figure 7-(g)).

2) Latency: Similarly to throughput, the network speed
heavily affects the latency of mobile clients invoking cloud-
based services. First, we established the baseline by profiling
the respective invocation latency under favorable network
conditions as L,—the original cloud-based service, and L.—
its edge-based counterpart (see Table II for detailed results).
Notice that L, was always smaller than L.. As WAN’s con-
ditions degraded, executing edge-replicated services became

faster than executing their original cloud-based versions.

3) Energy Consumption: We also evaluated our approach’s
impact on reducing the energy consumption of client devices.
Because, nowadays, client devices are typically mobile and
battery-powered, energy efficiency has become an important
system design consideration. Notice that while a mobile client
is waiting to receive the results from a cloud-based service,
the mobile device typically switches into a low-power mode in
the idle state to consume less energy. Nevertheless, the longer
it takes to execute a cloud-based service, the more energy the
client device will end up consuming, despite being in the low
power mode [20].

We used Trepn Profiler [21] to measure the consumed
energy of an Android device running the Snapdragon chipset.
We executed each subject 200 times and collected the profiled
results for battery power (Watt) over the limited cloud network,
as described in Section IV-C. As compared to the original
client-cloud versions of our subjects, their client-edge-cloud
versions consistently decreased their energy consumption by
factors that range from 6.65J to 7.98J (Figure 8).

0 Cloud O Cloud o Cloud
H EdgStr ® EdgStr m EdgStr
0
10.5s [time] 57s 11s [time] 56s 13s [time] 61s

(a) RecipeBook (b) ionic2-realty-rest (¢) med-chem-rules

Figure 8: Comparison for Consumed Energy of a Mobile
Device (Poor Network Setup)

D. Evaluating the Scalability and Elasticity of Edge-Based
Processing

To be able to distribute the incoming service requests
from clients equally across the available edge replicas, we
constructed a small cluster of edge devices, each hosting a
service replica. To manage the cluster, we introduced a load
balancer, a system module providing the following two capa-
bilities: (1) optimize the cluster’s processing load by directing
client request traffic to the edge nodes with the fewest active
connections [22]; (2) estimate the expected volume of traffic
by monitoring the number of active connections between edge

Latency [msec] (averaged) Consumed Energy [J] (averaged)

1000 + 130

--++-- single-active (a RPI-4) |

---ae-- all-active (4-RPIs)
= Clustering (on/off)."

110

90

Log scale
=
o
o

70 «++4¢ -« all-active (4-RPls)
= Clustering (on/off)
10 50

100 150 200 250 300 0
Requests Per Second (RPS)

0 50
Requests Per Second (RPS)

50 100 150 200 250 300

Figure 9: Latency and Energy Savings of Edge Devices for
Clustered Execution (all-active: least connections load balanc-
ing without on/off)

nodes and their clients. We then configured the balancer to
monitor the volume of client requests, so the running edge
service replicas could be dynamically created and shut down
in response to the changes in service utilization. Rather than
completely shutting down an edge device, we instead put it
into the low-power mode, so it could be brought back to the
running mode without incurring unnecessary delays. Our load-
balancing heuristic assumed that all client requests had similar
processing requirements. As the number of active connections
changed, the load balancer adjusted the number of active edge
nodes accordingly.

To evaluate our approach’s effectiveness, we experimented
with different execution scenarios. These scenarios emulated
several distinct volumes of client requests to a remote service
with various workloads that involved different read and modify
functions. Finally, we evaluated how much energy could be
saved by the edge devices to extend their battery life [23],
[24]. To that end, we compared our approach to a naive edge
processing setup, measuring how much time the Rasberry PIs
spent in the power-off battery mode.

Increasing the number of participating edge nodes low-
ered the network communication latency, especially in the
presence of heavy network traffic (Figure 9-left). However,
as the network traffic dissipated, engaging additional edge
nodes in the execution neither decreased latency nor increased
throughput. Rather, the attendant extra resource consumption
can drain the battery power of the participating edge devices
faster, as they must remain active to be ready to process both
client requests and the cloud server’s synchronization requests.
As is always the case with replicated services, the volume
of synchronization requests increased proportionally with the
number of replicas, which in this deployment were hosted by
edge nodes.

Our evaluation setup comprised four edge replicas, each
hosted by a Raspberry PI device, connected directly to the
edge router by a wireless network (It consisted of 2 RPI-3s and
2 RPI-4s). In this performance benchmark, we measured the
observed latency and energy consumption per client requests
per second (RPS). Specifically, we varied the RPS from 10 to
300 in increments of 50. As expected, for higher RPS (from
200 and up), increasing the number of active edge replicas

ended up decreasing the overall latency. In contrast, for lower
RPS (between 10 and 200), the number of active edge replicas
had no visible bearing on the observed overall latency.

The ability to power down the unused edge replicas led to
noticeable energy savings. To measure the consumed energy,
we attached a digital power meter to the edge devices. In
response to the decrease in the volume of client requests,
the number of active replicas gradually changed from 4 to
1, thus reducing the volume of consumed energy by as much
as 12.96%, with the overall latency increasing only slightly
(Figure 9-right).

E. Effectiveness of EdgStr

To answer RQ3, we compared the effectiveness of EdgStr’s
synchronization and proxying strategy to those of other rep-
resentative approaches used in distributed systems.

1) Effectiveness of EdgStr’s Synchronization: While net-
work conditions can affect the performance of invoking remote
services, stateful services behaved dissimilarly between invo-
cations across all execution environments. (See Original WAN
traffic WAN, as shown in Table II). The need to synchronize
the state changes affected the original WAN traffic patterns.
When a replicated stateful service was executed at an edge
node, the changed state was then asynchronously transmitted
via WAN to the cloud server. We report both the minimum
and the maximum amounts of EdgStr’s WAN (WAN_, in Table
I). As shown in Figure 10-(a), we compared the amount of
network traffic WAN, generated by the original version during
a regular remote execution vs. the maximum WAN traffic
resulting from EdgStr’s synchronization (Kbytes/request). For
the majority of our subjects, EdgStr’s transformation reduced
the amount of WAN traffic generated by a single service
invocation. This reduction is due to our subject apps being
data-intensive, with client-generated data transferred to the
remote server for processing. Most of the cross-Instruction Set
Architecture (cross-ISA) offloading systems [25], [26], [27]
synchronize the entire program state stored in the working
memory (S, in Table II). As compared to those systems,
EdgStr minimizes the amount of synchronization traffic over
WAN by replicating only the modifiable parts of the repli-
cated service state. Figure 10-(a) shows that, as compared to
the cross-ISA systems, EdgStr reduced the synchronization
overhead by orders of magnitude.

2) Comparing EdgStr to Caching/Batching Proxy Tech-
niques: Caching: Proxy Caching [28], [29] can be particularly
beneficial for read-mostly services. If the replicated service
data is simply cached, it can then be accessed with low
latency. However, caching may be inapplicable for replicating
certain remote services. In the presence of state changes, the
cached service data can become stale fast [30]. Besides, for
example, some subjects would be unable to cache their data
as {client_param and cloud_result}. Because these subject
services take images (i.e., hand-written digits or camera pic-
tures) or text as input, their data has unique characteristics
that would be impossible to duplicate. We discovered that only
‘Bookworm’ and ‘med-chem-rules’ could be cached.

[Kbytes Cross-ISA Original EdgStr's [msec] Bascline Batching Caching EdgStr

[req] (Sync all) WAN WAN 14000
100000 - :
17060 12000 |
10000 9750
7352 10000 -
1000 1193
8000 - 8192 | sers
100 114 6000 -
10 13.01 4000 ggzg o
’ 1.451 1 4716 3976
1 1.11 0 2000 4 2500
1340
0.1 04 341 407

246

(a) Sync Overhead and WAN traffic
Analysis (Section IV-E1)

(b) Comparing the “Latency” of Proxy
Strategies (Section IV-E2)

Figure 10: Effectiveness: EdgStr vs. other techniques

Batching: A batching proxy aggregates multiple client re-
quests to forward them as a single message containing the
aggregated data to the server, which also returns the results in
bulk [31], [32]. Hence, because batching reduces the number
of WAN transmissions, it is most effective in high-bandwidth
networks. However, if the volume of transmitted data saturates
the available bandwidth, batching becomes ineffective. We
aggregated the multiple remote executions by using distri-
bution patterns—Data Transfer Object (DTO) and Remote
Facade [33]—-to quantify how these proxying strategies per-
formed in comparison to EdgStr in terms of the total latency
it took to invoke subject services. The measurement results
appear in Figure 10-(b). Each benchmark was executed over
the limited cloud network setups, as described in Section
IV-C, with the average latency of batching between 2 and 10
executions reported.

As it turned out, all evaluated proxy strategies ended up
reducing the response latency, as compared to the baseline
cloud-based executions. Batching decreased latency by the
smallest amount, due to our setup’s network bandwidth being
smaller than the amount of the batched transfers’ aggregated
data. Caching achieved the smallest latency for the min, Q1I,
and median benchmark. However, for the max and Q3 bench-
marks, caching ended up increasing the latency as compared
to the unproxied cloud-based baseline. Because many services
cannot be cached at all, this proxying strategy’s applicability
is rather low. EdgStr exhibited the lowest latency for most
benchmarks with a few exceptions, in which caching showed
lower latency (i.e., min, QI, and median).

FE. Threats to Validity

Internal Threats: We assumed that the replicated cloud ser-
vices could handle failures effectively. In EdgStr’s replication,
edge replicas relied on the cloud to handle failures. That is, a
replica only detected failures but handled them by redirecting
the failed service request to the cloud, assuming that the
original cloud service would either succeed in executing the
request or handle failures effectively. If this assumption about
the failure handling capabilities of the original cloud services
did not hold, our failure handling strategy of the edge replicas
would be inadequate.

10

External Threats: Our experimental setups used Raspberry
Pis as edge devices, which might not be as computationally
powerful. However, what this design choice means is that our
experimental setups did not unfairly advantage our approach.
If we instead used more powerful edge devices, without
changing any other aspects of our evaluation, our approach’s
performance improvements would strictly increase.

V. RELATED WORK

EdgStr is related to several techniques and approaches
introduced in prior works. We briefly describe them in turn.
Distributing Applications by Transforming Code: Similarly
to our approach, program analysis and transformation have
been applied to split single-tier applications into distributed
multi-tiers. The ZQ compiler [34], Code Phage [35], and
RT-Trust [36] transform centralized applications into their
distributed counterparts to enhance security and privacy. The
cross-ISA offloading frameworks [25], [26], [27] generate
distributed applications whose different parts exchange their
memory address mappings. Tango [26] generates replicas of
a mobile app that bidirectionally initiates the communication
between the client and the server, as driven by execution
time conditions. Buffet [27] compiles a complex program into
a subset of variants to run cross-ISA systems. After that,
Buffet verifies the correctness and integration of the resulting
cross-ISA distributed applications. CodeCarbonReply [37] and
uScalpel [38] remove irrelevant functionality and integrate
the extracted parts of one program with another program.
However, the majority of these related works require that
programmers manually annotate the programs to identify and
transform the replicated states. Additionally, their program
transformations can be applied only to centralized applications.
In contrast, EdgStr requires no programmer annotations and
takes distributed, client-cloud applications as input.

State Replication in Distributed Systems: Several frame-
works replicate data of mobile clients for performance and
fault tolerance. Legion [39] replicates data across clients
by means of CRDTs. By interacting peer-to-peer, Legion’s
clients reduce communication latency, remaining resilient in
the presence of server disconnections. EdgStr shares the de-
sign objectives for replicating data over limited networks, but
its novelty lies in automating the replication and consistency
functionalities, eliminating the need to modify client or server
code by hand. Fuzzing techniques have been applied to capture
possible execution states of a cloud service. Restler [40],
[41] analyzes APIs and execution logs to increase execution
coverage or to identify security vulnerabilities in cloud-based
services in the presence of dependencies across REST APIs.
However, these approaches cannot replicate both program code
and state, as required for replicating cloud services at the edge.
Optimization Techniques: Several systems offer batching op-
timization. Bouquet [42] detects and bundles together repeated
requests. APE [43] defers distributed calls until the mobile
device switches into the network activation state. However, the
underlying network can cause batching transmissions to hurt
performance, increasing latency and memory consumption. A

Stream Processing Engine (SPE) efficiently processes high
rates of sensing data by distributing stream processing across
workers [44]. To improve their performance within a job,
workers can be controlled in a queue with a back-pressure
algorithm [45], maximizing data locality [46], or accelerating
network transfer [47]. These techniques can also benefit our
approach if the underlying OS and architecture support them.

VI. CONCLUSIONS

We presented the EdgStr framework that automatically
transforms client-cloud apps into their client-edge-cloud ver-
sions. We described and evaluated EdgStr’s advanced program
analysis, profiling, generation, and transformation techniques.
Our experiences with applying EdgStr to representative dis-
tributed mobile apps show how it introduces the performance
benefits of edge processing, without the high costs of manual
program transformation.

ACKNOWLEDGEMENTS

The authors thank the anonymous reviewers, whose insight-
ful comments helped improve this paper. This research is
supported by NSF through the grant #2232565.

REFERENCES

[1] T. Elgamal, S. Shi, V. Gupta, R. Jana, and K. Nahrstedt, “Sieve:
Semantically encoded video analytics on edge and cloud,” in 2020
IEEE 40th International Conference on Distributed Computing Systems
(ICDCS). 1EEE, 2020, pp. 1383-1388.

Z. Wen, P. Bhatotia, R. Chen, M. Lee et al., “Approxiot: Approximate
analytics for edge computing,” in 2018 IEEE 38th International Con-
ference on Distributed Computing Systems (ICDCS). 1EEE, 2018, pp.
411-421.

L. Dong, Z. Yang, X. Cai, Y. Zhao, Q. Ma, and X. Miao, “Wave: Edge-
device cooperated real-time object detection for open-air applications,”
IEEE Transactions on Mobile Computing, vol. 22, no. 7, pp. 4347-4357,
2023.

P. Garcia Lopez, A. Montresor, D. Epema, A. Datta, T. Higashino,
A. Tamnitchi, M. Barcellos, P. Felber, and E. Riviere, “Edge-centric
computing: Vision and challenges,” ACM SIGCOMM Computer Com-
munication Review, vol. 45, no. 5, pp. 37-42, 2015.

M. Shapiro, N. Preguica, C. Baquero, and M. Zawirski, “Conflict-
free replicated data types,” in Symposium on Self-Stabilizing Systems.
Springer, 2011, pp. 386—400.

F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and M. Stal,
Pattern-oriented software architecture: a system of patterns. John Wiley
& Sons, 2008, vol. 1.

L. Richardson and S. Ruby, RESTful web services.
Inc.", 2008.

M. Guarnieri, P. Tsankov, T. Buchs, M. Torabi Dashti, and D. Basin,
“Test execution checkpointing for web applications,” in Proceedings of
the 26th ACM SIGSOFT International Symposium on Software Testing
and Analysis. ACM, 2017, pp. 203-214.

K. An and E. Tilevich, “Catch & release: An approach to debugging
distributed full-stack JavaScript applications,” in Web Engineering, 2019,
pp. 459-473.

K. Sen, S. Kalasapur, T. Brutch, and S. Gibbs, “Jalangi: a selective
record-replay and dynamic analysis framework for JavaScript,” in Pro-
ceedings of the 2013 9th Joint Meeting on Foundations of Software
Engineering, 2013, pp. 488—498.

K. An and E. Tilevich, “Client insourcing: Bringing ops in-house
for seamless re-engineering of full-stack JavaScript applications,” in
Proceedings of the Web Conference 2020, 2020.

B. Livshits and M. S. Lam, “Finding security vulnerabilities in Java
applications with static analysis,” in Proceedings of the 14th Conference
on USENIX Security Symposium - Volume 14, 2005.

[2]

[3]

[4]

" O’Reilly Media,

[9]

[10]

[11]

[12]

11

[13]

[14]

[15]

[16]

(17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

(31]

[32]

[33]

[34]

[35]

[36]

C. Sung, M. Kusano, N. Sinha, and C. Wang, “Static DOM event
dependency analysis for testing Web applications,” in Proceedings of
the 2016 24th ACM SIGSOFT International Symposium on Foundations
of Software Engineering, ser. FSE 2016. ACM, 2016, pp. 447-459.
G. Li, E. Andreasen, and I. Ghosh, “SymlJS: Automatic symbolic
testing of JavaScript web applications,” in Proceedings of the 22nd
ACM SIGSOFT International Symposium on Foundations of Software
Engineering, ser. FSE 2014, 2014, pp. 449-459.

L. De Moura and N. Bjgrner, “Z3: An efficient SMT solver,” in
International conference on Tools and Algorithms for the Construction
and Analysis of Systems. Springer, 2008, pp. 337-340.

N. Preguica, “Conflict-free replicated data types: An overview,” arXiv
preprint arXiv:1806.10254, 2018.

W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu, “Edge computing: Vision and
challenges,” IEEE internet of things journal, vol. 3, no. 5, pp. 637-646,
2016.

M. Kleppmann and A. R. Beresford, “A conflict-free replicated json
datatype,” IEEE Transactions on Parallel and Distributed Systems,
vol. 28, no. 10, pp. 2733-2746, 2017.

extremetech, https://extremetech.com/computing/198808-arms-trifecta-
new-cpu-gpu-and-interconnect-hardware-on-the-way.

N. Ding, D. Wagner, X. Chen, A. Pathak, Y. C. Hu, and A. Rice,
“Characterizing and modeling the impact of wireless signal strength
on smartphone battery drain,” in ACM SIGMETRICS Performance
Evaluation Review, vol. 41, no. 1. ACM, 2013, pp. 29-40.
Qualcomm, “Trepn profiler,” https://developer.qualcomm.com/forum/
qdn-forums/increase-app-performance/trepn-profiler/27700, 2018.

H. Nasser and T. Witono, Analisis Algoritma Round Robin, Least
Connection, Dan Ratio Pada Load Balancing Menggunakan Opnet
Modeler. Duta Wacana Christian University, 2016.

K. An and E. Tilevich, “Communicating web vessels: Improving the
responsiveness of mobile Web apps with adaptive redistribution,” in Web
Engineering: 21st International Conference, ICWE 2021, Proceedings.
Springer-Verlag, 2021, p. 388—403.

E. Tilevich and Y.-W. Kwon, “Cloud-based execution to improve mobile
application energy efficiency,” Computer, vol. 47, no. 1, pp. 75-77,2014.
W. Wang, P.-C. Yew, A. Zhai, S. McCamant, Y. Wu, and J. Bobba,
“Enabling cross-isa offloading for COTS binaries,” in Proceedings of the
15th Annual International Conference on Mobile Systems, Applications,
and Services. ACM, 2017, pp. 319-331.

M. S. Gordon, D. K. Hong, P. M. Chen, J. Flinn, S. Mahlke, and Z. M.
Mao, “Accelerating mobile applications through flip-flop replication,”
in Proceedings of the 13th Annual International Conference on Mobile
Systems, Applications, and Services, 2015, pp. 137-150.

R. S. Wahby, S. T. Setty, Z. Ren, A. J. Blumberg, and M. Walfish,
“Efficient RAM and control flow in verifiable outsourced computation.”
in NDSS, 2015.

W. Ali, S. M. Shamsuddin, A. S. Ismail ez al., “A survey of Web caching
and prefetching,” Int. J. Advance. Soft Comput. Appl, vol. 3, no. 1, pp.
18-44, 2011.

J. Mertz and I. Nunes, “Understanding application-level caching in web
applications: a comprehensive introduction and survey of state-of-the-art
approaches,” ACM Computing Surveys, vol. 50, no. 6, pp. 1-34, 2017.
J. Wang, “A survey of web caching schemes for the internet,” ACM
SIGCOMM Computer Communication Review, vol. 29, no. 5, pp. 36—
46, 1999.

M. Fowler, Patterns of Enterprise Application Architecture: Pattern
Enterpr Applica Arch. Addison-Wesley, 2012.

W. R. Cook and B. Wiedermann, “Remote batch invocation for SQL
databases.” in DBPL, 2011.

K. An and E. Tilevich, “D-Goldilocks: Automatic redistribution of
remote functionalities for performance and efficiency,” in Proceedings of
the 27th IEEE International Conference on Software Analysis, Evolution
and Reengineering(SANER), 2020.

M. Fredrikson and B. Livshits, “Zg: An optimizing distributing zero-
knowledge compiler,” in 23rd USENIX Security Symposium (USENIX
Security 14). San Diego, CA: USENIX Association, 2014, pp. 909—
924.

S. Sidiroglou-Douskos, E. Lahtinen, F. Long, and M. Rinard, “Au-
tomatic error elimination by horizontal code transfer across multiple
applications,” in Proceedings of the 36th ACM SIGPLAN Conference
on Programming Language Design and Implementation, 2015.

Y. Liu, K. An, and E. Tilevich, “RT-Trust: Automated refactoring for
trusted execution under real-time constraints,” in Proceedings of the 17th

[37]

[38]

[39]

[40]

[41]

[42]

ACM SIGPLAN International Conference on Generative Programming:
Concepts and Experiences, ser. GPCE 2018. ACM, 2018, pp. 175-187.
E. T. Barr, M. Harman, Y. Jia, A. Marginean, and J. Petke, “Automated
software transplantation,” in Proceedings of the 2015 International
Symposium on Software Testing and Analysis, ser. ISSTA 2015. New
York, NY, USA: ACM, 2015, pp. 257-269.

S. Sidiroglou-Douskos, E. Lahtinen, A. Eden, F. Long, and M. Rinard,
“CodeCarbonCopy,” in Proceedings of the 2017 11th Joint Meeting on
Foundations of Software Engineering, ser. ESEC/FSE 2017. ACM,
2017, pp. 95-105.

A. van der Linde, P. Fouto, J. Leitdo, N. Preguica, S. Castifieira, and
A. Bieniusa, “Legion: Enriching internet services with peer-to-peer
interactions,” in Proceedings of the 26th International Conference on
World Wide Web, 2017, pp. 283-292.

V. Atlidakis, P. Godefroid, and M. Polishchuk, “Restler: Stateful REST
API fuzzing,” in 2019 IEEE/ACM 4lst International Conference on
Software Engineering (ICSE). 1EEE, 2019, pp. 748-758.

V. Atlidakis, R. Geambasu, P. Godefroid, M. Polishchuk, and
B. Ray, “Pythia: Grammar-based fuzzing of REST APIs with
coverage-guided feedback and learning-based mutations,” arXiv preprint
arXiv:2005.11498, 2020.

D. Li, Y. Lyu, J. Gui, and W. G. Halfond, “Automated energy optimiza-
tion of HTTP requests for mobile applications,” in 2016 IEEE/ACM

12

[43]

[44]

[45]

[46]

[47]

38th International Conference on Software Engineering (ICSE).
2016, pp. 249-260.

N. Nikzad, O. Chipara, and W. G. Griswold, “APE: an annotation
language and middleware for energy-efficient mobile application de-
velopment,” in Proceedings of the 36th International Conference on
Software Engineering. ACM, 2014, pp. 515-526.

M. Stonebraker, U. Cetintemel, and S. Zdonik, “The 8 requirements of
real-time stream processing,” ACM Sigmod Record, vol. 34, no. 4, pp.
42-47, 2005.

S. Kulkarni, N. Bhagat, M. Fu, V. Kedigehalli, C. Kellogg, S. Mittal,
J. M. Patel, K. Ramasamy, and S. Taneja, “Twitter Heron: stream
processing at scale,” in Proceedings of the 2015 ACM SIGMOD In-
ternational Conference on Management of Data, 2015, pp. 239-250.
G. Ananthanarayanan, A. Ghodsi, A. Warfield, D. Borthakur, S. Kan-
dula, S. Shenker, and I. Stoica, “Pacman: Coordinated memory caching
for parallel jobs,” in Presented as part of the 9th USENIX Symposium
on Networked Systems Design and Implementation (NSDI 12), 2012, pp.
267-280.

M. Chowdhury, M. Zaharia, J. Ma, M. L. Jordan, and I. Stoica, “Manag-
ing data transfers in computer clusters with orchestra,” ACM SIGCOMM
Computer Communication Review, vol. 41, no. 4, pp. 98-109, 2011.

IEEE,

