“You Have Said Too Much”: Java-Like Verbosity
Anti-Patterns in Python Codebases

Yuzhi Ma and Eli Tilevich
{yuzhima,tilevich}@vt.edu
Software Innovations Lab, Virginia Tech
Blacksburg, VA, USA

Abstract

As a popular language for teaching introductory program-
ming, Java can profoundly influence beginner programmers
with its coding style and idioms. Despite its many advantages,
the paradigmatic coding style in Java is often described as
verbose. As a result, when writing code in more concise lan-
guages, such programmers tend to emulate the familiar Java
coding idioms, thus neglecting to take advantage of the more
succinct counterparts in those languages. As a result of such
verbosity, not only the overall code quality suffers, but the
verbose non-idiomatic patterns also render code hard to un-
derstand and maintain. In this paper, we study the incidences
of Java-like verbosity as they occur in Python codebases. We
present a collection of Java-Like Verbosity Anti-Patterns
and our pilot study of their presence in representative open-
source Python codebases. We discuss our findings as a call
for action to computing educators, particularly those who
work with introductory students. We need novel pedagogical
interventions that encourage budding programmers to write
concise idiomatic code in any language.

CCS Concepts: Software and its engineering — Mul-
tiparadigm languages.

Keywords: code quality, verbosity, anti-patterns, Java, Python,
CS education

ACM Reference Format:

Yuzhi Ma and Eli Tilevich. 2021. “You Have Said Too Much”: Java-
Like Verbosity Anti-Patterns in Python Codebases. In Proceedings of
ACM Conference (Conference’17). ACM, New York, NY, USA, 6 pages.
https://doi.org/10.1145/1122445.1122456

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.

Conference’17, July 2017, Washington, DC, USA

© 2021 Association for Computing Machinery.

ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. .. $15.00
https://doi.org/10.1145/1122445.1122456

1 Introduction

In a time of drastic change it is the learners who inherit
the future. The learned usually find themselves
equipped to live in a world that no longer exists.

Eric Hoffer

When learning how to write computer programs, learners
are introduced to the fundamental computing concepts in a
programming language that becomes their first programming
language. Without any prior exposure to programming, in-
troductory learners naturally see their first language’s idioms
and style as standard building blocks for solving program-
ming problems [1, 2]. As computing learners are gaining
experience and are introduced to other languages, they of-
ten try to emulate the familiar mechanisms of their first
language, but by means of other languages, particularly if
these other languages support the same paradigm (e.g., im-
perative or object-oriented). However, if a new language’s
common programming idioms and style differ from the pro-
grammer’s first language, the resulting code quality suffers,
with unnecessary verbosity becoming a common harmful
side affect.

Due to the success of Java in both commercial and edu-
cational settings [3, 4], computing educators have long em-
braced this language for teaching introductory computing
concepts. Numerous programmers all over the world have
had Java as their first programming language. In recent years,
Python has increasingly become the language of choice for
various software development pursuits, particularly due to
the rise of data science [8]. Although Python has also been
an immensely popular language for teaching introductory
programming, numerous Python programmers have been
groomed into computing in Java. The vast similarities be-
tween Java and Python become a double-edged sword. On
the one hand, Java programmers can learn Python easily and
quickly start contributing working code to realistic projects.
On the other hand, when writing code in Python, former Java
programmers may be tempted to emulate the familiar Java
idioms and style in Python, thus writing non-idiomatic code,
which is likely to end up more verbose than its idiomatic
Python counterparts. On average, Python tends to promote
a programming style than is more concise than that of Java
[7]. That is, the same functionality can be implemented more
concisely in Python than in Java.

https://doi.org/10.1145/1122445.1122456
https://doi.org/10.1145/1122445.1122456

Conference’17, July 2017, Washington, DC, USA

The presence of non-idiomatic Python code hinders code
quality, making the resulting codebases hard to understand.
In addition, the amount of software maintenance effort re-
quired to address changed requirements or fix defects has
been found to be proportional to the size of a program [6].
Hence, the presence of verbose code can inflate maintenance
efforts and costs.

To address this problem, this paper studies the problem
of Java-like verbosity in representative Python codebases.
We define six Java-like verbosity anti-patterns by explaining
their origins and how they should be refactored into their
concise Python-native counterparts. We then present the
results of a pilot study that analyzed representative open-
source codebases for the presence of the aforementioned
anti-patterns. We conclude the paper by presenting a call
for action to computing educators, who can take simple but
effective steps that would encourage their students to write
concise idiomatic code in any language.

The rest of this paper is structured as follows. Section 2
presents a catalog of our anti-patterns. Section 3 presents
the results of our pilot study. Section 4 discusses our findings
and their implications. Section 5 gives an overview of related
approaches, and Section 6 presents concluding remarks.

2 Java-Like Verbosity Anti-Patterns

In this section, we present a catalog of six Java-like verbosity
anti-patterns in Python. We name each anti-pattern and
present its concise, idiomatic “Pythonic” counterpart. The
pilot study in Section 3 identifies the incidences of some of
these anti-patterns in representative open-source Python
codebases.

2.1 Origin and Methodology

We came up with the idea to define these anti-patterns having
examined a sampling of programming assignments, submit-
ted by undergraduates in a Python course. This course was
introduced with the specific goal to acquaint students with
working knowledge of Python to prepare them for subse-
quent courses in Data Science. Most students in the course
have successfully completed an introductory sequence of
three programming courses, all of which were taught in Java.

Having carefully looked through students’ code, we iden-
tified eleven anti-patterns, which manifested themselves
prominently in student code. We further examined several
popular open-source Python projects to determine whether
the observed anti-patterns were present there as well. Only
six out of the original eleven anti-patterns that were present
both in student-written code and in open-source projects
were selected as the anti-patterns described below. We would
be amiss if we did not mention up front that we did not sys-
tematically examine how prevalent these anti-pattern candi-
dates were in open-source codebases, leaving this task to be
investigated as a future work direction.

Yuzhi Ma and Eli Tilevich

2.2 Format

In describing our anti-patterns, we follow this format:

1. Name of this Anti-Pattern

2. The programming scenarios under which this anti-
pattern most commonly occurs

3. Possible origin (i.e., why Java programmers are prone
to write code like that in Python)

4. Explanation of the concise counterpart

2.3 Anti-Pattern #1: “Modifying a list with an
unnecessary if statement”

1 #Anti-pattern

> list = [0,1,2,3,4,5,6,7,8,9,10]
5 odd_list = []

. for x in list:

5 if x %2 ==1:

6 odd_list.append(x)

s #Concise counterpart
o list = [0,1,2,3,4,5,6,7,8,9,10]
10 odd_list = [x for x in list if x % 2==1]

1. “Modifying a list with an unnecessary if statement”

2. This anti-pattern is introduced when filtering list val-
ues on simple conditions.

3. Java programmers are used to writing for loops to
iterate through lists, filter out values with an if, and
may be unfamiliar with the concise square brackets
mechanism to combine a for loop and an if condition
statement.

4. In Python, one can specify operations on lists more
declaratively by listing the modification operation and
an iterator (i.e., if) over a collection

2.4 Anti-Pattern #2: “Unnecessary function
definition”

1 #Anti-pattern
2 def add(x,y):
3 return x+y

5 #Concise counterpart
6 add = lambda x,y:x+y

1. “Unnecessary function defintion”

2. This anti-pattern is introduced whenever we need a
function to do simple calculations multiple times.

3. Java programmers are used to define a helper function,
and may be unfamiliar with the lambda construct in
Python.

4. In Python, one can employ lambda to define concise
helper functions on the fly.

“You Have Said Too Much”: Java-Like Verbosity Anti-Patterns in Python Codebases

2.5 Anti-Pattern #3: “For loop instead of function”
1 #Anti-pattern
2 list = ["a", "b","c","a","a"]
count = @
. for x in list:
s if x == "a":
6 count += 1

s #Concise counterpart
o list = ["a", "b","c","a", "a"]
10 count = list.count("a")

1. “For loop instead of function”

2. This anti-pattern is introduced whenever we need to
operate on a collection, such as counting how many
times a value occurs in an list.

3. Java programmers are used to writing for loops to
iterate through lists and use if statements to count the
occurrences, and may be unfamiliar with the concise
built-in count function in Python.

4. In Python, one can employ count to count the number
of occurrences of a value in a list.

2.6 Anti-Pattern #4: “Over-complicated
comparison”

1 #Anti-pattern

2 result = 2
3 if(result <= 3 and result > 1):
4 print(True)

¢ #Concise counterpart
7 result = 2
s print(1 < result <=3)

1. “Over-complicated comparison”

2. This anti-pattern is introduced whenever we compare
a value with any other two values

3. Java does not support comparisons of a value with
two others together, so Java programmers are used to
comparing them individually.

4. In Python, one can compare a value with any other
two values in a single statement.

2.7 Anti-Pattern #5: “Over-complicated negative
indexing”

1 #Anti-pattern
> a=[0,1,2,3,4,5,6,7,8,9,10]
3 last = ala.length - 1]

5 #Concise counterpart
¢ a=1[0,1,2,3,4,5,6,7,8,9,10]
7 last = a[-1]

Conference’17, July 2017, Washington, DC, USA

1. “Over-complicated negative indexing”

2. This anti-pattern is introduced whenever we need to
access some elements at the end of a list

3. Java does not support negative indexing. Thus, Java
programmers get used to employing length minus
some numbers to get the needed element.

4. In Python, one can use negative indexing to access any
last elements of a list directly.

2.8 Anti-Pattern #6: “An unnecessary intermediate
tuple for multi-returns”

1 #Anti-pattern

2> def triple():

3 return 0, 1, 2
¢+ result = triple()
5 zero = result[Q]
result[1]
result[2]

6 one

7 two

9 #Concise counterpart

10 def triple():

11 return @, 1, 2

12 zero, one, two = triple()

1. “An unnecessary intermediate tuple for multi-returns”

2. This anti-pattern is introduced when assigning multi-
ple returned values to multiple variables.

3. Java programmers are used to writing separate state-
ments to assign a value to a variable.

4. In Python, one can assign multiple returned values to
multiple variables in a single statement.

3 Locating Verbosity Anti-Patterns in
Open-Source Codebases

To understand how prevalent the aforementioned anti-patterns
are in open-source codebases, we conducted a pilot study.
We selected five anti-patterns: “Unnecessary function defini-
tion”, “An unnecessary intermediate tuple for multi-returns”,
“Over-complicated comparison”, and “Modifying a list with
an unnecessary if statement”.

We employed Comby’, an open-source tool hosted on
GitHub. Comby automates the process of structural code
searching. By using this tool, we used Comby’s declara-
tive rules to describe the structural patterns that express
each target anti-pattern. For example, to find if statements,
such as if (a > b), Comby can be given the following rule:
if(:[condition]). Given this pattern and a Python source
file, Comby returns a list of line numbers, at which the
matched source code patterns were detected.

Having parameterized Comby with this input, we then ran
the tool on three Python open-source projects—TensorFlow
Model Garden, Manim, and Snip—and tabulated the total

Ihttps://github.com/comby-tools/comby

https://github.com/comby-tools/comby

Conference’17, July 2017, Washington, DC, USA

Yuzhi Ma and Eli Tilevich

Empirical Analysis

. Project Name TensorFlow Model Garden | Manim | Snips
Anti-pattern Name
Project Size (LOC) 401,490 294,309 | 26,411
“Unnecessary function definition” 1138 989 162
“Over-complicated comparison” 34 7 1
“An unnecessary intermediate tuple for multi-returns” | 10 3 1
“Modifying a list with an unnecessary if statement” 29 3 0

Table 1. The results of a pilot study of the prevalence of anti-patterns in open-source codebases.

found number of occurrences of each target anti-pattern.
TensorFlow Model Garden is to provide the users of the
popular TensorFlow machine learning framework with state-
of-the-art (SOTA) models and modeling solutions. Manim is
a framework that creates animations as explanatory math
videos. Snip is a natural Language Processing library for
parsing natural language sentences to extract their struc-
tured information. The total combined lines of code across
all three subjects is above 700K.

The pilot study’s results appear in Table 1. The “unnec-
essary function defintion” is by far the most prevalent anti-
pattern. We searched for all named functions whose body
comprises only one line of code. For programmers introduced
to the discipline in a language without support for anony-
mous functions?, using Python lambda would be unfamiliar,
so such programmers tend to introduce named functions
even for short code snippets.

“Over-complicated comparison” is the second most preva-
lent anti-patterns detected, although it is not as common as
“unnecessary function definition.” These features are possibly
unique to Python, and unless introduced to them explicitly,
programmers would be likely to use more verbose alterna-
tives, directly translated from similar idioms in Java or other
languages.

Threats to Validity. The validity of the results of our
pilot study is threatened by our reliance on Comby, which
may have misidentified some anti-patterns. In a follow-up
study, it may be prudent to carefully verify the veracity of
Comby’s matching of each target anti-pattern. If the results
prove unsatisfactory, a more elaborate search utility may
need to be employed. Nevertheless, for a pilot study these
results need not to be definitive, as our goal is to draw the
attention of the research community to a new issue in code
quality rather than to report confirmed final findings.

4 Discussion and Call for Action

Programmers should be encouraged to write concise id-
iomatic code in any language. If the same functionality can

?Lambdas were introduced to one of the latest Java releases and may not
yet have been in wide use.

be expressed in fewer lines of code without losing readabil-
ity, the resulting codebase becomes easier to understand and
modify for other programmers. Concise idiomatic code also
facilitates various performance optimizations. However, ab-
solute conciseness is not always a legitimate objective, as the
ultimate goal is to maximize readability. If a more concise ver-
sion would be harder to read, then the more verbose version
should be retained. For example, our “unnecessary function
definition” anti-pattern should be removed for small func-
tions, but named functions may still be preferred in light of
a future modification, in which they may need to be invoked
multiple times.

It is worth mentioning that in recent releases, Java has
added language-level support for functional programming
(e.g., lambda expressions and streams®) and other features
that promote conciseness (e.g., declaring local variables with
var). As these features become thoroughly integrated with
the language, Java-first programmers would learn more con-
cise coding idioms. When these programmers learn their
subsequent languages, including Python, they would be also
more likely to write concise idiomatic code. However, the
insights presented herein are reflective of what we observed
by examining the current programming practices of aspiring
Python programmers who had been introduced to program-
ming in Java.

The report findings is a work in progress, and our primary
objective is to identify and name a new recurring problem as
a call for action for computing educators. The teaching of con-
ciseness should be pursued as a viable pedagogical objective,
even for introductory students. Developing a professional
programming style should involve striving to write concise
idiomatic code. Introductory students need guidance regard-
ing the adherence of their programming assignments to solid
software engineering principles, which should include not
only coherent design and correctness, but also following a
concise and idiomatic coding style. When introducing a new
language to students who learned programming in a different
language, educators should point out the idiomatic differ-
ences between the languages, with a particular emphasis on

3https://docs.oracle.com/javase/8/docs/api/java/util/stream/package-
summary.html

 https://docs.oracle.com/javase/8/docs/api/java/util/stream/package-summary.html
 https://docs.oracle.com/javase/8/docs/api/java/util/stream/package-summary.html

“You Have Said Too Much”: Java-Like Verbosity Anti-Patterns in Python Codebases

conciseness. Even though Java has embraced functional pro-
gramming constructs with their declarative concise nature,
much of Java code remains more verbose than Python. So
when teaching Java programmers Python, educators may
find useful our Java-like verbosity anti-patterns and use them
as teaching material.

5 Related Work

Study performed by Chen et al. demonstrates how the first
learning programming language can impact the performance

and attitudes of students in subsequent programming courses[2].

Michigan State University keeps changing the first program-
ming languages, taught in the university’s CS1 courses, in
order to enable students to develop up-to-date software de-
velopment skills, such as web programming[11]. When it
comes to differentiating between different semantic repre-
sentations of the same concept as well as switching from
Java to Python and vice versa, students have been observed
to find such semantic transfer challenging[13].

When learning a new language, programmers encounter
many challenges, such as mixing up the syntax and concepts
with their previous programming languages, as reported by
Shrestha et al.[10]. Study by Horschig et al. shows that pro-
grammers who are proficient in Java or C++ can actually
become better Python programmers when it comes to com-
monly accepted and object-oriented best practices, but not
necessarily with respect to Python-specific idioms, such as
semicolons and indentation[5].

Programmers who are familiar with Python, but less so
with the R language have been found to be able to effectively
learn R, when assisted with a guide that explains R pro-
gramming concepts by means of equivalent Python code[9].
Srinath provides a catalog of distinctive and unique features
of Python that may not have equivalents in other languages.
[12].

This work builds upon the insights uncovered by these
prior studies. Our approach differs in that we focus on for-
mulating anti-patterns, with a particular emphasis on code
verbosity caused by prior experiences with Java program-
ming. By formulating our anti-patterns, we aim at providing
actionable information that can guide programming tool
builders and computing educators, as a way to promote the
concise and idiomatic programming style to which Python
owes much of its popularity.

6 Conclusions

In this paper, we discussed some code quality issues that
arise when Java programmers switch to programming in
Python. Because Python is more concise than Java, such
programmers, whose programming habits are influenced
by their first language, tend to replicate more verbose Java
idioms rather than using their native Python counterparts.
Specifically, by combing through programming assignments

Conference’17, July 2017, Washington, DC, USA

submitted in a class that introduced Java programmers to
Python, we identified and described six Java-like verbosity
anti-patterns that manifested themselves in Python code.
We then conducted a pilot study to check whether some of
these anti-patterns are also present in open-source Python
codebases. Based on our observations, we presented a call for
action to computing educators. Computing students should
be encouraged to make it a habit of writing concise and
idiomatic code in any language.

Acknowledgments

This research was supported in part by NSF through the
grants #1744722 and 1712131.

References

[1] A. C. Bart, J. Tibau, E. Tilevich, C. A. Shaffer, and D. Kafura. 2017.
BlockPy: An Open Access Data-Science Environment for Introductory
Programmers. Computer 50, 5 (2017), 18-26. https://doi.org/10.1109/
MC.2017.132

Chen Chen, Paulina Haduong, Karen Brennan, Gerhard Sonnert, and
Philip Sadler. 2019. The effects of first programming language on
college students’ computing attitude and achievement: a compari-
son of graphical and textual languages. Computer Science Education
29, 1 (2019), 23-48. https://doi.org/10.1080/08993408.2018.1547564
arXiv:https://doi.org/10.1080/08993408.2018.1547564

Brian Eastwood. 2020. The 10 Most Popular Programming Languages
to Learn in 2020. https://www.northeastern.edu/graduate/blog/most-

[2

—

3

[t

popular-programming-languages/.
O. Ezenwoye. 2018. What Language? — The Choice of an Introductory
Programming Language. In 2018 IEEE Frontiers in Education Conference
(FIE). 1-8. https://doi.org/10.1109/FIE.2018.8658592
Siegfried Horschig, Toni Mattis, and Robert Hirschfeld. 2018. Do
Java Programmers Write Better Python? Studying off-Language Code
Quality on GitHub. In Conference Companion of the 2nd International
Conference on Art, Science, and Engineering of Programming (Nice,
France) (Programming’18 Companion). Association for Computing
Machinery, New York, NY, USA, 127-134. https://doi.org/10.1145/
3191697.3214341
Chris F Kemerer. 1995. Software complexity and software maintenance:
A survey of empirical research. Annals of Software Engineering 1, 1
(1995), 1-22.
S.Nanz and C. A. Furia. 2015. A Comparative Study of Programming
Languages in Rosetta Code. In 2015 IEEE/ACM 37th IEEE International
Conference on Software Engineering, Vol. 1. 778-788. https://doi.org/
10.1109/ICSE.2015.90
Sebastian Raschka, Joshua Patterson, and Corey Nolet. 2020. Machine
Learning in Python: Main developments and technology trends in data
science, machine learning, and artificial intelligence. Information 11, 4
(2020), 193.
N. Shrestha, T. Barik, and C. Parnin. 2018. It’s Like Python But: Towards
Supporting Transfer of Programming Language Knowledge. In 2018
IEEE Symposium on Visual Languages and Human-Centric Computing
(VL/HCC). 177-185. https://doi.org/10.1109/VLHCC.2018.8506508
[10] Nischal Shrestha, Colton Botta, Titus Barik, and Chris Parnin. 2020.
Here We Go Again: Why Is It Difficult for Developers to Learn An-
other Programming Language?. In Proceedings of the 42nd International
Conference on Software Engineering, ICSE.
[11] Robert M. Siegfried, Diane Liporace, and Katherine G. Herbert-Berger.
2019. What Can the Reid List of First Programming Languages Teach
Us About Teaching CS1?. In Proceedings of the 50th ACM Technical
Symposium on Computer Science Education (Minneapolis, MN, USA)

[4

—

5

—

[6

—

[7

—

[8

[}

[

—

https://doi.org/10.1109/MC.2017.132
https://doi.org/10.1109/MC.2017.132
https://doi.org/10.1080/08993408.2018.1547564
https://arxiv.org/abs/https://doi.org/10.1080/08993408.2018.1547564
https://www.northeastern.edu/graduate/blog/most-popular-programming-languages/
https://www.northeastern.edu/graduate/blog/most-popular-programming-languages/
https://doi.org/10.1109/FIE.2018.8658592
https://doi.org/10.1145/3191697.3214341
https://doi.org/10.1145/3191697.3214341
https://doi.org/10.1109/ICSE.2015.90
https://doi.org/10.1109/ICSE.2015.90
https://doi.org/10.1109/VLHCC.2018.8506508

Conference’17, July 2017, Washington, DC, USA Yuzhi Ma and Eli Tilevich

(SIGCSE °19). Association for Computing Machinery, New York, NY,
USA, 1256-1257. https://doi.org/10.1145/3287324.3293830

[12] KR Srinath. 2017. Python-The Fastest Growing Programming Lan-
guage. International Research Journal of Engineering and Technology
(IRJET) 4, 12 (2017), 354-357.

[13] Ethel Tshukudu and Quintin Cutts. 2020. Understanding Concep-
tual Transfer for Students Learning New Programming Languages.
In Proceedings of the 2020 ACM Conference on International Comput-
ing Education Research (Virtual Event, New Zealand) (ICER ’20). As-
sociation for Computing Machinery, New York, NY, USA, 227-237.
https://doi.org/10.1145/3372782.3406270

https://doi.org/10.1145/3287324.3293830
https://doi.org/10.1145/3372782.3406270

	Abstract
	1 Introduction
	2 Java-Like Verbosity Anti-Patterns
	2.1 Origin and Methodology
	2.2 Format
	2.3 Anti-Pattern #1: ``Modifying a list with an unnecessary if statement''
	2.4 Anti-Pattern #2: ``Unnecessary function definition''
	2.5 Anti-Pattern #3: ``For loop instead of function''
	2.6 Anti-Pattern #4: ``Over-complicated comparison''
	2.7 Anti-Pattern #5: ``Over-complicated negative indexing''
	2.8 Anti-Pattern #6: ``An unnecessary intermediate tuple for multi-returns''

	3 Locating Verbosity Anti-Patterns in Open-Source Codebases
	4 Discussion and Call for Action
	5 Related Work
	6 Conclusions
	References

