
RT-Trust: Automated Refactoring for Different Trusted
Execution Environments under Real-Time Constraints

Yin Liua,1, Kijin Ana,1, Eli Tilevicha,1,∗

a2202 Kraft Drive, Blacksburg, VA 24060

Abstract

Real-time systems must meet strict timeliness requirements. These systems also

often need to protect their critical program information (CPI) from adversar-

ial interference and intellectual property theft. Trusted execution environments

(TEE) execute CPI tasks on a special-purpose processor, thus providing hard-

ware protection. However, adapting a system written to execute in environ-

ments without TEE requires partitioning the code into untrusted and trusted

parts. This process involves complex manual program transformations that are

not only laborious and intellectually tiresome, but also hard to validate and

verify adherence to real-time constraints. To address these problems, this pa-

per presents novel program analyses and transformation techniques, accessible

to the developer via a declarative meta-programming model. The developer

declaratively specifies the CPI portion of the system. A custom static analysis

checks CPI specifications for validity, while probe-based profiling helps identify

whether the transformed system would continue to meet the original real-time

constraints, with a feedback loop suggesting how to modify the code, so its CPI

can be isolated. Finally, an automated refactoring isolates the CPI portion for

TEE-based execution, communicated with through generated calls to the TEE

API. The reference implementation of our approach profiles and transforms real-

time systems to isolate their CPI functions to execute on two different TEE

∗Corresponding author
Email addresses: yinliu@cs.vt.edu (Yin Liu), ankijin@cs.vt.edu (Kijin An),

tilevich@cs.vt.edu (Eli Tilevich)
1Software Innovations Lab, Virginia Tech

Preprint submitted to Journal of LATEX Templates December 19, 2019

platforms: OP-TEE and SGX. Although these platforms substantially differ

in terms of their respective APIs and performance characteristics, our refac-

toring completely hides these differences from the developer by automatically

synthesizing the correct CPI functionality required for these dissimilar TEE im-

plementations. We have evaluated our approach by successfully enabling the

trusted execution of the CPI portions of several microbenchmarks and a drone

autopilot. Our approach shows the promise of declarative meta-programming in

reducing the programmer effort required to adapt systems for trusted execution

under real-time constraints.

Keywords: trusted execution, real-time systems, declarative

meta-programming, software refactoring, program analyses

1. Introduction

The execution of mission-critical real-time systems must comply with real-

time constraints. Many such systems also contain vulnerable critical program

information (CPI) (i.e., sensitive algorithms and data) that must be protected.

Failing to satisfy either of these requirements can lead to catastrophic conse-5

quences. Consider using an autonomous delivery drone to transport packages,

containing food, water, medicine, or vaccines, to remote and hard-to-reach loca-

tions. Emergency personnel and professional nature explorers often depend on

drone delivery when dealing with various crises. The drone’s navigation com-

ponent has real-time constraints; if it fails to compute the instructions for the10

autopilot to adjust the flight’s directions or airspeed in a timely fashion, the

drone may become unable to adjust its trajectory properly and deviate from

the programmed delivery route. Since the cargo often must be delivered under

strict time requirements, deviating from the shortest route can cause the en-

tire delivery mission to fail. In addition, the software controlling module (e.g.,15

navigation) constitutes critical program information (CPI). If an ill-intentioned

entity takes control over the module’s execution, the entire drone can be mis-

routed, causing the delivery to fail. Irrespective of the causes, the consequences

2

of a failed delivery can be potentially life-threatening.

The vulnerabilities above can be mitigated by isolating CPI functions in a20

secure execution environment that would also control their interactions with

the outside world. As a way to realize this idea, hardware manufacturers have

started providing trusted execution environments (TEEs), special-purpose pro-

cessors that can be used to execute CPI-dependent functionality. TEE can

reliably isolate trusted code (i.e., in the secure world) from regular code (i.e., in25

the normal world); the secure world comes with its own trusted hardware, stor-

age, and operating system. A special communication API is the only avenue for

interacting with TEE-based code. With the TEEs being hard to compromise,

isolating CPI in the secure world effectively counteracts adversarial attacks and

prevents intellectual property theft. However, to benefit from trusted execution,30

systems must be designed and implemented to use different implementations of

the TEE (e.g., OP-TEE [1], SGX [2]). Adapting existing real-time systems to

use the TEE requires non-trivial, error-prone program transformations, while

the transformed system’s execution must continue to adhere to the original real-

time constraints.35

In particular, a developer transforming a system to take advantage of the

newly introduced TEE module requires undertaking the following tasks: 1)

isolate CPI-dependent code; 2) redirect invocations of CPI functions to TEE

communication API calls; 3) verify that the transformed system continues to

meet the original real-time constraints. Notice that all of these tasks are hard40

to perform correctly by hand.

To complete task 1), a developer not only needs to correctly extract the CPI-

dependent code from the system, but also correctly identify all the dependencies;

due to the potential complexity of these dependencies, some CPI-dependent code

cannot be isolated in TEEs. Most importantly, different TEEs (e.g., OP-TEE45

and SGX) expose dissimilar APIs and conventions for isolating CPI functions.

A CPI-dependent function can be isolated in both TEE implementations, only

one of them, or neither of them. To determine how a CPI function can be

isolated, developers must be intimately familiar with both the original source

3

code and the requirements of each TEE implementation. As is often the case,50

developers performing adaptive maintenance are often not the ones who wrote

the original system. To facilitate this difficult and error-prone process, prior

work has proposed automatic program partitioning, even in the presence of

pointer-based function parameters [3]. However, this prior work leaves out the

issues of verifying whether a given partitioning strategy is valid or whether the55

partitioned system would comply with the real-time constraints.

To complete task 2), the developer must write by hand the communication

logic required for the normal and secure worlds to talk to each other, correctly

applying suitable TEE APIs that establish customized communication channels.

However, to accomplish this task correctly, developers must invest a great deal of60

time and effort to learn and master both the OP-TEE or SGX implementations:

the OP-TEE provides more than 130 APIs and about 40 data types [4, 5, 6],

while SGX provides an Enclave Definition Language (EDL) with more than ten

syntactic categories [7].

To complete task 3), the developer must be willing to develop additional65

test cases that can verify whether the transformed system satisfies the original

real-time constraints. Existing approaches take advantage of profiling tools,

including Pin tool [8] and gperftools [9], which require that profiling probes be

added by hand.

To facilitate the process of adapting real-time systems to protect their CPI-70

dependent code using a TEE, this article presents RT-Trust, a program anal-

ysis and transformation toolset that supports developers in partitioning C-

language systems in the presence of real-time constraints. The developer can

either specify the TEE implementation (i.e., OP-TEE or SGX) as a compiler

option, or rely on RT-Trust to automatically determine the available imple-75

mentation by inspecting the system. Through a meta-programming model, the

developer annotates individual C functions to be isolated into the secure world.

Based on the annotations, the RT-Trust static and dynamic analyses deter-

mine whether the suggested partitioning strategy is feasible, and whether the

partitioned system would comply with the original real-time constraints for both80

4

the OP-TEE or SGX. A continuous feedback loop guides the developer in re-

structuring the system, so it can be successfully partitioned. Finally, RT-Trust

transforms the system into the regular and trusted parts, with custom gener-

ated TEE-specific communication channel between them. If the transformed

code fails to meet real-time constraints, it raises custom-handled exceptions.85

RT-Trust reduces the programmer effort required to partition real-time sys-

tems to take advantage of the emerging TEEs.

The contribution of this paper is four-fold:

1. A Fully Declarative Meta-Programming Model for partitioning

real-time systems written in C to take advantage of the TEEs; the model90

is realized as domain-specific annotations that capture the requirements

of different partitioning scenarios.

2. Static and Dynamic Checking Mechanisms that identify whether a

system can be partitioned as specified for a given TEE implementation,

and how likely the partitioned version is to meet the original real-time95

constraints. The analyses integrate a feedback mechanism that informs

developers how they can restructure their systems, so they can be suc-

cessfully partitioned.

3. RT-Trust Refactoring, a compiler-based program transformation for C

programs that operates at the IR level, while also generating customized100

communication channels and real-time deadline violation handling.

4. A Platform-Independent Metric for assessing by how much a CPI

function is expected to degrade its performance once moved to the TEE,

and comparing such degradations between different TEEs; we evaluate

the applicability of this metric on five classic security algorithms and two105

critical functions in a popular drone controller system.

To concretely realize our approach, we have created RT-Trust as custom

LLVM passes and runtime support. Our evaluation shows that RT-Trust saves

considerable programmer effort by providing accurate program analyses and

automated refactoring. RT-Trust’s profiling facilities also accurately predict110

5

whether refactored subjects would continue meeting real-time constraints.

This article extends our earlier paper, presented at the 17th International

Conference on Generative Programming: Concepts Experience (GPCE 2018)

[10]. In comparison to that prior publication, this article reports on the ad-

ditional research we have performed to enable RT-Trust to support SGX, in115

addition to the original version that was limited only to the OP-TEE. Our expe-

riences of designing, engineering, and evaluating our approach to support both

of these popular TEE implementations should be of value and relevance to the

audience of this journal.

The remainder of this paper is structured as follows. Section 2 provides the120

technical background for this research. Section 3 gives an overview of the RT-

Trust toolchain. Section 4 details the RT-Trust meta-programming model.

Section 5 and Section 6 further describe the RT-Trust mechanisms for profiling

and code refactoring, respectively. Section 7 describes our platform-independent

metric. Section 8 describes our evaluation. Section9 discusses the limitations125

of TEE implementations and RT-Trust. Section 10 discusses related work.

Section 11 presents conclusions and future work directions.

2. Background

In this section, we introduce the technical background required to understand

our contributions. We briefly discuss CPI, TEE, and real-time constraints.130

Afterward, we discuss known security risks that motivate this work.

2.1. Critical Program Information (CPI)

Although the concept of critical program information was originally intro-

duced by the US DoD as representing parts of a system that can raise the

technological superiority for war-fighters [11], the term has been embraced by135

all security-sensitive domains. The CPI can include algorithms, data, and hard-

ware of a security-sensitive system. In our design, we designate C functions

as constituting CPI, if they happen to contain critical algorithms and manipu-

late sensitive data. Hence, RT-Trust operates at the function level, including

6

static analysis, profiling, and code transformation. Our declarative program-140

ming model provides special-purpose annotations for developers to mark the

CPI functions (we detail our programming model in Section 4).

2.2. Trusted Execution Environment (TEE)

TEE [12] offers a standardized hardware solution that protects CPI from

being compromised. First, TEE isolates a secure area of the CPU (i.e., the145

secure world for trusted applications) from the normal area (i.e., the normal

world for common applications)2.

That is, the secure world possesses a separate computing unit and an in-

dependent OS that prevents unauthorized external peripherals from directly

executing the trusted tasks. In addition, TEE provides trusted storage that150

can only be accessed via the provided API to securely persist data. Finally,

TEE offers an API to the secure communication channel, as the only avenue for

external entities to communicate with the secure world.

OP-TEE. [1] Following the Global Platform Specifications of TEE, OP-TEE

provides a hardware isolation mechanism that primarily relies on the ARM155

TrustZone, with three essential features: 1) it isolates the Trusted OS from the

Rich OS (e.g., Linux) to protect the executions of Trusted Applications (TAs)

via underlying hardware support; 2) it requires reasonable space to reside in

the on-chip memory; 3) it can be easily pluggable to various architectures and

hardware.160

SGX. [2] Another implementation of TEE is Intel’s Software Guard Extensions

(SGX). It protects computation integrity and confidentiality by extending the

Intel architecture. In the same way as OP-TEE, SGX requires that developers

divide the original code into two parts: regular and trusted. The former runs

2The normal and secure world are the terms commonly used in the TEE realm. That is,

if the code runs in the secure world, it is considered “trusted” (i.e., under protection); if it

runs in the normal world, then it is considered “untrusted” (i.e., without protection and may

be compromised).

7

inside of the enclave, a protected area that isolates the execution resources from165

the outside environment (kernel, hypervisor, etc.), in which the latter runs.

Furthermore, the regular components can only access the enclave via special

CPU instructions. Hence, if run or loaded inside the enclave, the application’s

CPI becomes invulnerable to attacks perpetrated from compromised outside

environments.170

2.3. Real-Time Constraints

In general, real-time constraints [13] are the restrictions on the timing of

events that should be satisfied by a real-time system; these restrictions can be

classified into time deadlines and periodicity limits [14]. The former restricts

the deadline by which a particular task must complete its execution. The latter175

restricts how often a given event should be triggered. For example, given the

periodicity limit of 50ms and the time deadline of 20ms, a drone task must

obtain its GPS location within 20ms for each 50ms period.

In our case, due to the memory limitation of the TEE, the event’s memory

consumption is another constraint. As we mentioned in Section 2.2, the TEE180

should maintain a small footprint by occupying limited space in memory. Also,

if the TEE solution applies eMMC RPMB [15] as trusted storage only, the

memory consumption is limited by the size of the RPMB partition, due to the

persistent objects being stored in the RPMB.

As determined by how strict the timeliness requirements are, real-time con-185

straints are categorized into hard and soft. The former constraints must be

satisfied while the latter can be tolerated with associated ranges. For example,

a drone’s motor/flight surface control must respond on time (hard constraint),

while its navigation according to waypoints is expected to be resilient to de-

viations caused by GPS signal being temporarily lost or even wind gusts (soft190

constraint).

2.4. Security Risks

Attackers are known to go after compromising CPI. A large amount of known

relevant security risks have been reported by the Common Vulnerabilities and

8

Exposures (CVE) [16]. First, without a proper access control and authentication195

mechanism for critical functions, attackers can maliciously access and consume

the significant amount of resources [17, 18, 19, 20, 21]. Secondly, the possi-

bility of information leakage sharply rises by the vulnerable critical functions

[22, 23, 24], especially the functions processing sensitive data. For example, by

compromising the data transmitting process, attackers maliciously obtain the200

current GPS locations [25]. In addition, arbitrarily exposing critical functions

for interaction with external actors can be illegally exploited, which causes file

deletion [26] or credential disclosure [27]. Further, reverse engineering can dis-

close critical algorithms [28] or expose sensitive data (e.g., the encryption keys)

[29].205

3. Solution Overview

In this section, we introduce the toolchain of our compiler-based analyzer

and code refactoring tool, and then we describe the input and output of RT-

Trust.

Regular

Trusted

Communication
Channel

Exception
Handler

Domain-Specific
Annotation

1
2

3

4

Static
Analysis

Dynamic
Analysis

5

6

7 Generation

Partition

Figure 1: The RT-Trust Process

9

3.1. Software Development Process

Figure 1 describes the software development process of using RT-Trust210

to partition real-time systems to take advantage of TEEs. Given a real-time

system, the developer first specifies the CPI-dependent functions in the source

code using the RT-Trust domain-specific annotations (DSA) (step 1). The

annotated source code is then compiled to LLVM intermediate representation

(IR). The compilation customizes Clang to specially process the DSA metadata215

(step 2). After that, RT-Trust determines whether the TEE is implemented

as OP-TEE or SGX by inspecting the execution environment or the build con-

figuration. To check whether the specified partitioning scenario can be real-

ized, RT-Trust statically analyzes the system’s call graph (step 3). Given the

system’s call graph and a partitioning specification, RT-Trust constructs the220

partitionable function graph (PFG), which contains all the information required

to determine if the specification is valid. While static analysis determines the

semantic validity of a partitioning specification, a separate dynamic analysis

phase estimates whether the partitioned system would continue complying with

the original real-time constraints. To that end, RT-Trust instruments the225

system by inserting probes at the IR level (step 4). The inserted probes esti-

mate the partitioning scenarios’ memory consumption and function invocation

latencies. The system is then exercised under expected loads. The results are

then reported back to the developer (step 5). This prior analysis and validation

routines make it possible for the developer to modify the original system make230

it possible to move the CPI functions to execute in the secure world. Once the

developer determines that the system can be partitioned with satisfying perfor-

mance, RT-Trust then automatically divides the system’s IR into regular and

trusted parts (step 6). The former will be run in the normal world, while the lat-

ter in the secure world. To enable these two portions to communicate with each235

other, RT-Trust generates communication channels customized for OP-TEE

and SGX. In addition, to handle the violations of real-time constraints, RT-

10

Trust generates exception handling code (step 7). Notice that all these code

generation processes are configured entirely by the DSAs applied to the system’s

CPI functions. Having undergone a partitioning, the system then goes through240

the final round of verification by dynamically profiling the partitioned system

(step 4). The profiling identifies the performance bottleneck while estimating

whether the transformed system continues to satisfy the real-time constraints

(step 5). Finally, RT-Trust generates a descriptive report that includes the

outcomes of various profiling scenarios and suggestions for the developer about245

how to remove various performance bottlenecks.

3.2. Code Transformation and Generation

Figure 2 shows RT-Trust’s code transformation and generation. As input,

RT-Trust receives the annotated source code. As output, it transforms the

IR of the input source and also generates additional code that is compiled and250

integrated into the normal and secure world partitions. For the normal world,

RT-Trust transforms the IR by inserting profiling probes, exception handlers,

and communication channels. All generated code can be further customized by

hand if necessary. The transformed IR code, generated source code (i.e., RPC

client stub for OP-TEE and an EDL file for SGX), and referenced libraries (e.g.,255

encryption, profiling) are eventually linked with the normal world’s executable.

Similarly, for the secure world, the trusted IR, RPC server stub (for OP-TEE),

and the referenced libraries are linked with the secure world’s executable, which

can run only in the secure world of TEE.

4. Meta-programming Model260

To accommodate application programmers, RT-Trust follows a declarative

programming paradigm, supported by a meta-programming model. This model

makes use of the annotation facility recently introduced into the C language. A

C programmer can annotate functions, variables, parameters, and code blocks

to assign a customized semantics. The semantics is realized by the compiler by265

11

Normal world Secure world

Regular bytecode

Annotated Source Code

Inserted Communication
Callsites

Inserted Profiling Probes

Inserted Exception
Handler Callsites

RPC client stub

Referenced
Libraries

Trusted bytecode

RPC server stub

Referenced Libraries

Report

Input

Output
EDL file

Figure 2: RT-Trust’s Input and Output

means of a special processing plug-in. For example, if a function is annotated

with nothrow, the compiler can check that the function contains no statement

that can raise exceptions; if the check fails, an informative message can be

displayed to the programmer, who then can modify the function’s code accord-

ingly. Despite the large set of built-in Clang annotations [30], none of them are270

designed for real-time systems and TEE.

For our meta-programming model, we design and implement a set of domain-

specific annotations that describe the real-time constraints, code transformation

and generation strategies required to automatically transform a real-time sys-

tem, so its subset can be partitioned to TEE for trusted execution. We call our275

domain-specific annotations Real-Time Trust Annotations, or RTTA for short.

We integrate RTTAs with the base Clang annotation system, so the compiler

can analyze and transform real-time systems, as entirely based on the declara-

tive annotations, thus reducing the development burden by enabling powerful

compiler-based code analysis and transformation. In this section, we first de-280

scribe the general syntax of RTTAs. Then, we introduce each annotation and

its dependencies in turn. Finally, we illustrate how to use these annotations

through an example.

12

4.1. General Syntax

In the code snippet below, RTTA follows the GNU style [31], one of the gen-285

eral syntaxes supported by Clang. The form of attribute specifier is __attribute__

((annotation-list)). The annotation list (<annotation-list>) is a sequence of an-

notations separated by commas. Each annotation contains the annotation name

and a parenthesized argument list (<annotation-list>). An argument list is a pos-

sibly empty comma-separated sequence of arguments.290

1 __attribute__((<annotation-list>))

2 <annotation-list> ::= <annotation>,<annotation>*

3 <annotation> ::= name (argument-list)

4 <argument-list> ::= <argument>,<argument>*

5 <argument> ::= various arguments295

4.2. Code Partition Annotation

The code partition annotation informs RT-Trust to perform two tasks: 1)

analyze the validity of partitioning for each annotated function, and 2) extract

the annotated functions that can be partitioned from the source code. The300

annotation partition can be applied to any declared function in the source code,

and takes no arguments, as follows:

1 __attribute__((partition))

4.3. Code Generation Annotations305

Code generation annotations that appear in the code snippet below enable

developers to customize 1) a specific communication mechanism (e.g., RPC)

for the normal and secure worlds to talk to each other, and 2) an exception

handler for handling the cases of violating real-time constraints when execut-

ing a partitioned system. When annotating with rpc, the developer can specify310

the shared_memory or socket options as the underlying RPC delivery mechanism.

The data transferred between the partitions can be specified to be encrypted

or compressed by using the yes and no options. Note that the rpc annotation

applies only to OP-TEE to specify how to generate RPC stubs. For SGX,

RT-Trust instead generates an EDL file and proxy functions. By annotating315

13

pointer and array parameters with paramlen, the developer can indicate their

length. The <length> attributes are used by the marshaling and unmarshaling

phases on the communication channels. For the pointer parameters, the <length>

attribute reports the size of the data the pointer is referencing. Although re-

cent advances in complex static analysis make it possible to automatically infer320

the size of pointer-based parameters [3], our design still relies on the program-

mer specifying the length information by hand. This design choice allows for

greater flexibility. The paramlen annotation makes it possible for the developer

to reserve the required amount of space for the annotated parameters, and

then specify how to generate customized marshaling and unmarshaling code.325

If the developer also annotates that function with memsize, the RT-Trust dy-

namic analysis suggests an approximated length value (details appear in Section

5.2.2). By annotating with exhandler, the developer can specify how to handle

the exceptions potentially raised by the annotated function. The annotation

has three parameters: a handler function’s name (<method>), the target’s real-330

time constraints (<constraint_type>), and the trigger threshold (<times>) (i.e., the

number of times an annotated function can violate the target constraints before

triggering the handler function). We explain how RT-Trust generates code,

as based on these annotations, in Section 6.

1 __attribute__((rpc(<type>, <encryption>, <compression>)))335

2 <type> ::= shared_memory | socket

3 <encryption> ::= yes | no

4 <compression> ::= yes | no

5

6 __attribute__((paramlen(<length>)))340

7 <length> ::= n (n is integer, n > 0)

8

9 __attribute__((exhandler(<times>, <method>, <constraint_type>)))

10 <times> ::= n (n is integer, n > 0)

11 <method> ::= "default" | method name (string)345

12 <constraint_type> ::= exetime | period | memsize

14

4.4. Profiling Annotations

The annotations in the code snippet below configure the RT-Trust profiler

to determine if a partitioned system would still meet the original real-time350

constraints.

Profiling Real-Time Constraints. RTTA provides three annotations for profil-

ing to determine whether given real-time constraints would remain satisfied: 1)

exetime (i.e., execution time), 2) period, and 3) memsize (i.e., memory consump-

tion). The <type> argument specifies whether the constraint is hard or soft. The355

hard mode means that violating the constraint is unacceptable, while the soft

mode means such violations, to some extent, can be accepted. Based on these

types, the profiler reports whether the annotated function can be transformed

for trusted execution, without violating the specified real-time constraints. For

the execution time attribute, the developer can specify the profiling method360

(i.e., timestamping and sampling) and the completion deadline (i.e., <deadline> to

meet. For period, one can specify the time interval between invocations of a CPI

function. For memory consumption, the memory size can be limited by setting

an upper-bound via the <limit> argument.

1 __attribute__((exetime(<type>, <method>, <deadline>)))365

2 <type> ::= hard | soft

3 <method> ::= timestamping | sampling

4 <deadline> ::= n (n is integer, n > 0)

5

6 __attribute__((period(<type>, <interval>)))370

7 <type> ::= hard | soft

8 <interval> ::= n (n is integer, n > 0)

9

10 __attribute__((memsize(<type>, <limit>)))

11 <type> ::= hard | soft375

12 <limit> ::= n (n is integer, n > 0)

15

4.5. RTTA Dependencies

As compared to the annotations that can be specified independently (e.g.,

partition, rpc, and the profiling annotations), other annotations must be spec-380

ified with their dependencies. For example, the annotation paramlen cannot be

specified, unless rpc also appears among the function’s annotations. The paramlen

annotation is used for generating the marshaling and unmarshaling logic of the

communication channels. Likewise, without annotations specifying real-time

constraints, the exception handling code is unnecessary: exhandler must come385

together with real-time constraint annotations. The RT-Trust analysis process

checks the adherence to these domain-specific semantics of RTTA and reports

the detected violations.

4.6. RTTA in Action

Consider the example originally described in Section 1: a drone navigates,390

with its autopilot continuously obtaining the current geolocation from the GPS

sensor to adjust the flying trajectory in a timely fashion. The function of ob-

taining geolocations is CPI-dependent, and as such should be protected from

potential interference by placing it in the secure world. To that end, the devel-

oper annotates that function, informing RT-Trust to transform the code, so395

the function is separated from the rest of the code, while also generating the

necessary code for communicating and exception handling. Optionally, the sys-

tem can be annotated to be profiled for the expected adherence to the original

real-time constraints after it would be partitioned. The function getGPSLocation

annotated with RTTAs appears below. Based on these annotations, our cus-400

tomized Clang recognizes that the function needs to be partitioned and moved

to the secure world (partition). Meanwhile, RT-Trust will generate a com-

munication channel over shared memory with the encrypted and compressed

transferred data between the partitions (rpc). In addition, during the marshal-

ing and unmarshaling procedure, the allocated memory space for the function’s405

parameter will be 100 bytes (paramlen). Further, RT-Trust will insert the mea-

surement code to profile the function’s real-time constraints. It instruments

16

the function’s execution time with the timestamping algorithm and hard mode

to check whether it meets the deadline (20 ms) (exetime), and checks whether

the invocation interval would not exceed 50 ms (period). It estimates the mem-410

ory consumption, and checks whether it exceeds 1024 bytes in the soft mode

(memsize). Finally, if the real-time deadline constraint has been broken more

than once, it will be handled by the exception handler function “myHandler”

(exhandler). The declarative meta-programming model of RT-Trust automates

some of the most burdensome tasks of real-time system profiling and refactoring.415

In the rest of the manuscript, we discuss some of the details of the RT-Trust

profiling, code transformation, and code generation infrastructure.

1 Location loc; // global variable

2 Location getGPSLocation // CPI function

3 (GPSState * __attribute__((paramlen(100))) state)420

4 __attribute__((partition,

5 rpc(shared_memory, yes, yes),

6 exhandler(1, "myHandler", exetime),

7 exetime(hard, timestamping, 20),

8 period(hard, 50),425

9 memsize(soft, 1024))) {...}

10 // adjusting Drone direction

11 void adjustDirection(Location l) {...}

12 void fly() {

13 loc = getGPSLocation(state);430

14 adjustDirection(loc);

15 }

16

17 int main() {

18 fly(); ... }435

5. Analyses for Real-Time Compliance

The automated refactoring described here has several applicability limita-

tions. One set of limitations stems from the structure of the system and its

subset that needs to be moved to the trusted partition. Another set of lim-440

17

itations are due to the increase in latency that results in placing a system’s

subset to the trusted execution zone and replacing direct function calls with

RPC calls. The increase in latency can cause the system to miss its real-time

deadlines, rendering the entire system unusable for its intended operation. To

check if the structure of the system allows for the refactoring to be performed,445

RT-Trust features a domain-specific static analysis. To estimate if the refac-

tored system would still meet real-time requirements, RT-Trust offers several

profiling mechanisms, which are enabled and configured by means of RTTAs.

5.1. Static Analysis

The TEE implementation in place (i.e., OP-TEE or SGX) determines whether450

RT-Trust can realize a given partitioning scenario. That is, a scenario may

work on the OP-TEE but not on the SGX, and vice versa. To that end, RT-

Trust not only allows the developer to specify the TEE implementation, but

it also automatically inspects the compilation environment to determine the

TEE implementation. After that, RT-Trust checks whether the scenario ad-455

heres to the following three rules, referred to as zigzag, pointers, and global

variable. If the code passes all three checks, RT-Trust can successfully carry

out the specified partitioning scenario. A failed check report identifies why the

code needs to be refactored to make it amenable to partitioning.

Zigzag Rule. Consider a set of functions T1, annotated with the partition anno-460

tation, and another set of functions T2, containing the rest of all the functions.

The zigzag rule defines the restrictions imposed by different TEEs:

For OP-TEE, the zigzag rule states that functions in T2 cannot invoke func-

tions in T1, as such invocations would form a zigzag pattern. This restriction

is caused by the strict one-way invocation of the functions in the trusted zone465

from the normal world. The normal world can call functions in the trusted

zone, but not vice versa. One can fix violations of the zigzag rule by annotating

the offending function, called from the trusted zone, with partition, so it would

be placed in the trusted partition as well, so it would be invocable via a local

18

function call. Our assumption of relying on the static version of the call graph470

is reasonable for the target domain of real-time systems written in C, in which

functions are bound statically to ensure predictable system execution.

For SGX, the zigzag rule states that even though functions in T2 can invoke

functions in T1, such invocations must be restricted to some small number (i.e.,

threshold) due to the high communication latency between the normal and475

secure worlds. That is, although SGX supports the zigzag calls, the program

performance suffers from the high latency of such invocations [32]. One can tune

the threshold to balance the trade-off between efficiency and utility. Once the

threshold comes to “0”, the zigzag rule regresses to the one used for OP-TEE.

Global Variable Rule. Since the partitioning is performed at the function level,480

the distributed global state cannot be maintained. As a result, each global

variable can be placed either in the normal or trusted partition and accessed

locally by its co-located functions. Violations of this rule can be easily detected.

One exception to this rule is constant global variables, which due to being

unmodifiable can be replicated across partitions.485

Pointers Rule. The pointers rule restricts the types that can be used as pa-

rameters of the partitioned functions: 1) function pointers and pointer arrays

cannot be passed as parameters, and 2) struct parameters cannot contain pointer

members. For SGX, RT-Trust strictly enforces this rule, as the SGX Enclave

Definition Language (EDL) has no support for such pointer types. However, for490

OP-TEE, only function pointers cannot be supported. For their code to abide

by this rule, developers can refactor the target program, so the partitioned func-

tions take no such pointer parameters. Alternatively, developers can manually

implement specialized logic for marshaling/unmarshaling these parameters.

Partitionable Function Graph. To check the above rules, RT-Trust introduces495

a partitionable function graph (PFG). This data structure extends a call graph

with special markings for the functions that can be partitioned. To construct a

PFG, RT-Trust starts by walking the call graph for the functions annotated

19

Functions annotated
with “partition”

Parameters &
Global variables

Annotations

fly

adjustDirection getGPSLocation

main

subgraph of fly()

main

flyadjustDirection

getGPSLocation

Secure worldNormal world

fly

adjustDirection getGPSLocation

main

PFG

Global Var: loc

fly

adjustDirection getGPSLocation

Global Var: loc

Parameters: state

paramlen:100

exetime: hard,timestamping,20
frequency:hard,50
memsize:soft,1024
exhandler:1, myHandler, exetime
rpc: shared_memory, yes, yes

Functions

(a) (b)

(c) (d)

Global Var: loc

Global
Var: loc

Figure 3: The RT-Trust PFG

with partition. By checking whether these functions comply with the zigzag

and global variable rules, it removes the function nodes that break these rules.500

The resulting graph is the PFG.

Specifically, RT-Trust sets each function annotated with partition as the

root function, and then traverses its subgraph. During the traversal, RT-Trust

checks whether all subgraph elements are also annotated with partition. If so,

RT-Trust adds the entire subgraph to the PFG, and then moves to the next505

annotated function. After examining the zigzag rule, the PFG contains several

sub-callgraphs of non-zigzag functions annotated to be partitioned. Next, RT-

20

Trust collects global variable information for each function already in the PFG.

It then examines whether the variables are operated by the functions in the PFG

only. If so, RT-Trust adds these functions to the PFG. Otherwise, RT-Trust510

removes the entire subgraph containing the violating function from the PFG.

The final PFG contains all the necessary information (e.g., global variables,

parameters, and annotations) required to partition the system. We deliberately

chose to exclude any automatically calculated dependencies of the annotated

functions, requiring the programmer to explicitly specify each function to be515

placed into the trusted zone in order to prevent any unexpected behavior.

Recall the example in Section 4.6: if the developer annotates only function

fly as partition, as shown in Figure 3 (a), the sub-callgraph of fly is fly →

getGPSLocation and fly → adjustDirection. In that case, placing function fly in

the trusted partition leads to zigzag invocations between the normal and secure520

worlds (Figure 3 (b)). If fly runs in OP-TEE, or in SGX configured for the

minimal zigzag call (i.e., the threshold of “0”), this partitioning specification

violates the zigzag rule. To fix such violations, the developer can annotate

the other two offending functions (i.e., getGPSLocation and adjustDirection) with

partition, so that both of them will also be placed in the secure world along525

with their caller fly. After the zigzag violation is eliminated, RT-Trust then

adds fly’s sub-callgraph to the PFG.

Now, suppose the global variable loc are accessed not only by function fly

(i.e., the secure world) but also by function main (i.e., the normal world). Because

this scenario violates the global variable access rule, the entire sub-callgraph of530

fly should be removed from the PFG. To fix this violation, the developer can

modify function main, so it would no longer access loc (Figure 3 (c)), or make

this global variable constant. Finally, RT-Trust constructs the PFG with all

the necessary information for each function, as shown in Figure 3 (d).

5.2. Dynamic Analyses535

RT-Trust offers dynamic analyses to help identify how likely the specified

partitioning would meet the original real-time constraints. Since it would be

21

hard to guarantee whether the profiled execution produces the worst-case sce-

nario, our analyses are applicable only to soft real-time systems. Figure 4 shows

how RT-Trust provides the dynamic analyses capability. The analyses start540

with the transformation of the original LLVM IR program. That is, RT-Trust

inserts profiling code at the affected call sites of the annotated functions for their

corresponding real-time constraints. Instead of inlining the entire profiling code,

RT-Trust inserts calls to special profiling functions, which are made available

as part of shared libraries. Currently, RT-Trust provides them on its own, but545

similar profiling functionality can be provided by third-party libraries as well.

This flexible design enables developers to provide their custom profiling libraries

or add new features to the libraries provided by RT-Trust to further enhance

the profiling logic. After linking these shared libraries with the transformed IR

program, developers run the executable to trigger the inserted function calls to550

invoke the profiling functions in the shared libraries. These functions measure

the real-time constraints and persist the result data for future analysis. Finally,

RT-Trust analyzes the data, estimating whether the annotated functions can

meet the original real-time requirements, and reporting the results back to the

developer.555

Shared
Libraries

Transform Run Analyze

ReportIR

Result

Insert

exe

 Link

Figure 4: The RT-Trust Analyses Procedure

5.2.1. Analyzing Time Constraints

As mentioned in Section 2, time constraints mainly include the time deadline

and the periodicity limit. The former defines the upper boundary for a function

to complete its execution, the latter restricts the time that can elapse between

22

any pair of invocations.560

To analyze these constraints, RT-Trust first transforms the original LLVM

IR program via two key steps: 1) find the correct call sites, and 2) insert the

suitable function calls. In the transformation procedure below, given a function

annotated with exetime, RT-Trust traverses its instructions to locate the first

instruction in its entry basic-block3, inserting the profiling probes and then that565

starts a profiling session. Likewise, RT-Trust locates each return instruction of

the annotated function, inserting the probes that issue the end profiling session,

which stops the profiling.

1 define i32 @function(i8* %param) { // annotated function

2 entry:570

3 <--- start probe()

4 %first instruction

5 ...

6 <--- stop probe()

7 ret i32 %retval575

8 }

Which probe functions are inserted depends on how RT-Trust is configured

by means of RTTAs. The two main configurations are timestamping and sam-

pling. For timestamping, RT-Trust inserts probes that invoke the timestamp580

functions to retrieve the current system time by means of gettimeofday() (in the

normal world), or TEE_GetREETime() (in the secure world to check the adherence

to real-time constraints post-partitioning). For sampling, RT-Trust inserts in-

vocations to the sampling functions of ProfilerStart() and ProfilerStop(), which

make use of gperftools (a third-party profiling tool). Similarly, to analyze peri-585

odicity limits, RT-Trust locates the first instruction of the function annotated

with period, and then inserts invocations of the functions to record the current

system time.

All these measured results are first stored in a hash table, with the key

3Basic-block is a straight-line code sequence. It has no in branches, except at the entry,

and no out branches, except the exit.

23

corresponding to the annotated function’s name and the value to its profiling590

record. Finally, the hash table is persisted into an external file for further

exploration.

5.2.2. Memory Consumption Profiling

Memory consumption is an important issue for trusted execution. First,

TEEs are designed to occupy limited memory space (as discussed in Section 2).595

In addition, pointer parameters of the trusted functions refer to data structures

that need to be dynamically allocated as part of their marshaling/unmarshaling

phases (as discussed in Section 4.3). To ascertain the expected memory con-

sumption requirements of the CPI functions, RT-Trust profiles the amount of

memory consumed by the functions annotated with memsize. The profiling com-600

prises the traversal of the functions’ IR instructions to locate all the allocation

sites (i.e., the alloca instruction). Each allocation site is then instrumented to

keep track of the total amount of allocated memory.

1 %var = alloca i32, align 4

2 <--- function(i32, 4)605

The allocated memory volume is continuously monitored as the profiled sys-

tem is being executed. The presence of pointers complicates the profiling proce-

dure. To properly account for all the memory consumed by the data structure

referenced by a pointer, RT-Trust implements a heuristic approach based on610

SoftBound [33]. To provide effective memory safety checking, SoftBound trans-

forms the subject program to keep the base and bound information for each

pointer as metadata. This metadata is passed along with the pointer. In other

words, when passing the pointer as a parameter from one function to another,

the metadata is also be passed. SoftBound makes use of this metadata to enforce615

program memory safety.

Based on SoftBound, RT-Trust inserts invocations to record the pointer

metadata (base and bound) of the annotated function, whenever pointers are

allocated or accepted as parameters from other functions. RT-Trust calculates

each pointer’s length via the formula length = bound− base. By combining620

24

the basic and pointer type’s lengths, RT-Trust finally determines the upper

boundary of the memory volume consumed by each annotated function.

5.3. Exception Handling

Having annotated a function with real-time constraints, developers can also

specify how to handle the violation of these constraints via the exhandler anno-625

tation. To locate the correct call site for inserting exception handling code, RT-

Trust traverses instructions of each defined function in the original program,

finding the invocations to the annotated functions. Then, RT-Trust inserts

“if-then-else” blocks by means of LLVM API SplitBlockAndInsertIfThenElse. The

“if-then-else” blocks include: 1) the block that contains if condition, 2) “then”630

block, 3) “else” block, and 4) the block after “then” and “else” blocks. RT-

Trust creates an if condition with the annotated threshold for the number

of violations of a given real-time constraint. Then, it inserts the invocation to

the specified exception handling function into the “then” block, and inserts the

invocation to the original function into the “else” block as follows:635

1 Ret = function(Args); // is transforms into:

2 Ret = (t reaches threshold) ? exhandling_function(Args)

3 : function(Args);

Then, RT-Trust inserts another invocation before the “if-then-else” blocks640

to calculate the number of observed violations of the given real-time constraint

(i.e., “t” in the above code snippet). Finally, the inserted code logic can au-

tomatically switch between the original function and the exception handling

function, which can be specified by the developer or generated by RT-Trust

as a default option.645

6. Inter-World Communication: Code Generation & Transformation

The partitioning process divides the program’s IR into the trusted and regu-

lar parts. Our partitioning strategy is function-based: CPI-dependent functions

execute in the trusted partition, while all other functions execute in the regular

25

one. The TEE isolation mechanisms make it impossible to directly invoke CPI650

functions running in the trusted partition. However, each TEE provides spe-

cial communication channels that can be accessed through environment-specific

APIs. Hence, RT-Trust replaces the direct CPI function invocations with

communication through the TEE channels for both OP-TEE and SGX.

For OP-TEE, RT-Trust first generates an RPC client stub (for the normal655

world) and a server stub (for the secure world). The client stub passes the

function’s parameters and its unique ID, which identifies the function to execute

in the secure world. The server stub receives this information and invokes the

corresponding CPI function in the trusted partition. For SGX, RT-Trust

generates a proxy for each CPI functions and an Enclave Definition Language660

(EDL) file that provides metadata for all the CPI functions. By passing the

generated EDL file as input to the Edger8r tool [34], developers then generate

the required SGX communication logic for all interactions between the regular

and trusted parts. For both OP-TEE and SGX, RT-Trust redirects the direct

invocation of a CPI function to its RPC stub (for OP-TEE) or its proxy function665

(for SGX).

6.1. Generating RPC stubs for OP-TEE

RT-Trust generates RPC stubs based on the developer’s configuration in

annotation rpc and paramlen. The argument <type> of rpc specifies which un-

derlying delivery mechanism (i.e., shared memory or socket) to generate. This670

delivery mechanism also depends on the actual TEE implementation in place.

To exchange data between the normal and secure worlds, OP-TEE provides 4

shared memory buffers, used as the delivery mechanism. However, RT-Trust

must marshal/unmarshal function parameters to and from these buffers. This

explicit parameter marshaling makes the generated code suitable for any com-675

munication mechanism.

The client stub includes four code sections: 1) prologue initializes the TEE

context and opens the communication session, 2) epilogue closes the session

and finalizes the context, 3) marshaling allocates memory space and marshals

26

the function’s parameters, and 4) the RPC function communicates between the680

normal and secure worlds by calling TEE API methods TEEC_InvokeCommand. Cor-

respondingly, the server stub also includes four code sections: 1) the entry points

of opening and closing the communication session, 2) unmarshaling unmarshals

the received data, 3) a dispatcher that receives invocations and data from the

client stub, and forwards it to corresponding CPI wrapper functions, and 4) the685

wrapper functions receive the data from the dispatcher and invoke the actual

CPI functions in the trusted partition.

During the code generation, RT-Trust checks the arguments <encryption>

and <compression> of annotation rpc. If the developer specifies that <encryption>

or <compression> is needed, RT-Trust encrypts and compresses the data after690

the marshaling phase in the client stub, and decrypts and decompresses the data

before unmarshaling phase in the server stub. Although RT-Trust uses existing

open source libraries for encryption and compression, developers can switch

to using different implementations. Further, when generating the marshaling

component for the client stub, RT-Trust checks the paramlen to determine how695

much memory to allocate.

For ease of portability, all generated code is compliant with the C language

specification, without any custom extensions. Furthermore, all the referenced

libraries are open source and plug-in replaceable. Finally, all the TEE APIs in

the generated code conform to the Global Platform Specification of TEE. Thus,700

developers can either directly use the generated code for the trusted execution

or extend that code in order to meet some special requirements.

6.2. Generating proxy functions and EDL file for SGX

Based on the partitionable functions’ information in the PFG, RT-Trust

generates an EDL file, assembling the declarations of trusted functions into the705

“trusted” block, and that of regular functions invoked from the trusted part in

a zigzag pattern into the “untrusted” block. Most importantly, for each pointer

parameter in both the trusted and untrusted function blocks, RT-Trust checks

the paramlen annotation to generate the EDL attributes that determine the size

27

of pointer-based parameters. For each function containing struct parameters,710

RT-Trust generates a complete definition of each struct in the EDL file.

After that, RT-Trust generates a proxy function file to initialize/deallocate the

communication channel and to handle the return values for each CPI function.

Finally, RT-Trust executes the Edger8r tool to generate the required SGX

communication logic for this partitioning scenario.715

6.3. Redirecting Function Calls

As CPI functions are moved to the secure world, their callers need to be

redirected to invoke the original function’s RPC stubs (for OP-TEE) or proxy

functions (for SGX) instead. RT-Trust exhaustively examines all function in-

vocation instructions, locates the ones invoking the CPI functions, and replaces720

the callee’s name to the CPI function’s RPC stub or proxy function. Since CPI

functions and their RPC stubs / proxy functions share the same signature, no

other changes are necessary:

1 Ret = original_function(Args); // is transformed into:

2 Ret = RPC_function(Args); // for OP−TEE725

3 Ret = un_function(Args); // for SGX

Now, the original function calls become RPC or proxy function invocations

that end up calling the partitioned CPI functions in the secure world. As per the

transformation of exception handling in Section 5.3, the original function can be730

specified to handle exceptions. That is, if the violations of real-time constraints

reach the threshold, the inserted exception handling logic can automatically

change back to invoking the original function rather than the function in the

secure world:

1 Ret = RPC_function(Args); //is transformed into:735

2 // for OP−TEE:

3 Ret = (reach threshold) ? original_function(Args) : RPC_function(Args);

4 // for SGX:

5 Ret = (reach threshold) ? original_function(Args) : un_function(Args);
740

28

6.4. Data Encoding Protocols

The normal and secure worlds are represented by distinct system compo-

nents, running in separate address spaces. The inter-process communication

facility, through which the worlds interact with each other, require that all the

data passed between them be encoded as an array of bytes. RT-Trust has to be745

able to encode the regular part’s data structures into this array of bytes, while

the corresponding trusted part has to read these data structures from the array

once it is transferred to the secure world. This problem is not new, and multiple

marshaling mechanisms [35] have been introduced, including major framework

platforms, such as CORBA [36] and gRPC [37]. For SGX, the Edger8r Tool750

parameterized with an Enclave Definition Language (EDL) file [38] automati-

cally generates the required marshaling/unmarshaling logic. However, OP-TEE

provides no such marshaling/unmarshaling facilities. To solve this problem,

RT-Trust provides a custom marshaling framework that not only generates

the required marshaling/unmarshaling logic for the parameters of CPI func-755

tions, but also introduces a novel space-efficient encoding for data collections.

Given that TEE is frequently used as a secure data storage, this ability to en-

code data collection parameters space-efficiently increases the applicability of

RT-Trust.

Figure 5 shows how RT-Trust differently encodes parameters that are:760

a) primitive types (e.g., int, char, double), and b) complex type (e.g., struct,

union). The encoding represents all data as a byte array, and when storing

both primitive and complex data, it starts with the same header that contains

the total len (the total length of all the entries in this encoding), and num

(the total number of items in the encoded collection) fields. These fields are765

both stored into a 4 bytes integer. The following entries differ depending on

the encoded type. For primitive types, RT-Trust then stores the size of the

encoded data type, which is then followed by the actual data content. For

complex types, RT-Trust first stores the type header: the total len (the

total length of all the members in this type), and num (the total number of770

members in this type) fields, followed by the size of each member and its actual

29

content in turn. This scheme enables the receiving party to first extract the

total length to be able to allocate the amount of memory required to contain

the entire encoding. The transfer process needs to allocate memory twice: first

in the shared memory, which serves as a delivery vehicle to the secure world,775

and then in the trusted part to be able to store the transferred data.

Go-Between
Service

App
signature

Data

Policy
Trusted
Storage

Query

Persistence

TEE Internal
API

Service API

TEE Client Lib

Collection

Persistence

TEE

Kernel Space

Comparative data

Len1 Data1 Len2 Data2

Serialized data

Int
var

a)

b)

Total
Len Num Struct

var

Total
Len Num

...

...

Len Data

Figure 5: Format of Data Transmission.

7. Support for Partitioning Decision Making

As discussed in Section 4.4, for each function to partition, developers can

indicate whether it must abide by hard or soft real-time constraints. Hard con-

straints cannot be violated, while soft ones can tolerate some violations. Hence,780

upon detecting a possible violation of a hard constraint, RT-Trust rejects the

request to partition the offending function. For compliant CPI functions and

those violating only the soft constraints, RT-Trust calculates their Function

Performance Indicator (FPI) discussed next.

Function Performance Indicator. The Function Performance Indicator785

(FPI) reflects by how much a CPI function is expected to degrade its perfor-

mance once moved to the TEE. For each appropriate CPI function, RT-Trust

calculates and reports its FPI, upon which developers can determine whether

or not to move the function to TEE. FPI correlates two platform-independent

metrics: execution time loss (Lexe) and invocation interval loss (Linv). We cal-790

culate the expected performance degradation (Tafter/Tbefore), and then scale

30

and normalize it by applying log and tanh functions in turn4.

Finally, we calculate the maximum value of the normalized results to obtain

FPI :

Lexe = Tafter/Tbefore; (Tbefore, Tafter are execution times) (1)795

Linv = Iafter/Ibefore; (Ibefore, Iafter are invocation intervals) (2)

FPI = Max(tanh(log(Lexe)), tanh(log(Linv))) (3)

FPI shows the expected performance degradation factor. Notice that FPI

can take upon values that range between 0 and 1. We offer the following guide-

lines to developers, as based on the ranges of FPI values: between 0 and .25,800

the expected degradation is minimal ; between .26 and .75, the degradation is

medium; and between .76 and 1, the degradation is high. Which level of per-

formance degradation is acceptable for a given application scenario is up to the

developer to determine.

For example, a CPI function f is annotated to be moved to TEE. Before805

moving f, its execution time and invocation interval are 1 and 5 seconds, re-

spectively. After moving f to TEE, its time and interval become 10 and 20

seconds, respectively. Hence, f’s Lexe is 10/1 = 10, Linv is 20/5 = 4, resulting

in FPI of Max(tanh(log10), tanh(log4)) = 0.76. In other words, moving f to

TEE would increase its execution costs by a factor of 0.76. This performance810

degradation level is in the low range of high.

As a simple but intuitive metric, FPI provides a convenient heuristic that

can help developers determine whether moving a CPI function to the TEE would

continue satisfying the timeliness requirements. Under SGX and OP-TEE, FPI

can differ for the same CPI functions. So this metric can also help developers815

select the most appropriate TEE implementation for a given real-time system.

4The log and tanh functions are classic data analysis tools. Here we apply log to display

a large range of quantities in a small scale, and apply tanh to normalize the scaled result to

fall within the range of 0 to 1.

31

8. Evaluation

We answer the following research questions in our evaluation:

• Effort: How much programmer effort is saved by applying RT-Trust?

• Performance: What is the added performance overhead imposed by per-820

forming a RT-Trust profiling on a representative real-time system?

• Value: How effectively can RT-Trust determine whether a planned

refactoring would preserve the original real-time constraints?

• Accuracy: How accurately can our profiling infrastructure predict the

expected performance deterioration caused by a RT-Trust refactoring?825

• Limitations: What are some limitations of RT-Trust’s applicability?

8.1. Experimental Setup

To answer the evaluation questions above, we have concretely implemented

RT-Trust and assessed its various characteristics in a realistic deployment

scenario, whose experimental setup is as follows.830

Software and Hardware. RT-Trust integrates RTTAs with the public release

of Clang 4.0 and implements a series of LLVM Passes (e.g., code analysis, par-

tition, RPC stubs generation, profiling code insertion) in LLVM 4.0. Since our

memory consumption profiler relies on SoftBound, which runs only in LLVM 3.4,

RT-Trust implements a separate LLVM Pass that profiles the memory con-835

sumed by specified functions in that earlier LLVM version. For OP-TEE, the

benchmarks that we use for evaluating RT-Trust are set up on Raspberry Pi 3

(RPi3), running OP-TEE 3.1.0 on Linux version 4.6.3, 1.4GHz 64-bit quad-core

ARMv8 CPU, and 1 GB SDRAM. For SGX, the evaluation environment are

set up on a Dell workstation, running Intel SGX Linux 2.0 Release on Ubuntu840

16.04, 3.60GHz 8-core Intel i7-7700 CPU, with 31.2 GB memory.

32

Microbenchmarks and Realistic real-time system. Real-time systems that can

benefit from RT-Trust possess two characteristics: 1) have CPI-dependent

functions that should be protected in the secure world, and 2) have the execution

of these functions restricted by some real-time constraints.845

To establish the baseline for the performance behavior of such systems, we

choose several classic algorithms as our microbenchmarks, which are widely

used by existing real-time system. To mimic the real-time invocations of our

microbenchmarks, we have written custom unit test suites that exercise the

CPI-dependent functionality. For example, we simulate the invocation of a850

certain algorithm 50 times. The selected benchmarks are algorithmic in nature

and include CRC32, DES, RC4, PC1, and MD5. One can imagine realistic

application scenarios, in which the execution of these benchmarks needs to be

protected under real-time constraints. Because both OP-TEE and SGX support

only C code as running in the secure world, we select the C implementations of855

these algorithms provided by one of the LLVM test suites [39].

To ascertain the applicability of RT-Trust to an actual real-time system,

we apply it to secure two CPI tasks of an open-source autopilot PX4 (v1.8.0)

[40]: airspeed and waypoint computations.

Evaluation Design. As described in Section 5 and 6, developers can customize860

the implementations of profiling, EDL file and RPC stubs. However, we eval-

uate only the default options of using RT-Trust to establish its baseline per-

formance, thus not unfairly benefiting our implementation.

We evaluate programmer effort as the uncommented lines of code (ULOC):

1) those required to write RTTAs, 2) those automatically generated by RT-865

Trust, and 3) those that the developer is expected to fine-tune by hand (e.g.,

some source code may need to be modified to fix the violations of our partitioning

rules, or the parameter’s length in an RPC stub / EDL file may need to be

manually adjusted). Note that RT-Trust generates tight code, without any

redundancies or unnecessary features, very similar to what a programmer would870

write by hand. Hence, we argue that without RT-Trust, programmers would

33

be writing all the generated code by hand. By reporting on the size of this code,

we measure how much programmer effort RT-Trust saves.

To evaluate performance, we measure the overhead of RT-Trust’s profiling

for execution time, invocation interval, and memory consumption. For the for-875

mer two, RT-Trust provides different profiling libraries, applying TEE (i.e.,

OP-TEE or SGX) APIs in the secure world. So we evaluate them in both the

normal and secure worlds. For the latter, memory consumption should be pro-

filed before partitioning and generating RPC stubs or the EDL file. So, we

evaluate it only in the normal world.880

To evaluate value and accuracy, we first apply RT-Trust to profile the spec-

ified CPI functions before and after moving them to the secure world. Then, we

compare the results reported by the profiling of the original unpartitioned sys-

tem with respect to meeting the real-time constraints with that of its partitioned

version.885

However, the time measurement’s granularity in the OP-TEE time API dif-

fers from that in the SGX API, which reports the time-elapsed quantities only

at the seconds level of granularity. To effectively measure the CPI functions’

performance (at the milliseconds level) under SGX, we modified the source code

to repeat each benchmark 1000 times. Despite these repeats, we report the fi-890

nal results at the millisecond level of granularity by simply dividing them by

1000. By using the same measurement unit for both OP-TEE and SGX, our

experimental results provide a realistic comparison of the expected performance

degradation levels imposed by these TEE implementations. Also, by using FPI,

developers can effectively compare the performance of a given CPI function in895

different TEE implementations.

Further, by analyzing the performance results, we discuss 1) which procedure

causes the performance deterioration after moving the CPI function to the secure

world, 2) whether we can accurately predict the specified function’s performance

in the secure world by analyzing its performance in the normal world, and 3)900

which TEE implementation can better preserve the timeliness requirements of

our evaluation cases. To explain RT-Trust’s limitations by describing several

34

program cases that require a prohibitively high programmer effort to adjust the

generated RPC stubs.

8.2. Results905

We verify the correctness of RT-Trust by applying all its LLVM passes

(i.e., code analysis, transformation, and generation) to microbenchmarks. We

evaluate RT-Trust as follows.

Table 1: Programmer Effort (ULOC)

Algorithm RTTAs
Generate & Transform Adjust

OP-TEE SGX OP-TEE SGX

CRC32 5 388 87 0 0

PC1 4 344 73 6 6

RC4 3 292 61 3 1

MD5 3 364 86 3 1

DES 2 244 46 15 3

Effort. Table 1 shows the effort saved by applying RT-Trust. Generally, the

total number of ULOC automatically generated and transformed by RT-Trust910

(244 ∼ 388 ULOC for OP-TEE; 46 ∼ 87 ULOC for SGX) greatly surpasses those

required to manually annotate (< 5 ULOC) and modify (0 ∼ 15 ULOC) the

subject programs.

RT-Trust eliminates the need for the developer to write this code. In

other words, to apply RT-Trust, the developer adds a tiny number of ULOC,915

mainly as annotations and minor adjustments of generated code. The number of

annotations is directly proportional to the number of CPI functions. The manual

adaptations are required to remove program patterns that prevent RT-Trust

from successfully partitioning the code, and to support the pointer parameters

of CPI functions.920

Specifically, to move the 5 CPI functions of CRC32 to the secure world

requires exactly 5 ULOC of RTTAs. No manual adjustment is necessary, as

35

the code comes amenable to partitioning and no pointer parameters are used.

In contrast, 15 (for OP-TEE) and 3 ULOC (for SGX) are required to adjust

the generated RPC communication for DES, due to a CPI function’s pointer925

parameter pointing to a struct of two char arrays. In other words, after profiling

the amount of consumed memory, the developer needs to adjust the memory

allocation for marshaling/unmarshaling these pointer parameters. For PC1, 6

additional ULOC are needed to fix a violated global variable rule.

Overall, the number of generated and adjusted lines of code needed for SGX930

is generally fewer than those for OP-TEE. The reason is that, for SGX, RT-

Trust only needs to generate an EDL file to construct the communication

channel, while the developer only needs to modify the size or count modifiers in

the EDL file to adjust the amount of memory allocated for the pointer param-

eters.935

Table 2: Overhead of RT-Trust profiling (ms)

Algorithm
Execution Time Invocation Intervals Memory

Normal Secure Normal Secure Parameter Local

OP-TEE 0.442 144 0.418 139
0.051 0.053

SGX 0.2 52 0.212 25.5

Performance. Table 2 reports on the overhead of RT-Trust profiling, which

captures and calculates the execution time, invocation intervals, and memory

consumption. Recall that RT-Trust profiles systems before and after refac-

toring them. The before mode estimates whether the refactored system would

continue meeting real-time constraints, while the after mode compares the es-940

timated execution characteristics with those performed on TEE hardware (OP-

TEE on a Raspberry Pi3 and SGX on a Dell workstation). Hardware environ-

ments heavily impact the profiling overhead, with an order of magnitude dif-

ference: for OP-TEE, ≈ 0.4ms in the normal world vs. ≈ 140ms in the secure

world. For SGX, ≈ 0.2ms in the normal world vs. ≈ 50ms in the secure world.945

36

This drastic performance difference is mainly due to the differences between

the efficiency of standard Linux system calls and their TEE counterparts. For

example, the standard gettimeofday is more efficient than either TEE_GetREETime

in the OP-TEE or sgx_get_trusted_time in the SGX.

The heavy performance overhead of trusted execution prevents the profiling950

of real trusted system operation. When estimating memory consumption, the

overhead of capturing the memory allocated for local variables and the pointer

parameters never exceeds 0.06ms. However, the overall overhead depends on

the total number of local variables and pointer parameters. For example, if

a function allocates memory for n variables, the total overhead would be ≈955

0.053 ∗n (ms). Thus, to prevent the profiling overheads from affecting the real-

time constraints, the RT-Trust profiling is best combined with the system’s

testing phase.

Table 3: Value and Accuracy of RT-Trust (ms)

Alg. Comm.
Execution Time Invocation Interval Memory (bytes)

Before After Before After Parameter Local

CRC32 253.17
∣∣∣ 28.91 1.150

∣∣∣ 0.21 1.3
∣∣∣≈ 0.0 1.240

∣∣∣ 0.23 269
∣∣∣ 29.15 40 92

PC1 273.38
∣∣∣ 29.03 68.22

∣∣∣ 7.64 13
∣∣∣ 8.95 68.10

∣∣∣ 8.10 314
∣∣∣ 37.67 32 22

RC4 236.96
∣∣∣ 29.62 500.52

∣∣∣ 32.89 447
∣∣∣ 66.00 506.95

∣∣∣ 33.19 705
∣∣∣ 97.10 240 1144

MD5 177.83
∣∣∣ 30.90 267.43

∣∣∣ 49.72 254
∣∣∣ 49.35 267.62

∣∣∣ 51.08 446
∣∣∣ 78.71 20000 316

DES 201.99
∣∣∣ 28.84 24.18

∣∣∣ 2.51 32
∣∣∣ 3.18 24.30

∣∣∣ 2.55 224
∣∣∣ 31.56 528 72

airspeed 256.35
∣∣∣ 32.87 ≈ 0.0

∣∣∣ 0.01 ≈ 0.0
∣∣∣ ≈ 0.0 50.16

∣∣∣ 53.75 305.0
∣∣∣ 83.29 12 12

waypoint 264.96
∣∣∣ 32.38 0.400

∣∣∣ 0.05 0.460
∣∣∣ ≈ 0.0 500.75

∣∣∣ 505.98 773.67
∣∣∣ 533.32 40 40

Value and Accuracy. Table 3 shows the results of profiling the CPI functions,

with the profiling overhead subtracted. The value before “
∣∣∣” is the results for the960

OP-TEE, and after “
∣∣∣” is that for the SGX. For the execution time, generally,

the time consumed by our micro-benchmarks and the CPI PX4 functions in the

secure world (“After” column) is similar to that in the normal world (“Before”

column). Hence, moving the CPI functions to TEE should not deteriorate their

performance. Thus, it is reasonable to estimate the performance in the secure965

world based on that in the normal world. However, the communication channel

37

between the normal and secure worlds slows down the invoked functions due to

the introduction of two time-consuming mechanisms: connection maintenance

to the secure world (e.g., initialize/finalize context, open/close session), and

invoking the partitioned functions in the secure world (e.g., allocate/release970

shared memory, marshal and unmarshal parameters).

Given a real-time deadline to complete the execution of a CPI function,

the post-refactoring profiling helps determine if the deadline is being met. The

source code for PX4’s airspeed calculation sets the execution timeout to 300

milliseconds. Since the maximum post-refactoring latency of 256.35 (in OP-975

TEE) is below this deadline, moving this CPI function to TEE preserves its

real-time constraints.

The time spent in the communication channel increases the invocation in-

tervals of our micro-benchmarks and the CPI PX4 functions. The micro-

benchmarks invoke functions consecutively in a loop. Thus, in the normal world,980

each function’s invocation interval (“Before” column of “Invocation Interval”)

is similar to its execution time (“Before” column of “Execution Time”). How-

ever, in the secure world, these invocation intervals increase, becoming similar

to the time consumed by Communication (“Communication” column) plus the

time in the secure world (“After” column of “Execution Time”). For the PX4985

autopilot, which computes the airspeed and next waypoint values every 50ms

and 500ms, respectively, the time spent in the communication channel increases

these invocation intervals to 305ms (≈ 256.35(communication) + 0(execution

time) +50) and 773.67ms (≈ 264.96(communication) + 0.46 (execution time)

+500) in OP-TEE, and to 83.29ms (≈ 32.87(communication) + 0(execution990

time) +50) and 553.32ms (≈ 32.38(communication) + 0(execution time) +500)

in SGX. Hence, the introduced remote communication between the normal and

secure worlds is the performance bottleneck of trusted execution.

The memory consumption profiling helps determine which functions can be

run in the secure world. Based on the profiled memory consumed, develop-995

ers can increase the size of TEE’s shared memory. For example, if the TEE’s

memory size is limited to 10 ∗ 1024 bytes, and the MD5’s char pointer param-

38

eter requires 20000 bytes, to run MD5 in the secure world requires modifying

the TEE hardware configuration. The PX4 CPI functions (i.e., airspeed and

next waypoint), which perform numeric computations, require limited memory1000

(i.e., for the double / float parameters / variables).

9. Discussion

In this section, we first discuss the limitations of TEE implementations and

RT-Trust. Then after comparing the OP-TEE with the SGX, we discuss their

most suitable usage scenarios.1005

9.1. Limitations

TEE Limitations. Table 4 shows the limitations of the OP-TEE and

the SGX. For language support, the trusted part for the OP-TEE can only be

written in C; that for the SGX can be written in both C and C++, while the

communication channel between the trusted and untrusted parts can be written1010

only in C. For memory allocation, the OP-TEE has no fixed size limit, with

the upper bound becoming the amount of physical memory. In contrast, the

maximum size of the SGX’s protected memory is limited by the system BIOS

with 64MB or 128MB as the typical value. Besides, neither the OP-TEE nor

the SGX provides any support for multi-threading in the secure world. That1015

is, one cannot spawn a thread (e.g., by using pthreads) inside the secure world.

Furthermore, both TEEs re-implement their special versions of the standard

system and C/C++ libraries. For example, the printf implementation of the

OP-TEE cannot print float or double values. Similarly, the SGX provides neither

strcpy nor strcat, instead requiring that developers use the provided strncpy and1020

strncat instead [41].

RT-Trust Limitations. For OP-TEE, consider the scenario of passing a

struct pointer to the specified function. The struct pointer is a linked list that

has 100 elements. Each element has a char pointer as the data field. In that

case, developers need to modify more than 100 ULOC in the generated RPC1025

39

Table 4: TEE Limitations

Limitations OP-TEE SGX

Language C C/C++

Memory no limit hard limit

Threading no no

Sys./lang. APIs special version special version

stubs to allocate the correct memory size for the marshaling and unmarshaling

operations. In other words, the more complex pointer-based data structures

are, the greater the programming effort is required to adapt generated code.

Thus, the utility of RT-Trust diminishes rapidly for refactoring functions with

complex pointer parameters.1030

For the SGX, RT-Trust requires that developers write specialized logic to

marshal/unmarshal such complex pointer parameters. If the size of a pointer-

based parameter happens to be larger than the limit set by the system BIOS,

developers need to do extra work. First, modify the source code to divide the

parameter data into several smaller parts and then write the required code to1035

marshal/unmarshal the divided data to be transferred across the normal and

secure worlds.

For both OP-TEE and SGX, RT-Trust restricts CPI functions from hav-

ing function pointer parameters. Further, RT-Trust rejects the refactoring

requests in which a CPI function assigns function pointers within its body.1040

By inspecting the AllocaInst instructions during the static analysis phase, RT-

Trust locates function pointers in the bodies of CPI functions. Upon detecting

the presence of a function pointer, RT-Trust raises a partition failure. Besides,

sometimes dynamically allocated objects can significantly differ in size depend-

ing on input. Hence, systems must be profiled with typical input parameters.1045

40

Table 5: FPI of OP-TEE and SGX

Algorithm OP-TEE SGX

CRC32 0.982 0.973

PC1 0.581 0.6

RC4 0.142 0.435

MD5 0.218 0.205

DES 0.756 0.803

9.2. Choosing between OP-TEE or SGX

Table 5 shows each micro-benchmark’s Function Performance Indicator (FPI)

for the OP-TEE and the SGX. Overall, the FPI values are comparable for both

TEEs in all benchmarks. The faster the execution before moving to the TEE,

the larger the FPI value (i.e., more performance degradation). The reason is1050

that if a function runs fast (e.g., 1.15 ms for CRC32), the additional costs of

the communication channel (i.e., 253.17 ms for CRC 32) dominate the total ex-

ecution time. Another concern is the execution latencies in the secure world. In

the case of RC4, moving the CPI functions to the SGX doubles their execution

time. However, after moving the same functions to the OP-TEE, the execution1055

time stays similar (as shown in Table 3). Hence, RC4’s FPI for the SGX (i.e.,

0.435) is larger than that for the OP-TEE (i.e., 0.142). To sum up, developers

should always use the TEE with the smallest FPI value. However, if a CPI

function’s execution time is much smaller than the time taken by the commu-

nication channel, then both the OP-TEE and the SGX impose a comparable1060

high-performance degradation.

10. Related Work

RT-Trust is related to DSLs for real-time systems, execution profiling,

application partitioning, and code refactoring for trusted execution.

DSLs for real-time systems: Real Time Logic (RTL) formalizes real-time1065

execution properties [42]. Subsequent DSLs for real-time systems include Hume

41

that helps ensure that resource-limited, real-time systems meet execution con-

straints [43]. Flake et al. [44] add real-time constraints to the Object Constraint

Language (OCL). Several efforts extend high-level programming languages to

meet real-time execution requirements [45, 46, 47]. RT-Trust’s RTTAs can also1070

be seen as a declarative DSL for real-time constraints, albeit to be maintained

when the original real-time system is refactored to protect its CPI functionality.

Execution Profiling: Several existing dynamic profiling tools, such as Pin

tool [8], gperftools [9], and Gprof [48], ascertain program performance behav-

ior. However, Pin and gperftools require that developers manually add profiling1075

probes. Further, to profile program in TEE, one would have to pre-deploy their

dependent libraries, which may be incompatible with particular TEE implemen-

tations. RT-Trust differs by automatically inserting profiling probes into the

specified functions. Further, it estimates TEE-based execution characteristics

without any pre-deployment.1080

Application Partitioning: J-Orchestra partitions the Java bytecode of a cen-

tralized application into a distributed application [49]. Given programmer an-

notations, Swift transforms a web application into a secure web application,

in which the server-side Java part and the client-side JavaScript part interact

with each other via HTTP [50]. ZØ compiles annotated C# code of a central-1085

ized application into a distributed multi-tier version to improve confidentiality

and integrity, as directed by an automatically produced zero-knowledge proof

of knowledge [51]. By enforcing a dynamic information flow control mechanism,

Fission automatically and securely splits a JavaScript program into the client

and server parts [52]. Pyxis automatically partitions database-backed applica-1090

tions into the application server and database parts [53]. Yang et al. optimize

the code partitioning of mobile data stream applications [54].

Code refactoring for trusted execution: PtrSplit partitions C-language

systems, while automatically tracking pointer bounds, thus enabling the au-

tomatic marshaling and unmarshaling of pointer parameters in RPC commu-1095

nication [3]. Senier et al. present a toolset that separates security protocols

into several isolated partitions to fulfill security requirements [55]. Rubinov et

42

al. leverage taint analysis to automatically partition Android applications for

trusted execution [56]. TZSlicer automatically detects and slices away sensitive

code fragments [57]. Lind et al.’s source-to-source transformation framework1100

extracts subsets of C programs to take advantage of Intel SGX enclaves [58].

As compared with these works, RT-Trust not only supports the correct

and automatic partitioning of legacy C code, but it also takes the real-time per-

formance implications of the partitioning into account. By means of its profiling

infrastructure and the FPI metric, RT-Trust predicts the degree to which a1105

requested partitioning would decrease the system’s real-time performance and

also informs developers how to select between TEE implementations.

11. Future Work and Conclusion

One future work direction is to reduce the programmer effort required to

provide the code for marshaling and unmarshaling complicated struct pointers1110

with unknown bounds information. Another direction in this area is to auto-

matically detect which functions are CPI-dependent and need to be protected

in the secure world. Finally, we plan to experiment with symbolic analysis as

another way of estimating the performance of refactored systems.

We have presented RT-Trust that provides a fully declarative meta-program-1115

ming model with RTTA, static and dynamic analyses for determining whether

the suggested partitioning strategy is reasonable, and whether the partitioned

system would comply with the original real-time constraints, and an automated

refactoring that transforms the original system while generating custom RPC

communication and exception handling code. Our approach automatically refac-1120

tors real-time systems with CPI-dependent functions for trusted execution un-

der real-time constraints. The evaluation results of applying RT-Trust to

micro-benchmarks and a drone autopilot indicate the promise of declarative

meta-programming as a means of reducing the programmer effort required to

isolate CPI under real-time constraints.1125

43

Acknowledgements

The research is supported by the NSF through the grants #1650540 and #1717065.

References

[1] OP-TEE, Open portable trusted execution environment, https://www.

op-tee.org/ (2018).1130

[2] V. Costan, S. Devadas, Intel SGX explained., IACR Cryptology ePrint

Archive 2016 (086) (2016) 1–118.

[3] S. Liu, G. Tan, T. Jaeger, Ptrsplit: Supporting general pointers in auto-

matic program partitioning, in: Proceedings of the 2017 ACM SIGSAC

Conference on Computer and Communications Security, ACM, 2017, pp.1135

2359–2371.

[4] GlobalPlatform Device Technology, TEE internal core API specifi-

cation, https://www.globalplatform.org/specificationsdevice.asp

(June 2016).

[5] GlobalPlatform Device Technology, Trusted user interface API, https:1140

//www.globalplatform.org/specificationsdevice.asp (June 2013).

[6] GlobalPlatform Device Technology, TEE client API specification, https:

//www.globalplatform.org/specificationsdevice.asp (June 2010).

[7] Intel, Intel software guard extensions (Intel SGX) SDK for linux,

https://download.01.org/intel-sgx/linux-2.2/docs/Intel_SGX_1145

Developer_Reference_Linux_2.2_Open_Source.pdf (2018).

[8] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney, S. Wal-

lace, V. J. Reddi, K. Hazelwood, Pin: building customized program anal-

ysis tools with dynamic instrumentation, in: Acm sigplan notices, Vol. 40,

ACM, 2005, pp. 190–200.1150

44

https://www.op-tee.org/
https://www.op-tee.org/
https://www.op-tee.org/
https://www.globalplatform.org/specificationsdevice.asp
https://www.globalplatform.org/specificationsdevice.asp
https://www.globalplatform.org/specificationsdevice.asp
https://www.globalplatform.org/specificationsdevice.asp
https://www.globalplatform.org/specificationsdevice.asp
https://www.globalplatform.org/specificationsdevice.asp
https://www.globalplatform.org/specificationsdevice.asp
https://download.01.org/intel-sgx/linux-2.2/docs/Intel_SGX_Developer_Reference_Linux_2.2_Open_Source.pdf
https://download.01.org/intel-sgx/linux-2.2/docs/Intel_SGX_Developer_Reference_Linux_2.2_Open_Source.pdf
https://download.01.org/intel-sgx/linux-2.2/docs/Intel_SGX_Developer_Reference_Linux_2.2_Open_Source.pdf

[9] Google Inc., gperftools, https://github.com/gperftools/gperftools

(2018).

[10] Y. Liu, K. An, E. Tilevich, RT-trust: automated refactoring for trusted ex-

ecution under real-time constraints, in: Proceedings of the 17th ACM SIG-

PLAN International Conference on Generative Programming: Concepts1155

and Experiences, ACM, 2018, pp. 175–187.

[11] Department of Defense, Critical program information (CPI) identifica-

tion and protection within research, development, test, and evaluation

(RDT & E), http://www.secnav.navy.mil/ig/Lists/Instructions%

20Links/DispForm.aspx?ID=15 (2015).1160

[12] GlobalPlatform, GlobalPlatform, TEE system architecture, technical

report, https://www.globalplatform.org/specificationsdevice.asp

(2011).

[13] P.-A. Hsiung, Real-time constraints, in: Institute of Information Science,

Academia Sinica, Taipei, 2001.1165

[14] C. L. Liu, J. W. Layland, Scheduling algorithms for multiprogramming in

a hard-real-time environment, Journal of the ACM (JACM) 20 (1) (1973)

46–61.

[15] A. K. Reddy, P. Paramasivam, P. B. Vemula, Mobile secure data protection

using emmc rpmb partition, in: Computing and Network Communications1170

(CoCoNet), 2015 International Conference on, IEEE, 2015, pp. 946–950.

[16] CVE - Common Vulnerabilities and Exposures, https://cve.mitre.org/

(2019).

[17] CVE-2017-13997, https://cve.mitre.org/cgi-bin/cvename.cgi?

name=CVE-2017-13997 (2017).1175

[18] CVE-2017-12733, https://cve.mitre.org/cgi-bin/cvename.cgi?

name=CVE-2017-12733 (2017).

45

https://github.com/gperftools/gperftools
http://www.secnav.navy.mil/ig/Lists/Instructions%20Links/DispForm.aspx?ID=15
http://www.secnav.navy.mil/ig/Lists/Instructions%20Links/DispForm.aspx?ID=15
http://www.secnav.navy.mil/ig/Lists/Instructions%20Links/DispForm.aspx?ID=15
https://www.globalplatform.org/specificationsdevice.asp
https://cve.mitre.org/
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-13997
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-13997
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-13997
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-12733
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-12733
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-12733

[19] CVE-2018-8922, https://cve.mitre.org/cgi-bin/cvename.cgi?name=

CVE-2018-8922 (2018).

[20] CVE-2018-1219, https://cve.mitre.org/cgi-bin/cvename.cgi?name=1180

CVE-2018-1219 (2018).

[21] CVE-2017-7493, https://cve.mitre.org/cgi-bin/cvename.cgi?name=

CVE-2017-7493 (2017).

[22] CVE-2018-6412, https://cve.mitre.org/cgi-bin/cvename.cgi?name=

CVE-2018-6412 (2018).1185

[23] CVE-2016-9103, https://cve.mitre.org/cgi-bin/cvename.cgi?name=

CVE-2016-9103 (2016).

[24] CVE-2015-8944, https://cve.mitre.org/cgi-bin/cvename.cgi?name=

CVE-2015-8944 (2015).

[25] CVE-2017-5239, https://cve.mitre.org/cgi-bin/cvename.cgi?name=1190

CVE-2017-5239 (2017).

[26] CVE-2017-17672, https://cve.mitre.org/cgi-bin/cvename.cgi?

name=CVE-2017-17672 (2017).

[27] CVE-2017-1500, https://cve.mitre.org/cgi-bin/cvename.cgi?name=

CVE-2017-1500 (2017).1195

[28] CVE-2017-6094, https://cve.mitre.org/cgi-bin/cvename.cgi?name=

CVE-2017-6094 (2017).

[29] CVE-2017-2704, https://cve.mitre.org/cgi-bin/cvename.cgi?name=

CVE-2017-2704 (2017).

[30] The Clang Team, Attributes in Clang, https://clang.llvm.org/docs/1200

AttributeReference.html (2018).

[31] GNU, Using the GNU compiler collection (GCC), http://gcc.gnu.org/

onlinedocs/gcc/Attribute-Syntax.html (2018).

46

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-8922
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-8922
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-8922
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-1219
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-1219
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-1219
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-7493
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-7493
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-7493
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-6412
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-6412
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-6412
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-9103
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-9103
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-9103
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-8944
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-8944
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-8944
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-5239
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-5239
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-5239
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-17672
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-17672
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-17672
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-1500
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-1500
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-1500
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-6094
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-6094
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-6094
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-2704
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-2704
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-2704
https://clang.llvm.org/docs/AttributeReference.html
https://clang.llvm.org/docs/AttributeReference.html
https://clang.llvm.org/docs/AttributeReference.html
http://gcc.gnu.org/onlinedocs/gcc/Attribute-Syntax.html
http://gcc.gnu.org/onlinedocs/gcc/Attribute-Syntax.html
http://gcc.gnu.org/onlinedocs/gcc/Attribute-Syntax.html

[32] J. M., I. R., Intel software guard extensions part 3: De-

sign an application, https://software.intel.com/en-us/articles/1205

software-guard-extensions-tutorial-series-part-3 (2016).

[33] S. Nagarakatte, J. Zhao, M. M. Martin, S. Zdancewic, Softbound: Highly

compatible and complete spatial memory safety for C, ACM Sigplan Notices

44 (6) (2009) 245–258.

[34] Intel, The Edger8r tool, https://software.intel.com/en-us/1210

sgx-sdk-dev-reference-the-edger8r-tool (2018).

[35] W. Tansey, E. Tilevich, Efficient automated marshaling of C++ data struc-

tures for MPI applications, in: Parallel and Distributed Processing, 2008.

IPDPS 2008. IEEE International Symposium on, IEEE, 2008, pp. 1–12.

[36] S. Vinoski, CORBA: integrating diverse applications within distributed het-1215

erogeneous environments, IEEE Communications magazine 35 (2) (1997)

46–55.

[37] Google Inc., gRPC a high performance, open-source universal RPC frame-

work, https://grpc.io (2017).

[38] Intel, Enclave definition language file syn-1220

tax, https://software.intel.com/en-us/

sgx-sdk-dev-reference-enclave-definition-language-file-syntax

(2018).

[39] Mirror of official LLVM git repository, https://github.com/

llvm-mirror/test-suite (2018).1225

[40] PX4 Dev Team, PX4, http://px4.io/ (2018).

[41] Intel, Intel software guard extensions SDK -

string functions, https://software.intel.com/en-us/

sgx-sdk-dev-reference-string-functions (2018).

47

https://software.intel.com/en-us/articles/software-guard-extensions-tutorial-series-part-3
https://software.intel.com/en-us/articles/software-guard-extensions-tutorial-series-part-3
https://software.intel.com/en-us/articles/software-guard-extensions-tutorial-series-part-3
https://software.intel.com/en-us/sgx-sdk-dev-reference-the-edger8r-tool
https://software.intel.com/en-us/sgx-sdk-dev-reference-the-edger8r-tool
https://software.intel.com/en-us/sgx-sdk-dev-reference-the-edger8r-tool
https://grpc.io
https://software.intel.com/en-us/sgx-sdk-dev-reference-enclave-definition-language-file-syntax
https://software.intel.com/en-us/sgx-sdk-dev-reference-enclave-definition-language-file-syntax
https://software.intel.com/en-us/sgx-sdk-dev-reference-enclave-definition-language-file-syntax
https://github.com/llvm-mirror/test-suite
https://github.com/llvm-mirror/test-suite
https://github.com/llvm-mirror/test-suite
http://px4.io/
https://software.intel.com/en-us/sgx-sdk-dev-reference-string-functions
https://software.intel.com/en-us/sgx-sdk-dev-reference-string-functions
https://software.intel.com/en-us/sgx-sdk-dev-reference-string-functions

[42] F. Jahanian, A. Goyal, A formalism for monitoring real-time constraints1230

at run-time, in: Digest of Papers. Fault-Tolerant Computing: 20th Inter-

national Symposium, IEEE, 1990, pp. 148–155.

[43] K. Hammond, G. Michaelson, Hume: a domain-specific language for real-

time embedded systems, in: International Conference on Generative Pro-

gramming and Component Engineering, Springer, 2003, pp. 37–56.1235

[44] S. Flake, W. Mueller, An OCL extension for real-time constraints, in: Ob-

ject Modeling with the OCL, Springer, 2002, pp. 150–171.

[45] Y. Ishikawa, H. Tokuda, Object-oriented real-time language design: Con-

structs for timing constraints, Vol. 25, ACM, 1990.

[46] G. Bollella, J. Gosling, The real-time specification for Java, Computer1240

33 (6) (2000) 47–54.

[47] N. Gehani, K. Ramamritham, Real-time Concurrent C: A language for

programming dynamic real-time systems, Real-Time Systems 3 (4) (1991)

377–405.

[48] S. L. Graham, P. B. Kessler, M. K. Mckusick, Gprof: A call graph execution1245

profiler, in: ACM Sigplan Notices, Vol. 17, ACM, 1982, pp. 120–126.

[49] E. Tilevich, Y. Smaragdakis, J-orchestra: Automatic Java Application

Partitioning, in: European conference on object-oriented programming,

Springer, 2002, pp. 178–204.

[50] S. Chong, J. Liu, A. C. Myers, X. Qi, K. Vikram, L. Zheng, X. Zheng, Se-1250

cure web applications via automatic partitioning, ACM SIGOPS Operating

Systems Review 41 (6) (2007) 31–44.

[51] M. Fredrikson, B. Livshits, Zø: an optimizing distributing zero-knowledge

compiler, in: Proceedings of the 23rd USENIX conference on Security Sym-

posium, USENIX Association, 2014, pp. 909–924.1255

48

[52] A. Guha, J.-B. Jeannin, R. Nigam, J. Tangen, R. Shambaugh, Fis-

sion: Secure dynamic code-splitting for JavaScript, in: 2nd Summit on

Advances in Programming Languages (SNAPL 2017), Schloss Dagstuhl-

Leibniz-Zentrum fuer Informatik, 2017.

[53] A. Cheung, S. Madden, O. Arden, A. C. Myers, Automatic partitioning of1260

database applications, Proceedings of the VLDB Endowment 5 (11) (2012)

1471–1482.

[54] L. Yang, J. Cao, Y. Yuan, T. Li, A. Han, A. Chan, A framework for par-

titioning and execution of data stream applications in mobile cloud com-

puting, ACM SIGMETRICS Performance Evaluation Review 40 (4) (2013)1265

23–32.

[55] A. Senier, M. Beck, T. Strufe, Prettycat: Adaptive guarantee-

controlled software partitioning of security protocols, arXiv preprint

arXiv:1706.04759.

[56] K. Rubinov, L. Rosculete, T. Mitra, A. Roychoudhury, Automated par-1270

titioning of Android applications for trusted execution environments, in:

Software Engineering (ICSE), 2016 IEEE/ACM 38th International Confer-

ence on, IEEE, 2016, pp. 923–934.

[57] M. Ye, J. Sherman, W. Srisa-an, S. Wei, Tzslicer: Security-aware dynamic

program slicing for hardware isolation, in: 2018 IEEE International Sym-1275

posium on Hardware Oriented Security and Trust (HOST), IEEE, 2018,

pp. 17–24.

[58] J. Lind, C. Priebe, D. Muthukumaran, D. O’Keeffe, P. Aublin, F. Kelbert,

T. Reiher, D. Goltzsche, D. Eyers, R. Kapitza, et al., Glamdring: Auto-

matic application partitioning for Intel SGX, in: USENIX ATC, 2017.1280

49

	Introduction
	Background
	Critical Program Information (CPI)
	Trusted Execution Environment (TEE)
	Real-Time Constraints
	Security Risks

	Solution Overview
	Software Development Process
	Code Transformation and Generation

	Meta-programming Model
	General Syntax
	Code Partition Annotation
	Code Generation Annotations
	Profiling Annotations
	RTTA Dependencies
	RTTA in Action

	Analyses for Real-Time Compliance
	Static Analysis
	Dynamic Analyses
	Analyzing Time Constraints
	Memory Consumption Profiling

	Exception Handling

	Inter-World Communication: Code Generation & Transformation
	Generating RPC stubs for OP-TEE
	Generating proxy functions and EDL file for SGX
	Redirecting Function Calls
	Data Encoding Protocols

	Support for Partitioning Decision Making
	Evaluation
	Experimental Setup
	Results

	Discussion
	Limitations
	Choosing between OP-TEE or SGX

	Related Work
	Future Work and Conclusion

