
Implementing an Open-access, Data Science
Programming Environment for Learners

Austin Cory Bart∗, Javier Tibau∗†, Eli Tilevich∗, Clifford A. Shaffer∗, Dennis Kafura∗
∗Computer Science

Virginia Tech
Blacksburg, Virginia, USA

acbart@vt.edu, jtibau@vt.edu, tilevich@vt.edu, shaffer@vt.edu, kafura@vt.edu
†Escuela Superior Politécnica del Litoral, ESPOL

Km 30.5 Vı́a Perimetral, Guayaquil, Ecuador

Abstract—A key retention issue when ed-
ucating computing novices is ensuring that
the frustrations of mastering programming
fundamentals do not demotivate students.
Non-CS majors often struggle to find rel-
evance in traditional computing curricula
that tend to either emphasize abstract con-
cepts, focus on non-practical entertainment
(e.g., game/animation design), or rely on de-
contextualized settings. To assist with these
issues, this paper introduces BlockPy (https:
//www.blockpy.com), a web-based, open-
access Python programming environment
that supports introductory programmers in
a Data Science context. It promotes long-
term transfer by scaffolding an introduc-
tion to textual programming through a
block-based programming view, ideal for
beginners. BlockPy is designed for informal
learners and formal classes, and provides
guiding feedback within interactive pro-
gramming problems. The results from a
pilot of the initial deployment of BlockPy
indicates that the environment addresses
many problems faced by novice learners.

Keywords-Computer science education;
Computer aided instruction; Data analysis;
Web services;

As computing becomes pervasive in

our society across fields, working profes-
sionals increasingly need some expertise
in computing alongside their core domain
knowledge. General education comput-
ing curricula at the university level (e.g.,
“Computational Thinking” courses) are
scaling, Massively Open Online Courses
are flourishing, and a large class of learn-
ers are pursuing non-formal learning ex-
periences on their own. Both these tra-
ditional and non-traditional learners of-
ten have little experience with computing,
low self-efficacy, and are uncertain how
computing benefits their long-term career
goals. Not only do they need special scaf-
folding unique to their ability and moti-
vational level, but they also need fewer
barriers in accessing these materials. Our
new tool to better serve this population
is BlockPy: an open-access, web-based
Python environment for data science that
supports learners with guided instruction
and an accessible interface (https://www.
blockpy.com).

Why Data Science? Modern ap-
proaches to contextualizing introductory



courses have focused on making the ex-
perience “fun” and “interesting”, with an
emphasis on game design and media com-
putation. However, student motivation is
a complex construct dependent on more
than just situational interest; holistic mod-
els of motivation suggest that students
also need to feel that the material is useful
to learn, and that long-term career goals
are satisfied [1]. Contexts like Media
Computation are not always perceived as
authentically useful for non-majors, based
on a study by Guzdial et al [2].

We suggest that Data Science is a
motivating context that can appeal in a
different way to students, thanks to the
wide-spread need for data processing in
other majors. In a previous work, we have
reported on the affordances and impacts
of Data Science as a learning context [3].
Often, students study computing to learn
how to manage the dizzying quantities
of data being stored and analyzed in a
discipline or for a specific self-derived
project. By grounding the content in this
context, students can be more easily con-
vinced of the relevance of computing and
understand how the materials fit together
more clearly. By aligning the context with
students’ long-term needs, students also
learn skills more relevant to those needs.
Finally, data science as a context naturally
lends itself to teaching topics related to
structured data, iteration, and other core
material, making it a pedagogically valu-
able context to the CS instructor.

Why Python? Python has become one
of the most popular introductory pro-
gramming languages [4], thanks to its
simple syntax combined with impressive
power. It includes strong support for data

science thanks to popular libraries like
MatPlotLib. Python requires little code to
accomplish interesting things, so novices
are not bogged down with complex syn-
tactical details. Its wide-spread use in both
introductory classes and industry further
motivated our choice.

Why Blocks? Any kind of program-
ming is a challenge to beginners, due to
the nature of coding as the “most pow-
erful, but least usable human-computer
interface ever invented” [5]. Block-based
languages (such as Scratch and AppIn-
ventor) have been shown to mitigate the
start-up time for students to begin pro-
gramming and accomplish tasks [6], [7].
By providing structure and an immediate
view into the entire user interface of a lan-
guage, blocks greatly benefit introductory
learners.

Why Another Python Web Environ-
ment? There are several environments
available today that let students and in-
structors write Python in the browser, in-
cluding CodeSkulptor [8], Pythy [9], and
the Online Python Tutor [10]. BlockPy
stands on the shoulders of giants, in-
tegrating features inspired by these en-
vironments and introducing novel ones.
But none of these existing Python envi-
ronments transitions students into textual
programming languages.

BlockPy was designed to provide dual
support for both block-based and text-
based code authoring. At any time, the
student can switch freely between a
block-based view of their code and a
traditional text-based view. This powerful
feature is inspired by Pencil Code, which
uses its own Logo language [11], and sim-
ilar implementations have been successful



Figure 1. BlockPy in action

as a fading scaffold for students [12].

BlockPy extends Pythy’s [9] support
for “assignments”, problems that integrate
presentation with assessment. However,
Pythy only supports traditional unit test-
ing to provide students with feedback,
while BlockPy provides an API for code
analysis and free-form text guidance that
instructors can configure to give help-
ful suggestions to their students. Further-
more, Pythy has limited support for data
science, whereas BlockPy has a rich li-
brary of data sources and a MatPlotLib-
based plotting API.

CodeSkulptor, Pythy, and BlockPy all
use the same internal engine for run-
ning Python code (“Skulpt”). Although
CodeSkulptor has an extensive API for
creating user interfaces and games, it
provides a non-standard library. Although
suitable for beginners, this library does
not aid the transition to serious program-
ming environments. In BlockPy, the phi-

losophy is to maintain approximate com-
patibility with real systems. Instead of
a custom plotting API, for instance, we
mimic the MatPlotLib interface.

OnlinePythonTutor has proven to be a
useful tool for visualizing program state.
However, OPT gives a depth of detail
that can overwhelm introductory students
(e.g., terminology such as Frames and Ob-
jects, which might be foreign to students).
BlockPy’s state explorer does not attempt
to match OPT’s thoroughness, but in-
stead provides a helpful yet simple picture
of program state. Additionally, we avoid
OPT’s server dependency by relying on
Skulpt, which runs in the browser.

I. BLOCKPY

The primary design goals of BlockPy
are as follows.

1) Reduce barriers to learning pro-
gramming.

2) Promote authenticity by empower-
ing students to complete real-world



problems.
3) Promote maturity by faded

scaffolds (e.g., transitioning from
blocks to text).

4) Minimize the need for help from
human instructors.

A. Open-source, Open-access
The fundamental vision of BlockPy is

a highly accessible, web-based platform
for anyone to learn how to program. All
code is open-source, and leverages a num-
ber of open-source libraries. There is no
registration needed to use the software,
although there are features that benefit
from free registration, such as managing
classrooms. We provide guided learning
materials, to be shared by educators.

The BlockPy editor continuously stores
user code as it is entered. Logs are stored
at the keystroke level for future program
analysis (described in Section I-E). The
latest version of the user’s code is there-
fore available between sessions. When
operating in offline mode, the code is
stored in the LocalStorage browser
object; when the connection is reestab-
lished, synchronization is performed.

B. Python Execution
The BlockPy system is built to work

offline, ideal for places where internet
connectivity is unreliable. Python Code
Execution is achieved through a modified
instance of the Skulpt JavaScript library.
Skulpt is a full Python parser and com-
piler, supporting almost all Python lan-
guage features by generating JavaScript
code. This includes partial support for
the rich Python standard library. The
Skulpt execution environment resides en-
tirely within the users’ browser, so there is

no reliance on an external server beyond
the initial page load.

C. Block-based Python

To support introductory learners as they
grapple with Python syntax, the initial
interface in BlockPy is block-based, us-
ing the popular Blockly JavaScript li-
brary. Language features (iteration, deci-
sion, variable assignment and access, etc.)
are contained in a toolbox on the left side,
from which users drag-and-drop blocks
onto a canvas. BlockPy’s block interface
only generates syntactically valid Python
code, enforced by the “snapping” connec-
tors of the blocks (although it is possible
to generate semantically incorrect code –
discussed later). This block interface is
synchronized with a text interface; section
I-H describes these two interfaces.

An important question is how many
language details should be exposed, and at
what rate. A rarely used feature of for
loops in Python is to contain an else
clause that is executed upon successful
completion of the loop (that is, when it is
not prematurely escaped using a break
statement). This advanced language fea-
ture is similar to a finally statement
with exceptions. However, if an else
clause were made available to beginners
first trying to grapple with iteration, it
is likely they would confuse the concept
with the conditional else clause used in
if statements. Cognitive load is harsh to
beginners, and the user interface needs to
avoid exposing unnecessary details where
possible. While hiding else bodies in a
for loop is a clear case, there are more
subtle examples. It can be difficult to
recognize when the learner is ready to use



parallel assignment, and therefore should
be able to specify multiple variables on
the left side of an assignment block. A
block-based language forces a teacher to
make important decisions about how to
expose language features. As part of the
future work of BlockPy, we are experi-
menting with exposing language features
at different rates, adjustable by the in-
structor, so the system can expose a pro-
gressively more accurate language model.

D. Adaptive Guided Practice

One of the most powerful features of
BlockPy is the interactive, guided feed-
back feature. A limitation of program-
ming environments like Snap! is that they
are not pedagogically interactive – stu-
dents completing an assignment in the
system are not guided to success. The
learner must decide when they have com-
pleted their program, and whether it meets
the specification. For independent learners
outside of a formal learning experience,
this requires high levels of self-regulation
and meta-cognition. BlockPy’s adaptive
elements follow an Expert model; when
students run their code, it is checked
against instructor-provided logic. If the
student code fails for some reason, they
are offered a suggestion. Correct code
gives a green “Complete” mark – we
have found that this positive marker has
motivating power.

In the Instructor Mode, teachers pro-
vide a problem instance. First, a WYSI-
WYG rich-text editor edits the problem
description, supporting any valid HTML
content (e.g., images, links). Second, the
instructor provides code in special can-
vases that affect the students’ experience.

Instructors write this code using the same
text/block interface that students use. First
is the “starting code”, shown to the stu-
dent when they begin the problem, avoid-
ing a blank canvas. The second instructor
code defines interactive feedback, which
can access the students’ code, their fi-
nal output, and a complete trace of their
program’s state. The checking system can
declare the code to be correct, or dis-
play an HTML string that is rendered as
user feedback. The instructor is free to
write whatever logic they want, such as
searching for a specific Abstract Syntax
Tree (AST) element, testing the outputs
on the console, or walking through the
programs state to satisfy invariants. An
API for common checks is evolving based
on common use cases, such as parsing
the program’s AST to ensure that they are
not calling forbidden built-in Python func-
tions. We are also exploring interventions
an instructor can make beyond render-
ing textual feedback; perhaps displaying
a pop-up dialog with an embedded in-
structional video, or alerting an instructor
to provide Just-In-Time instruction for
a particular struggling student. Finally,
we are experimenting with a new system
for modeling students’ misconceptions re-
lated to programming, in order to provide
better guidance tuned to students’ specific
mistakes.

E. Program Analysis for Deeper Learn-
ing

BlockPy uses simple program analysis
techniques to find both general mistakes
that novices make, and problem-specific
errors. For example, beginners often fail
to understand the true purpose of certain



variables, and incorrectly include them
due to mimicking an example. By per-
forming simple variable liveness analyses,
we can identify these variables and raise
an error. Most modern editors feature this
kind of analysis, but usually trust that
the user has a reason and responds pas-
sively; the nature of our learners requires
stronger responses.

Since we securely record the history
of users’ programs and log interface in-
teractions, we can mine this repository
of code to infer common patterns that
suggest undesirable learner behavior. For
example, users that frequently move the
same blocks without progressing in the
problem objectives might be indicative of
taking longer on the problem than other
users. Alternatively, students who pick
a decision block to complete a problem
about iteration might need extra atten-
tion. By proving or disproving such hy-
potheses, we can improve the automatic
feedback of the system and provide more
individualized support.

F. LTI Support

BlockPy supports the LTI (Learn-
ing Technology Interoperability) protocol.
This is a mechanism by which instruc-
tors can embed questions in their existing
course management software (e.g., Can-
vas, OpenEdX) and receive assignment
outcomes (e.g., a grade).

A typical learner uses BlockPy with-
out ever being aware of LTI. An in-
structor using the system obtains a se-
cret key and configuration URL that is
used within their Learning Management
System. Students on a course website
may use BlockPy without registering for

a BlockPy account – the first time they
log in through their LMS’ provided link,
they are invisibly registered in the system
with a regular account through additional
information from the LMS. As students
complete work, assignment progress is
reported back to the LMS. Instructors use
a special interactive menu for managing
exercises associated with a course.

G. Data Science Blocks

BlockPy focuses on Data Science as its
primary context, and so we have blocks
for working with data. We support a sub-
set of the popular MatPlotlib library, and
extend it with connections to the CORGIS
project [13]. The MatPlotLib API, for
example, provides a “plot(list)” function
to create simple line plots. By mimicking
MatPlotLib, students can seamlessly shift
to a serious Python programming environ-
ment without loss of code.

The CORGIS (Collection of Real-
time, Giant, Interesting, Situated datasets)
Project makes motivating datasets avail-
able to introductory students through sim-
ple programming libraries [13]. These
datasets are drawn from many disciplines,
resulting in material meant to be univer-
sally interesting and relevant. Currently,
BlockPy supports a number of differ-
ent CORGIS libraries including weather
data, earthquake data, United States crime
statistics, and a classic book dataset.

H. Mutual Language Translation

A technical contributions of this project
is the mutual language translation be-
tween Blockly and Python. Blockly out-
puts valid python source code, which can
be passed into Skulpt to extract a JSON



Figure 2. User perspective of block/text transition

representation of the Abstract Syntax
Tree. This AST is parsed using our own
Py2Block library to generate an XML
representation that Blockly can render in
the Block View. Figure 2 demonstrates the
users’ experience. When a student tries
to convert code with disconnected blocks,
the generated Python code will be filled
in with triple underscores. These under-
scores (usually a valid variable name in
Python) will trigger a run-time error.

Blockly already supports compilation
of its blocks to Python, JavaScript, PHP,
and Dart. However, this multiple language
support causes reduced isomorphism—
each language has different syntax for
their common operations, and it is impos-
sible to create a fully-featured block lan-
guage with a one-to-one mapping to them
all. For example, JavaScript has no sup-
port for parallel assignment, a commonly-
used feature in Python, while Python
does not have a unary increment operator.
Blockly itself has syntax and vocabulary
descended from Logo.

Instead of trying to satisfy multiple
languages, we have dropped support for
other languages for a more fully-featured
mapping to Python. This requires mi-

nor changes that introduce Python-centric
syntax details: function blocks are labeled
“define”, assignment blocks have an “=”
symbol, the “add item to list” block is re-
named to “append”. Blockly has also been
extended with new language features, in-
cluding dictionary access and creation.

Eventually, the interface should offer a
complete isomorphic mapping to Python.
However, there are a number of complica-
tions to resolve first. For instance, Python
uses square brackets for both list indexing
and dictionary access. There is a strong
desire to differentiate between these types
of access, visible in the block view as two
distinct kinds of blocks (“get ith element
of list” vs. “get key from dict” blocks).
However, it is computationally difficult to
statically identify the usage of a given
pair of brackets– sophisticated program
analysis techniques are needed.

I. Parson’s Problems

Parsons’ Problems are a special type of
coding exercise where all of the necessary
code blocks are present, but disconnected
and shuffled. These kinds of problems
scaffold beginners by providing every-
thing they need to complete the problem,
reducing many of the barriers to getting
started. BlockPy supports these types of
problems with a special “Parsons Mode”
where top-level blocks are shuffled in the
block mode.

J. State Explorer

BlockPy provides a State Explorer,
used to trace programs’ execution over
time. The State Explorer displays more
than just information about variables:



Users can step through the code’s execu-
tion, affecting what is currently printed/-
plotted, imported modules, and the values
and types of variables.

II. MODEL USE CASES

In this section, we consider some ex-
ample scenarios that describe our vision
of typical BlockPy use cases. Our intent
is for BlockPy to be useful in both formal
and informal situations.

A. Independent Learner

A learner independently logs into the
BlockPy system and selects an introduc-
tory problem on calculating averages us-
ing iteration: “Is the weather in Seat-
tle above 60 degrees Fahrenheit? Print
Yes or No.” As a complete novice, they
are unsure what to do after reading the
problem description. If they decide to
cheat by checking the current weather
in Seattle and printing the literal value,
the system intelligently notices that they
are missing a relevant weather block, and
explains that they need to combine pro-
grammatic decision logic with the appro-
priate data source. They think to access
the “Weather” block category, and grab
the weather get block, but are unsure
what to do next. When they run their
program, the system notices that they
have not used any IF statements, and
suggests reading a linked chapter in an
online textbook. If they continue to strug-
gle with integrating pieces, the system can
provide increasingly detailed hints until
they succeed.

B. Classroom Lesson

Another common use case for the sys-
tem would be an instructor with a large

classroom of students. The instructor is
using Canvas, an LTI-capable LMS. They
create a series of assignments for the
day’s classwork. Students log into Canvas
and begin working on the assignments.
As they complete the assignments, their
grade is reported to Canvas. The instructor
can monitor progress for the class and
check which students are struggling to
complete assignments. This information
can allow them to target under-performers
with earlier interventions. The more au-
tomatic feedback that instructors make
available, the less they need to focus on
simple problems (“You were checking the
temperature for the wrong city.”) and the
more they can focus on students that are
truly struggling (“What is iteration?”).

C. 1-1 Tutoring

On several occasions, we have found
BlockPy to be a useful tool for correct-
ing individual students’ misconceptions.
In particular, the block representation of
programs can help beginners grasp that
code is not a series of symbols but a
structured representation of an algorithm.
Consider a student struggling to write the
necessary syntax for indexing a nested
dictionary (e.g., a crime report broken
into multiple levels, with the burglary rate
for a city nested under a violent crime
categorization). The student may not have
a clear image of how the layered structure
of data can translate into a chain of dic-
tionary accesses. Sitting with the student,
the instructor could build up an expres-
sion accessing the data by connecting
together dictionary access blocks to the
data block, showing the generated Python
code at each step. The learner can visually



see how chunks of the code correlate to
blocks.

III. PILOT STUDY

BlockPy was piloted in an introduc-
tory Computational Thinking course with
35 students in Spring 2015. These stu-
dents come from a diverse range of ma-
jors, including liberal arts (57%), archi-
tecture (17%), and sciences (15%). There
were 20 female students (57%) and 15
male. The vast majority of students re-
ported no prior experience in program-
ming, less than 17% having taken the high
school AP course. Students were evenly
distributed across years, with slightly
more seniors (29%), equal percentages of
sophomores and juniors (26%), and fewer
freshmen (14%).

The course content focused on teach-
ing Abstraction and Algorithms. While
programming was not a primary learning
objective, was is an important topic in
the course for concretely talking about
higher level objectives. The first third of
the course, students worked with NetLogo
(although they do not program in it, they
do read code) and participated in explana-
tory kinesthetic activities. Then students
were introduced to Python using BlockPy,
where they spent roughly six classes on
completing guided practice problems. The
next two classes were devoted to using
a regular Python environment (Spyder) to
complete small programming assignments
(similar to the ones done with BlockPy).
Finally, students were given eight class
periods to work on an individual final
project in Spyder.

Figure 3. Responses from Survey on BlockPy

A. Methodology

Student responses to BlockPy were col-
lected through two surveys, one given
after the BlockPy section and the other
given at the end of the course. The survey
was composed of 4-point Likert questions
and open-ended qualitative questions. A
selection of particularly interesting results
are shown in Figure 3. All conclusions
from this study should be considered pre-
liminary, since it was with the first version
of the BlockPy environment.

B. Perceptions of BlockPy

The first survey question asked whether
students wanted more time with each of
the programming environments they used



in the course: NetLogo, BlockPy, or Spy-
der. Note that BlockPy was referred to
as “Blockly”, and the Spyder environment
was referred to as “Python”. These results
suggest that students valued their experi-
ences with BlockPy more than NetLogo,
but mostly felt that they were not get-
ting enough Python experience. This is
backed up by the qualitative data, where
some students say “More Blockly, Less
Python”, but others ask for “More Blockly
and More Python”.

C. Usage of BlockPy

Over the six days spent using BlockPy,
students were tasked with 40 classwork
questions and 19 homework questions.
Students ran their code an average of
4 times per problem (standard deviation
1.8).

Students were asked if they felt suc-
cessful in the transition from BlockPy to
Spyder. Only 65% of the class agreed or
strongly agreed, suggesting that there was
a sizeable population that felt uncomfort-
able during that transition. The original
design of the mutual language translation
featured the block and text view simulta-
neously, side-by-side. However, analysis
of the logs reveals that most students did
not take advantage of the feature. Only
5 students (roughly 15%) had used the
conversion functionality at all, and fewer
used it consistently. It is possible that
students were observing the code as it
changed, but they were not writing textual
code. It is difficult to say why exactly
students did not take advantage of it.
Our current hypothesis is that students
were confused by the interface, which
required manual conversion to go from

text to blocks. In our new version, the
conversion happens automatically, simply
by switching tabs, and we provide in-
tentional opportunities for the students
to switch. Preliminary data suggests this
new interface greatly improves students’
transition.

Students were surveyed about what
helped their learning the most. Peer learn-
ing and instructors were about on par with
the automatic feedback given in BlockPy,
suggesting the strong value of the system.
Despite the popular response to the State
Explorer, relatively few students took ad-
vantage of it (11 students, roughly 31%).
Since more than 50% of the class reported
finding value in the data explorer, it is
possible that the students benefited from
instructor presentations of the tool, even
if they didn’t take advantage of it them-
selves.

D. Data Science Context

Students were surveyed about their per-
ceptions of the value of different course
experiences with regards to their long-
term career goals and their interest in
potential contexts for introductory com-
puting courses. Each of these contexts
were briefly described – for example, the
Media Comp context was listed as “work-
ing with pictures, sounds and movies.”
Both sets of results suggest that students
find data science to be compelling, but
this should be taken with a grain of salt,
since students have negligible experience
with alternative contexts. However, our
preliminary results suggest that this is an
approach worth exploring further.



IV. FUTURE WORK

BlockPy is an evolving project. We
have a number of features planned to
expand Python support. We are also plan-
ning on expanding support for the guided
feedback API for instructors, such as
leveraging more static/dynamic type in-
ference techniques to improve block ren-
dering and error reporting.

We also have research questions posed
by the block-based nature of the interface.
One of the biggest values of a block-
based environment is that it can imme-
diately expose the breadth of a rich API.
This greatly reduces students’ dependency
on documentation. Of course, exposing
this breadth can also be a downside, as
students might be overwhelmed by the
features in the interface. It is an open
research question to decide what rate to
expose language features.

One of the major advantages of game
and animation design as an introductory
context is that they make abstract con-
cepts concrete. Further analysis is needed
to determine the trade-offs of using differ-
ent contexts. BlockPy can support this by
supporting these alternative contexts, such
as turtle graphics and media computation
libraries.

It is difficult to derive conclusive results
from our pilot due to the small population
size and the evolving nature of BlockPy.
Preliminary results from more in-progress
studies suggest that recent improvements
have overcome a number of limitations
to the environment and user feedback has
dramatically improved. We are conduct-
ing follow-up studies on the logged stu-
dents’ code, even as we collect more data
on the newest iteration. We are hopeful

that BlockPy will increase its user base,
providing a larger sample of learners to
conduct research on, and provide more
meaningful data.

A. Missing Language features

BlockPy is being developed in an on-
demand fashion, driven by immediate
course needs, but is still limited. For
example, the block interface does not
support a number of advanced Python
features, such as an interface for writ-
ing Object-oriented classes. This does not
mean that students cannot write programs
featuring classes or other advanced fea-
tures. Python code using these features
will render in BlockPy as embedded text
blocks and will execute through Skulpt
normally. There is no technical imped-
iment to supporting these features, the
process is limited only by time and com-
munity interest.

V. CONCLUSION

In this paper, we have introduced
BlockPy, our block-based environment for
Python. It is open-source and available for
use for free at https://www.blockpy.com/.
We believe that BlockPy represents a new
paradigm for introductory learners, blend-
ing interactive support with a strong path
to programming maturity. By teaching in
the context of data science, we provide
authenticity even as we move students
out of the system towards a more serious
environment. Research with BlockPy will
help answer crucial questions about the
value of data science and blocks. Our
hope is that BlockPy’s open nature can
encourage learners from diverse fields to
engage with computing in a way that



will lead to a computing-rich future for
a larger population.

ACKNOWLEDGMENTS

We gratefully acknowledge the sup-
port of the National Science Founda-
tion under Grants DGE-0822220, DUE-
1444094, and DUE-1624320.

REFERENCES

[1] B. D. Jones, “Motivating students to
engage in learning: The MUSIC model
of academic motivation,” International
Journal of Teaching and Learning in
Higher Education, vol. 21, no. 2, pp.
272–285, 2009.

[2] M. Guzdial and A. E. Tew, “Imagi-
neering inauthentic legitimate peripheral
participation: an instructional design ap-
proach for motivating computing educa-
tion,” in Proceedings of the second inter-
national workshop on Computing educa-
tion research. ACM, 2006, pp. 51–58.

[3] A. C. Bart, R. Whitcomb, E. Tilevich,
C. A. Shaffer, and D. Kafura, “Com-
puting with corgis: Diverse, real-world
datasets for introductory computing,” in
Proceedings of the 48th ACM Technical
Symposium on Computer Science Educa-
tion, ser. SIGCSE ’17, 2017.

[4] P. Guo, “Python is now the most popu-
lar introductory teaching language at top
us universities,” BLOG@ CACM, July,
2014.

[5] A. Ko, “Programming languages are the
least usable, but most powerful human-
computer interfaces ever invented,”
http://blogs.uw.edu/ajko/2014/03/25/
programming-languages”, 2014.

[6] T. W. Price and T. Barnes, “Comparing
textual and block interfaces in a novice
programming environment,” in Proceed-
ings of the Eleventh Annual Interna-
tional Conference on International Com-
puting Education Research, ser. ICER
’15, 2015, pp. 91–99.

[7] D. Weintrop and U. Wilensky, “Us-
ing commutative assessments to com-
pare conceptual understanding in blocks-
based and text-based programs,” in Pro-
ceedings of the Eleventh Annual Interna-
tional Conference on International Com-
puting Education Research, ser. ICER
’15, 2015, pp. 101–110.

[8] T. Tang, S. Rixner, and J. Warren, “An
environment for learning interactive pro-
gramming,” in Proceedings of the 45th
ACM Technical Symposium on Computer
Science Education, ser. SIGCSE ’14,
2014, pp. 671–676.

[9] S. H. Edwards, D. S. Tilden, and A. Al-
levato, “Pythy: Improving the introduc-
tory python programming experience,” in
Proceedings of the 45th ACM Technical
Symposium on Computer Science Educa-
tion, ser. SIGCSE ’14, 2014, pp. 641–
646.

[10] P. J. Guo, “Online python tutor: Em-
beddable web-based program visualiza-
tion for cs education,” in Proceeding
of the 44th ACM Technical Symposium
on Computer Science Education, ser.
SIGCSE ’13, 2013, pp. 579–584.

[11] D. Bau, M. Dawson, and A. Bau, “Using
pencil code to bridge the gap between
visual and text-based coding (abstract
only),” in Proceedings of the 46th ACM
Technical Symposium on Computer Sci-
ence Education, ser. SIGCSE ’15, 2015,
pp. 706–706.

[12] Y. Matsuzawa, T. Ohata, M. Sugiura, and
S. Sakai, “Language migration in non-cs



introductory programming through mu-
tual language translation environment,”
in Proceedings of the 46th ACM Tech-
nical Symposium on Computer Science
Education, ser. SIGCSE ’15, 2015, pp.
185–190.

[13] A. C. Bart, “Situating computational
thinking with big data: Pedagogy and
technology (abstract only),” in Proceed-
ings of the 46th ACM Technical Sym-
posium on Computer Science Education,
ser. SIGCSE ’15, 2015, pp. 719–719.


