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Abstract—As the trusted computing base (TCB) unnecessarily
increases its size, the performance and security of Trusted Execu-
tion Environments (TEE) can deteriorate rapidly. Existing solu-
tions focus on placing only the necessary program parts in TEE,
but neglect the numerous cases of legacy software with misplaced
TEE-based non-sensitive code. In this paper, we introduce a new
type of software refactoring—TEE Insourcing—that identifies
and migrates non-sensitive code out of TEE. We present TEE-
DRUP, the first semi-automated TEE Insourcing framework
whose process comprises two phases: (1) a variable sensitivity
analysis designates each variable as sensitive or non-sensitive;
(2) a compiler-assisted program transformation automatically
moves the functions that never operate on the sensitive variables
out of TEE. Developers can participate to verify and confirm
sensitive variables, and specify additional non-sensitive functions
to migrate. The evaluation results of TEE-DRUP on real-world
programs are encouraging. TEE-DRUP distinguishes between
sensitive and non-sensitive variables with satisfactory accuracy,
precision, and recall — all of their actual values are greater than
80% in the majority of evaluation scenarios. Further, moving
non-sensitive code out of TEE improves system performance,
with the speedup ranging between 1.35 and 10K. Finally, TEE-
DRUP’s automated program transformation requires only a
small programming effort.

Index Terms—TEE, Security Analysis and Transformation

I. INTRODUCTION

A soaring number of computing devices continuously col-
lect massive amounts of data (e.g., biometric ids, geolocations,
and images), much of which is sensitive [1]. Sensitive data and
code processing them are the target of many data disclosure
and code tampering attacks [2]–[7]. An increasingly popular
protection mechanism isolates sensitive code and data from
the outside world1 in a trusted execution environment (TEE)
(e.g., SGX [8] and OP-TEE [9]). However, as increasing
volumes of code run in TEE, not all of that code is sensitive,
so the trusted computing base (TCB) grows unnecessarily,
causing performance and security issues. When it comes to
performance, prior research identifies the communication be-
tween TEE and the outside world as a performance bottleneck
that can consume the majority of execution time [10]. For
example, numerous function invocations, entering or leaving
TEE, trigger a large volume of in/out communication, slowing
down the entire system [11]. When it comes to security,
prior works [10], [12]–[16] move programmer-specified data
or functions, even the entire system (e.g., Graphene [17],
Haven [18], and SCONE [19]) to TEE. As the trusted com-
puting base (TCB) grows larger, so does the resulting attack

1The normal (or outside) and secure worlds are standard TEE terms. In the
secure world, code is protected; in the normal world, code is unprotected and
compromisable (see § II-A).

surface. Since security vulnerabilities increase proportionally
to the code size [20], any vulnerable or malicious functions
inside TEE can compromise the security of the entire system.
For example, memory corruption attacks can exploit vulner-
abilities within a TEE-based function2 [21], [22]. One—thus
far overlooked—approach that can increase the performance
and reduce the attack surface of TEE-based execution is to
move the unnecessary code (i.e., non-sensitive code) from the
TEE to the outside world.

To address this problem, we introduce a new software
refactoring—TEE Insourcing—that inverses the process of
“execution offloading” to reduce the TCB size of legacy
TEE projects. TEE Insourcing (1) identifies sensitive data; (2)
detects TEE-based code not operating on sensitive variables,
and moves that code to the outside world. Each of these
phases presents challenges that must be addressed. Moving
sensitive code and data to the outside world would compromise
security, so all moving targets must be identified reliably in
terms of accuracy, precision, and recall. To correctly move
code out of TEE, a developer must be familiar with both
the TEE programming conventions and the program logic, a
significant burden to accomplish by hand. However, existing
automated program transformation techniques cannot alleviate
this burden.

We present TEE-DRUP, the first semi-automated TEE
Insourcing framework, whose novel program analysis and
transformation techniques help infer sensitive code to isolate in
TEE, discover the misplaced (non-sensitive) code that should
not be in TEE, and automatically move the discovered non-
sensitive code to the outside world. In phase (1) above, an
NLP-based variable sensitivity analysis designates program
variables as sensitive or non-sensitive, based on their textual
information. Guided by this designations, developers then ver-
ify and confirm which variables are indeed sensitive. In phase
(2), via a declarative meta-programming model, a compiler-
assisted program analysis and transformation (a) identifies
those TEE-based functions that never operate on developer-
confirmed sensitive variables as non-sensitive functions; de-
velopers then confirm the ones to move to the outside world;
(b) modifies the system’s intermediate representation (IR) to
move the developer-confirmed non-sensitive functions to the
outside world.

Based on our evaluation, TEE-DRUP distinguishes be-
tween sensitive and non-sensitive variables with satisfying
accuracy, precision, and recall (the actual values are greater

2A TEE-based function is deployed and executed in TEE.
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Fig. 1: TEE-DRUP overview

than 80% in the majority of evaluation scenarios). Further,
moving non-sensitive code out of the TEE always improves
the overall system’s performance (the speedup factor ranges
between 1.35 and 10K). Finally, TEE-DRUP’s automated
program analysis and transformation require only a small
programming effort.

The contribution of this paper is as follows:
1) TEE Insourcing, a novel approach to reducing the TCB

size, concretely realized as TEE-DRUP that offers:
• a variable sensitivity analysis that designates pro-

gram variables as sensitive or non-sensitive by using
NLP, assisting developers in verifying and confirm-
ing (non-)sensitive variables.

• a compiler-assisted automated program transforma-
tion that moves TEE-based non-sensitive functions
to the outside world to satisfy various requirements.

2) An empirical evaluation of TEE-DRUP’s (a) cor-
rectness in distinguishing between sensitive and non-
sensitive variables, (b) effectiveness in improving system
performance, and (c) low programming effort.

II. BACKGROUND & SOLUTION OVERVIEW

We first introduce the technical background, and then ex-
plain TEE-DRUP’s application by example.

A. Definitions and Enabling Technologies

Sensitive & non-Sensitive: “Sensitive” describes all security-
related objects (e.g., passwords, keys, memory addresses) and
operations (e.g., access control, encryption, memory access-
ing), with the rest considered “non-sensitive”. These objects
and operations correspond to what SANS3 refers to as “secu-
rity terms” [23]. Sensitive data (or variables) store security-
related information or are referenced in security-related oper-
ations. Sensitive code (or functions) operates on sensitive data.
Normal & Secure worlds: The normal and secure worlds are
standard TEE terms. In the secure world, code is protected,
while in the normal world unprotected. We also use the term
“the outside world” to refer to “the normal world”, and “TEE”
to refer to “the secure world.”
Intel’s Software Guard Extensions (SGX) [8]: To protect the
integrity and confidentiality of sensitive code and data, SGX
isolates a protected memory region—enclave—for trusted
execution. Hence, for a system to use SGX, its code must

3An authoritative source for information security certification/research.

be divided into trusted and untrusted parts, with the former
running inside enclaves and the latter outside. To preserve
the enclave’s trusted execution, the untrusted part can invoke
enclave functions (i.e., ECalls) only via SGX-provided com-
munication channels. TEE-DRUP’s design/implementation
focuses on SGX, due to the maturity of SGX implementation.
Natural language processing (NLP): NLP techniques for
processing natural languages have been used for identifying se-
curity information in program code [24]–[26]. TEE-DRUP’s
NLP-based sensitivity analysis designates sensitive variables
that should be protected in TEE.
LLVM [27] is a mature compiler infrastructure used for pro-
gram analysis at the source-code and binary levels. For source-
code analysis, LLVM features libtooling tool [28],
while for binary analysis, it features Pass. TEE-DRUP
customizes libtooling tool to extract the variable infor-
mation from a system’s source code, and introduces a series of
new Passes that moves non-sensitive functions outside TEE.
B. TEE-DRUP Process

Figure 1 shows TEE-DRUP’s three main phase: (1) ana-
lyzing the sensitivity of variables (i.e., Info Collector,
Pre-processor, and Sensitivity Analyzer), (2)
identifying non-sensitive functions in TEE (i.e., Taint
Analyzer), and (3) migrating the non-sensitive functions out
of TEE (i.e., Function Insourcer).

Phase (1) first applies Info Collector to obtain each
variable’s textual descriptions (i.e., variable name, type name,
function, and file path). Then, it encodes the collected infor-
mation as a textual vector for further analysis. Then Phase (1)
applies Pre-processor to merge duplicated vectors and
remove unnecessary information. Finally, Phase (1) applies
Sensitivity Analyzer that by means of NLP computes
each variable’s sensitivity level from its textual attributes (e.g.,
name, type, path) and designates sensitive variables. With the
designated variables at their disposal, developers then verify
and confirm which variables are indeed sensitive (step-a).

Phase (2) applies Taint Analyzer, which takes as input
developer-specified sensitive variables and outputs which TEE-
based functions are non-sensitive. Its dataflow-based traver-
sal detects those TEE-based functions that never operate on
sensitive variables. With the reported non-sensitive functions
at their disposal, developers then verify and confirm which
functions are to be moved to the outside world (step-b).

Phase (3) applies Function Insourcer to automat-
ically adjust the TEE-related call interfaces, remove their
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TEE metadata4, and merge developer-confirmed non-sensitive
functions with those in the code outside of TEE. It is through
these steps that TEE-DRUP keeps the sensitive functions in
TEE, while moving the non-sensitive functions out.

Fig. 2: Example code

C. A Motivating Example

Consider the following example that demonstrates how
TEE-DRUP analyzes and modifies the code of a legacy
system that uses TEE. This example’s code is adapted from
standard official samples of SGX-based code [29], with the
side-by-side code snippets appearing in Figure 2. On the left,
function main is in the outside world, while in the right corner,
there are two TEE-based functions (i.e., get_airspeed and
log_erros) invoked from main. Within main, get_airspeed

and log_errors invoke the corresponding TEE-based func-
tions with the same name, an example of “normal world
counterparts” of TEE-based functions. The SGX terminology
refers to trusted execution regions as “enclaves” and TEE-
based functions as “ECalls.” An enclave is identified by its
“enclave ID” (i.e., global_eid on line 7). To invoke ECalls, an
enclave ID should be passed as the first parameter (lines 18 and
21). Further, to obtain ECalls’ return value, a pointer should
be provided as another extra parameter (lines 17,20). More-
over, initialization (initialize_enclave, line11) and cleanup
(sgx_destroy_enclave, line24) functions must be called both
before and after interacting with a TEE-based function.

The aforementioned three phases work as follows. For each
variable (i.e.,airspeed, error_des, and global_eid), Info
Collector extracts and encodes their textual attributes
into corresponding attribute vectors. Then, Pre-processor
removes the global_eid’s vector, as it only identifies a SGX
enclave. After that, Sensitivity Analyzer marks the
sensitivity of airspeed as 65, and that of error_des as 3.
Based on these sensitivity level, Sensitivity Analyzer
designates airspeed as sensitive variable while error_des

as non-sensitive variable. Having examined the designations,

4Metadata is used by TEE-related call interfaces only (e.g., enclave’s IDs in SGX).
5Here “6” and the following numbers in this Section are the example value

(not real) for demonstrating our solution only.

the developer verifies and confirms airspeed as the sensitive
variable. Using the sensitive variable (i.e., airspeed) as the
source, and TEE-based functions (i.e., get_airspeed and
log_erros) as the sink, Taint Analyzer discovers that
only get_airspeed manipulates the sensitive variable (i.e.,
airspeed on line 18). Thus, Taint Analyzer generates
a function list, in which log_erros is marked as “non-
sensitive.” The developer then verifies and confirms log_erros
to be moved outside TEE. Function Insourcer extracts
log_erros into a program unit executing outside the enclave,
and redirects its callers to invoke the extracted code instead6.

D. Assumptions and Scope

We assume 1) attackers would not be able to modify the
source code to mislead TEE-DRUP’s sensitivity and taint
analyses; and 2) developers name variables, functions, and
files descriptively. For example, it is highly probable that a
variable named “password” would represent some password-
related information. In fact, major IT companies, including
Google, IBM, and Microsoft, have established coding con-
ventions requiring that program identifiers be named intu-
itively [30]–[32]. Regular code reviews often come up with
suggestions how to rename identifiers to more meaningfully
reflect their roles and usage scenarios [33]. In addition, since
major TEE implementations (e.g., SGX and OP-TEE) only
work with the C/C++ language, we only support C/C++
projects. We plan to extend this support to managed and multi
language projects as a future work direction.

III. ANALYZING VARIABLES SENSITIVITY

To help developers identify sensitive variables, TEE-DRUP
offers a variables sensitivity analysis that determines how
and which textual information of a variable to collect (III-
A,B); how to determine a variable’s sensitivity level from the
collected textual information (III-C); and how to compute a
threshold to designate variables as (non-)sensitive (III-D).

A. Collecting Information

1) Extracting Program Data. Info Collector traverses
the given system’s abstract syntax tree (AST) to locate variable
nodes and collect their textual information (i.e., the variable’s
name, its type’s name, its enclosing function’s name, and
the source file’s path). 2) Encoding Variable Data. Info
Collector encodes the extracted variables’ information
into a format that facilitates the subsequent operations for
analyzing sensitivity. To that end, each variable is associated
with the textual-info records, which stores the variable’s textual
description. Table I shows an encoded record for variable
const int * the_password.

TABLE I: Data Format: const int * the_password;

id var. name type function filepath
7 the password int config src/wifi config.h

6If all functions are moved outside the TEE, Function Insourcer
will remove the unnecessary metadata and functions (i.e., global_eid,
initialize_enclave and sgx_destroy_enclave) to outside world.
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B. Pre-processing

1) Filtering Records. Since in a realistic system, not all
variables need to be analyzed, Pre-processor identifies
and removes those variable records that are used exclu-
sively within SGX enclaves (e.g., enclave IDs) and whose
symbolic names are too short (e.g., variables named i or
j). In addition, Pre-processor merges duplicate records.
2) Splitting Identifiers. Since variables’ textual information
can follow dissimilar naming conventions, such as delimiter-
separated (e.g., the pass word) or letter case-separated (e.g.,
thePassword), the identifiers containing convention-specific
characters are split into separate parts (e.g., thePassword and
the password would become identical arrays of “the” and
“password.”) 3) Removing Redundancies. Since some parts of
identifiers carry no useful sensitivity information (e.g., “the”
in “the password”), Pre-processor performs dictionary-
based removal of identifier parts that correspond to preposi-
tions (e.g., in, on, at), pronouns, articles, and tense construction
verbs (i.e., be, have, and their variants). In our example,
“password” will be retained, but “the” will be removed.

C. Computing Sensitivity Levels

Although it is difficult to reliably determine and quantify
a variable’s sensitivity, Sensitivity Analyzer offers an
NLP-based algorithm that provides a reasonable approxima-
tion. In short, TEE-DRUP computes the similarity between a
word in question and the words in the dictionary of security
terms. The similarity then determines the word’s most likely
sensitivity level.

1) Rationales. When computing the similarity, the variable’s
name, its type, function and file path are taken into account
as guided by the following rationales [34]:

a) Sensitive variables tend to appear in certain functions
and files. For example, the variable “the password” is more
likely to be sensitive if it is referenced by the “login” function
in the “login.c” file rather than the “unit test” function in the
“test cases.c” file.

b) Composite data type (e.g., struct/class/union) can in-
dicate variables’ sensitivity. For example, as our evaluation
demonstrates (§ V), many such variables in our evaluation
subjects (e.g., struct passwd in project “su-exec”) have type
names that reveal their variables’ sensitivity.

c) Semantic-connections are closer for adjacent rather than
nonadjacent words. That is, if an identifier appears alongside a
known sensitive identifier, it is likely to be semantically related
to sensitive information. For example, the variable “key” in the
path “mapping/a/b/encryption/xx.c” should be more sensitive
than in the path “encryption/a/b/mapping/xx.c”, because “key”
is closer to “encryption” in the former case. That is, the
variable “key” is more likely to store the key of encryption
rather than the key of key-value pairs for mapping.

d) A variable’s textual information impacts its sensitivity
level to varying degrees. Our variable sensitivity analysis
involves four kinds of textual info: variable name, type name,
function name, and file path, each of which impacts its vari-
able’s sensitivity level dissimilarly. The variable name has the

highest impact, followed by type and function names, with file
path the lowest. When computing a variable’s sensitivity level,
each of its textual info components is weighted accordingly.

Algorithm 1: TEE-DRUP’s variable labeling.
Input : textual info list (i.e., variables’ textual info

list)
dict (i.e., a collection of security terms)
λ (i.e., the attenuation rate for file paths)

Output: variables with sensitivity levels

1 Function: get similarity(word array, dict, λ):
2 sim ← 0
3 foreach word : word array do
4 txt ← find most similar(word, dict)
5 d ← similarity(word, txt)
6 increase sim by d ∗ λ
7 end
8 avg ← average(sim)
9 return avg

10 Function: calculating main(textual info list, dict):
11 foreach var : textual info list do

/* for variable name. */
12 var name ← get var name(var)
13 sim var ← get similarity(var name,dict, 1)

/* for type name. */
14 type name ← get type name(var)
15 sim type ← get similarity(type name,dict, 1)

/* for function name. */
16 func name ← get func name(var)
17 sim func ← get similarity(func name,dict, 1)

/* for file path. */
18 path ← get path(var)
19 sim path ← get similarity(path,dict, 0.8)

20 var.sensitivity ←
(sim var + sim func ∗ 0.8 + sim type ∗ 0.8 + sim path ∗ 0.5)

21 end

2) Sensitivity Computation Algorithm. Algorithm-1’s func-
tion calculating_main outputs variables with sensitivity
levels, given the variables’ textual information list (i.e.,
textual_info_list) and a security term dictionary (i.e.,
dict). First, each variable’s textual information is obtained
(line 11). Then, identifiers are extracted from the pre-
processed variable’s name, type, function, and file path (lines
12,14,16,18). Next, function get_similarity computes the
similarity between an extracted identifier and known security
terms (lines 13,15,17,19). Each extracted identifier is broken
into constituent words (e.g., error_des is broken into error,
des). For each word, the algorithm computes the similarity to
the most closely similar known security term (lines 4 and 5).
The similarities are accumulated (line 6), averaged (line 8), and
returned (line 9). An attenuation rate, λ, differentiates adjacent
vs. nonadjacent semantic connections. Next, the obtained
similarities are weighted as follows: “1”–variable name, “0.8”–
type and function names, and “0.5”–file path. These weighted
similarities are summed into the variable’s sensitivity (line 20).

3) An Example: Following the example in § II-C, con-
sider how Sensitivity Analyzer would calculate the
sensitivity levels for variables in the input textual-info list.
The textual-info list contains variable error_des with type
struct ReportInfo, accessed in function report_for, defined
in “report/log.c”. Pre-processor creates the arrays of
error_des’s name, type, function, and file path to [error,
des], [report, info], [report], and [report, log], respec-
tively. After that, Sensitivity Analyzer first obtains the
first word error from error_des’s name array [error, des],
finds its closest security term (assume the term is “excep-
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tion”) from the dictionary of security terms, and calculates
the similarity value (assume the value is 0.8). Afterwards,
Sensitivity Analyzer obtains the second word des’s
similarity (assume the value is 0.2). Then, error_des’s vari-
able name array [error, des]’s similarity is calculated as 0.5
(i.e., (0.8 + 0.2)/2). Similarly, Sensitivity Analyzer
computes the similarities of error_des’s type, function, and
path arrays. Finally, the computed similarities are weighted
and summed into error_des’s sensitivity level.

Note that, when calculating the similarity for the file path
array, Sensitivity Analyzer will scale the result by λ
(the value is 80% by default). That is, for error_des’s file
path array [report, log], Sensitivity Analyzer scales
the similarity of report by 80%. If the original similarity of
report is 1, the it will be 0.8 after the scaling (i.e., the original
value multiplies λ: 1 ∗ 80%).

4) Implementing Sensitivity Analysis. Our algorithm com-
putes the similarity with Word2vec, a Google’s word embed-
ding tool [35]. The dictionary of security terms (i.e., security-
related objects and operations) comes from SANS, recognized
as one of the largest and trusted information security training,
certification, and research sources [23]. Further, with TEE-
DRUP, developers can add their own words to the dictionary
of security terms. For example, a developer can add “airspeed”
as a security term, or customize the attenuation rate (i.e., λ),
thus potentially improving the accuracy. Despite its heuristic
nature and inability to handle certain corner cases, TEE-
DRUP’s Sensitivity Analyzer turned out surprisingly
accurate in generating meaningfully sensitivity levels that can
guide the developer, as we report in § V.

D. Designating Variables as (non-)Sensitive

Given the computed sensitivity levels of the program vari-
ables, developers then designate variables as either sensitive
or non-sensitive. TEE-DRUP provides an automatic designa-
tion algorithm, inspired by the P-tile (short for “Percentile”)
thresholding method, a classic method that calculates the
threshold based on a given percentile [36]. Specifically, given
a percentage of program variables, if a variable’s sensitivity
is higher than the given percentage, TEE-DRUP designates
it as sensitive; if lower, non-sensitive. For example, given a
percentage “1%”, TEE-DRUP would designate the top 1%
variables as sensitive, while the bottom 1% as non-sensitive.
By default, TEE-DRUP recommends the percentages of 10%,
30%, and 50%. Note that, although our evaluation indicates
the effectiveness of our designation heuristic, it simply follows
empirical principles. Developers can always rely on other
mechanisms in search for higher accuracy.

IV. INSOURCING TEE-BASED FUNCTIONS

We first discuss how TEE-DRUP identifies which functions
to insource, and then describe the incourcing process:

1) Identifying non-sensitive functions. (a) Given TEE-
DRUP-designated sensitive variables, developers then man-
ually confirm and mark which ones are indeed sensitive and
warrant TEE protection. To mark these variables, TEE-DRUP

provides a custom annotation, sens. Given the developer-
annotated sensitive variables, TEE-DRUP then applies taint
analysis to automatically identify those TEE-based functions
that reference none of these variables, and as such should
be moved out of TEE to the normal world. (b) Given TEE-
DRUP-identified non-sensitive functions, developers confirm
which ones of them to insource via another custom annotation,
nonsens. This annotation signals to Function Insourcer
which functions to extract and migrate from the secure world
to the normal world. These custom annotations are referred to
as Insourcing Annotation (IA), designed and implemented to
follow the Clang annotation scheme [37] and GNU style [38].

2) Insourcing Process. Function insourcer moves
the relevant ECalls outside SGX in the following 3 steps:
¶ extract ECalls: by customizing an existing LLVM Pass
(GVExtractionPass), Function insourcer extracts the
annotated ECalls from the system’s TEE codebase and place
them in a separate binary file. · remove “enclave IDs”: since
ECalls’ normal world counterparts take “enclave ID” as the
first parameter, Function insourcer re-constructs these
callers’ parameter lists without the “enclave ID” parameter. ¸
construct call-chain: SGX’s programming restrictions require
that the code in the outside world provide a dedicated pointer
to store the values returned by ECalls. Hence, to pass the
returned value and construct the call-chain from the outside
caller to the extracted ECalls, Function insourcer cre-
ates a wrapper function to bridge the callers and the extracted
ECalls. That is, each caller invokes its wrapper function, which
in turn invokes the extracted ECall and returns the result.

1

32

3

Fig. 3: The TEE Insourcing Refactoring

Figure 3 shows an example of the aforementioned in-
sourcing process. The code snippet at the top is the call-
chain before insourcing. That is, the normal world counter-
part log_erros invokes its Ecall (int log_erros()), passing
global_eid (“enclave ID”) and error_des (the pointer to
the returned values) as parameters. The code snippet at the
bottom is the re-constructed call-chain after insourcing: in
the aforementioned step ¶ (i.e., extract ECalls), the ECall
error_des, extracted and placed in a separate file to be moved
to the outside world; step · removes the caller’s global_eid

parameter (i.e., remove “enclave IDs”); step ¸ creates func-
tion wrapper_log_erros (i.e., construct call-chain). The first
invoked function is the created wrapper_log_erros function,
which in turn invokes the extracted log_erros function,
whose returned value is assigned to the caller-provided pointer
error_des. As log_erros is moved from an SGX enclave
to the outside world, all the aforementioned invocations take
place in the outside world as well. After moving the anno-
tated ECalls to the outside world, Function Insourcer
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removes the “enclave ID” and initialization/cleanup functions
if no SGX enclave needs these parameters and functions.

V. EVALUATION

Our evaluation seeks to answer the following questions: Q1.
Correctness: Does our approach correctly identify sensitive
variables? Q2. Effectiveness: How does our approach affect
the system’s performance? Q3. Efforts: How much program-
ming effort it takes to perform TEE-DRUP tasks?

A. Environmental Setup

TEE-DRUP’s Info Collector uses Clang 6.0’s libtooling
tool. Preprocessor and Sensitivity Analyzer are
implemented in Python-2.7. Taint Analyzer, Function
Insourcer, and IAs are integrated with the public release of
LLVM 4.0. The TEE is Intel SGX for Linux 2.0 Release. To
calculate the word semantic similarity, we use Google’s official
pre-trained model (Google News corpus [39]). All experiments
are performed on a Dell workstation, running Ubuntu 16.04,
3.60GHz 8-core Intel i7-7700 CPU, with 31.2 GB memory.
Real-World Scenario & Micro-benchmarks. a) To evaluate
correctness, we selected real-world, open-source projects that
fit the following criteria: 1) must include C/C++ code, as
required by SGX; 2) must operate on sensitive data; 3) should
have a codebase whose size would not make it intractable to
manually check the correctness of TEE-DRUP’s designation
results. Based on these requirements, we selected 8 open-
source C/C++ projects whose codebases include at most 2K
variables, which covers diverse security and privacy domains
(“Domain” column in Table II).

b) To evaluate effectiveness and programming effort, we ap-
plied TEE-DRUP to the micro-benchmarks used in several re-
lated works, concerned with introducing TEE protection [40],
[41]. These micro-benchmarks comprise implementations of
commonly used cryptography algorithms (CRC32, DES, RC4,
PC1, and MD5), in use in numerous IoT and mobile systems.

TABLE II: Projects Information
Project Domain Code-base Info Variable Number

file num LoC total pre-proc no tests

GPS Tracker [42] GPS 76 62746 1993 1298 NA
PAM module [43] Authentication 4 709 66 28 NA
su-exec [44] Privileges 1 109 16 13 NA
mkinitcpio-ykfde [45] Encryption 3 1107 88 79 NA
Spritz Library [46] Encryption 1 614 138 126 NA
libomron [47] Health Care 7 1544 166 150 128
ssniper [48] Personal Info (SSN) 12 2421 618 285 253
emv-tools [49] Bank & Credit 37 9684 1104 995 862

B. Evaluation Design

1) Correctness: As shown in Table II, from each project,
we extracted all of its variables7, creating the initial dataset
(the “total” column). Then, we pre-processed the initial dataset
to remove invalid items and merge duplicated variables (the
“pre-proc” column). After that, we applied TEE-DRUP’s
sensitivity analysis to determine the sensitivity level of each
program variable, with the levels used to designate variables
as sensitive or non-sensitive. Finally, we requested a volunteer
(6+ years C/C++ experience) to manually label all variables’

7To manage the manual labeling effort, we considered only the variables
declared in the projects’ source code, omitting all system and library variables.

sensitivity for each project (i.e., 1 – sensitive, 0 – unsure, -1
– non-sensitive) and compared the result with what the TEE-
DRUP designated as sensitive/non-sensitive variables.

To demonstrate the relationship between p-tile and how
TEE-DRUP designates variables as sensitive/non-sensitive,
our evaluation used the 10%, 30%, and 50% percentages as p-
tile (see § III-D), and evaluated the correctness of designation
for each p-tile scenario. We also made use of the project-
provided test code in “libomron”, “ssniper”, and “emv-tools”,
whose variables are expected to be non-sensitive, to evaluate
whether the presence of this test code impacts our correctness
results. That is, running TEE-DRUP on these programs with
or without their test code should show dissimilar results (after
removing test code, # of variables is in the “no tests” column).

Metrics & Calculation. Since variables can be labeled as
“unsure” during a manual analysis, our evaluation metrics
comprise the unsure and miss rates in addition to accura-
cy/precision/recall. To calculate accuracy/precision/recall, we
measure the number of true/false positives and negatives8

among the TEE-DRUP-designated variables (non-designated
variables are not used for calculating accuracy/precision/re-
call). For the unsure rate, we measure the number of vari-
ables volunteer-labeled as “unsure” among the TEE-DRUP-
designated variables and all variables. For the miss rate, we
measure the number of volunteer-labeled sensitive variables
missing among the TEE-DRUP-designated variables.
2) Effectiveness: We annotated the micro-benchmarks’ major
functions placed in TEE as non-sensitive, and applied TEE-
DRUP’s Function Insourcer to move them back to the
normal world. We measured the system’s execution overhead
before and after the move.
3) Programming Effort: We estimated the TEE-DRUP-
saved programming effort by counting the uncommented lines
of code (ULOC) and computing the difference between the
amount of code automatically transformed and the number of
manually written IAs that it took. That is, TEE-DRUP save
programmer effort, as otherwise all code would have to be
transformed by hand. Without loss of generality, we assumed
that all IAs were default-configured.

C. Results

1) Correctness: Table III shows how correctly TEE-DRUP
designated sensitive/non-sensitive variables. Overall, among
the 33 independent evaluations in 11 different scenarios, TEE-
DRUP performed satisfactorily in accuracy (lowest:61.7%
highest:100%, 21 times>80%, never<60%), precision (low-
est:48.6% highest:100%, 23 times>80%, 3 times<60%),
and recall (lowest:65.9%, highest:100%, 25 times>80%,
never<60%). The p-tile value impacts these metrics: for small
p-tiles, e.g., 10%, only the variables with sensitivity scores
in top/bottom 10% are designated as sensitive/non-sensitive,

8true positives/negatives: human-labeled sensitive/non-sensitive variables
are designated as sensitive/non-sensitive; false positives: human-labeled non-
sensitive variables are designated as sensitive; false negatives: human-labeled
sensitive variables are designated as non-sensitive. Note that, human-labeled
unsure variables are not counted, which is quantified by “unsure rate.”
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resulting in high accuracy, precision, and recall. In contrast,
for large p-tiles (e.g., 50%), some variables with relatively
lower sensitivity scores are designated as sensitive, while
some variables with higher sensitivity scores as non-sensitive.
Hence, a large p-tile may lead to high false positives/negatives,
lowering accuracy, precision, and recall.

For the miss rate (the “Miss Rate” column): TEE-DRUP’s
miss rate is negatively correlated to p-tile. That is, the larger
the p-tile, the more variables are designated as sensitive, and
fewer sensitive variables missed, yielding lower miss rates.

For the unsure rate (the “Unsure Rate” column): (a) the
unsure rate of all variables (the “all vars” column) shows
the number of variables the volunteer labeled as “unsure”
among all variables, which represents the volunteer’s under-
standing level of the evaluation subject. (b) the unsure rate
of TEE-DRUP-designated variables (the “designated vars”
column) shows the number of variables the volunteer labeled
as “unsure” among the TEE-DRUP-designated variables,
which represents that a developer can refer to the TEE-
DRUP-designated sensitive variables when deciding whether
an “unsure” variable is sensitive. Overall, the unsure rates of
small and straightforward projects (e.g., “pam module”,“su-
exec”) are relatively lower than those of the complex and
large ones. Not surprisingly, the volunteer could easily rec-
ognize and correctly label the sensitive variables in small and
straightforward projects, but had a harder time performing the
same task in larger and more complex systems.

For the test code impact, excluding the test code increases
the correctness metric (see rows “with tests” and “no tests”
in Table III). That is, the volunteer labeled all the test code’s
variables as non-sensitive, but certain test variables’ identifiers
may mislead TEE-DRUP into designating them as sensitive
(e.g., variable “key” is tested by the test code in “ssniper”).

2) Effectiveness: Table IV shows the execution performance
of the micro-benchmarks (in microseconds µs). Taking as the
baseline the system’s TEE-based performance (“in-TEE” col-
umn), automatically moving code to the normal world sharply
decreases the execution time (“Move-outside” column). The
decreases are due to the eliminated overheads of setting-
up/cleaning enclaves and communication between the normal
world and TEE. The shorter is a subject’s execution time in
the normal world, the more pronounced is its performance
improvement (e.g., moving back DES to the normal world
increased its execution performance by a factor of 10K).

3) Programming Effort: Table V shows how much pro-
gramming effort it takes to use TEE-DRUP to move the
mirco-benchmarks to the normal world. Since we assumed
that all IAs were default-configured, the rest of the subjects
in our micro-benchmark suite share similar results. That is, to
automatically transform these mirco-benchmarks, developers
only add two lines of IAs to annotate per a non-sensitive
function. During the transformation, TEE-DRUP generates/-
transforms about 15 ULOC (including the IR and source code).
Finally, a developer needs to clean up the source code to
remove the SGX headers (e.g., “Enclave t.h”). Thus, with
TEE-DRUP, developers only need to specify the non-sensitive

functions, and manually remove some no-longer used headers.
TEE-DRUP performs all the remaining transformation and
generation tasks automatically.

TABLE III: Correctness
Project P-tile Accuracy Precision Recall Unsure Rate Miss Rate

designated vars all vars

GPS Tracker

10% 90.6% 93.8% 96.2% 67.3%
77.2%

70.8%
30% 88.1% 93.0% 94.0% 74.0% 33.1%
50% 84.1% 90.3% 91.4% 77.2% 8.6%

PAM module

10% 100% 100% 100% 0%
21.4%

78.6%
30% 92.3% 100% 88.9% 18.8% 42.9%
50% 72.7% 83.3% 71.4% 21.4% 28.6%

su-exec

10% 100% 100% 100% 0%
30.8%

66.6%
30% 100% 100% 100% 12.5% 0%
50% 88.9% 75% 100% 30.8% 0%

mkinitcpio-ykfde

10% 100% 100% 100% 50.0%
64.6%

61.1%
30% 90.0% 94.1% 94.1% 58.3% 11.1%
50% 78.6% 80.0% 88.8% 64.6% 11.1%

Spritz Library

10% 100% 100% 100% 50.0%
46.8%

74.5%
30% 97.3% 96.8% 100% 51.3% 41.2%
50% 82.0% 93.3% 82.4% 46.8% 17.6%

libomron (with tests)

10% 64.7% 57.1% 100% 43.3%
52.0%

69.2%
30% 61.7% 48.6% 100% 47.8% 34.6%
50% 66.7% 52.1% 96.2% 52.0% 3.8%

libomron (no tests)

10% 93.3% 91.7% 100% 42.3%
60.9%

57.7%
30% 93.8% 91.3% 100% 57.9% 19.2%
50% 82.0% 75.8% 96.2% 60.9% 3.8%

ssniper (with tests)

10% 84.8% 79.2% 100% 43.1%
51.6%

77.6%
30% 75.9% 85.4% 77.4% 54.1% 51.8%
50% 62.3% 70.9% 65.9% 51.6% 34.1%

ssniper (no tests)

10% 100% 100% 100% 42.0%
58.1%

76.5%
30% 85.1% 100% 80.0% 55.9% 52.9%
50% 72.6% 96.7% 68.2% 58.1% 31.8%

emv-tools (with tests)

10% 85.5% 92.0% 88.5% 65.5%
61.8%

69.3%
30% 72.0% 72.4% 76.7% 63.5% 40.7%
50% 65.5% 54.4% 78.7% 61.8% 21.3%

emv-tools (no tests)

10% 91.5% 100% 89.6% 65.7%
71.3%

71.3%
30% 79.2% 95.6% 76.3% 71.2% 42.0%
50% 70.4% 74.2% 78.6% 71.3% 21.3%

TABLE IV: Effectiveness (microseconds — µs)
Algorithm in-TEE Move-outside

DES 45601.1 2.4
CRC32 41374.9 252.1
MD5 92011.6 68193.4
PC1 50693.1 20190.1
RC4 111412.0 51312.5

TABLE V: Programming Effort (ULOC)
Algorithm IAs Generate & Transform Adjust

DES/CRC32/MD5/PC1/RC4 ≈2 ≈15 ≈1

D. Discussion

1) Correctness: Based on our results (Table III), TEE-
DRUP shows satisfying accuracy, precision, and recall, but
suffers from an unstable miss rate (lowest 0%, highest 78.6%).
This unstable rate is due to: (a) low p-tile numbers cause
TEE-DRUP to designate fewer variables, (b) variable may
not be named according to common naming convention (e.g.,
in “PAM module”, “pw” rather than “pwd” or “password”,
designates stored passwords), and (c) some identifiers may
not be included from our dictionary of security terms (e.g.,
because the dictionary does not include ‘ssn”, TEE-DRUP
omits variables “ssn*” in “ssniper” as sensitive).

To reduce the miss rates, we recommend that developers
select a suitable p-tile. In general, the larger the p-tile, the
lower the miss rates. However, if the p-tile is too large, too
many variables end up designated as sensitive/non-sensitive
with their accuracy/precision/recall calculated (the metric cal-
culation is detailed in § V-B-1), causing a low miss rate but
a high number of false positives/negatives and low accuracy/-
precision/recall (row “50%” in Table III). Also, developers can
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add additional domain terms (e.g., ssn) to the dictionary, so the
corresponding identifiers’ sensitivity scores would increase.
Besides, to further improve TEE-DRUP’s performance, we
recommend that developers exclude all testing functionality
before analyzing any project.

Further, our experiences with TEE-DRUP show that NLP
can be effective in determining variable sensitivity. Even with
a general NLP model and a common security term dictionary,
TEE-DRUP’s NLP technique computes variables’ sensitivity
accurately enough to make it a practical recommendation
system. By refining NLP models and term dictionaries, one can
increase both the accuracy and applicability of our technique.
2) Effectiveness: Our results illustrate how moving non-
sensitive functions to the normal world drastically increases
system performance. Hence, TEE-DRUP can improve real-
time compliance (e.g., a function failing to meet execution
deadlines). Besides, by reducing the attack surface, these
moves would also mitigate other TEE-based vulnerabilities
(e.g., buffer overflows in the secure world).
3) Programming Effort: To move our benchmarks to the
normal world, TEE-DRUP requires ≈3 ULOC (i.e., ≈2 for
IAs, ≈1 for adjusting). To manually reproduce the code trans-
formation/generation of TEE-DRUP would require modifying
≈15 ULOC. Although this number may seem like a reasonable
manual task, it is rife with significant hidden costs: (a)
understanding the source code; (b) manually locating Ecalls,
“Enclave id”, and the set up/clean functions; (c) ensuring that
all the manual transformations are correct. By automatically
insourcing code, TEE-DRUP eliminates all these costs.
4) Utility & Applicability: This work presents both a heuristic
for identifying sensitive/non-sensitive data and an automated
refactoring for moving out non-sensitive code out of TEE.
These contributions are independent of each other. It would
be impossible to create a heuristic that identifies sensitive/non-
sensitive data with perfect precision, as it would require ascer-
taining the actual program semantics with respect to security
and privacy. Hence, TEE-DRUP’s designation is intended to
simply assist developers in deciding which code are sensitive.
Even in the absence of a perfectly precise designation heuris-
tic, the automated TEE Insourcing refactoring presents value
to the developer by automating the tedious and error-prone
program transformations required to refactor out non-sensitive
code, even if developers identified such code by hand.
5) Miscellanea: For TEE-DRUP’s toolchain performance:
the time taken by program and data analyses tasks is rarely
a decisive factor that determines their utility and value, the
entire toolchain exhibits acceptable runtime performance. The
most time-consuming task—sensitivity computing—takes ≈10
minutes for the largest evaluation subject (i.e., GPS Tracker).
The remaining TEE-DRUP’s tasks complete in seconds.
6) Threats to validity: The internal validity is threatened by
our procedure that obtains the ground truth for sensitive vari-
ables. Since we evaluate with third-party real-world subjects,
it would be unrealistic to expect that our volunteers could
designate the variables in these subjects with perfect certainty.
To mitigate this threat, we apply the reported “unsure rate”

to quantify the reliability of results. The external validity is
threatened by evaluating with only eight third-party C/C++
projects and five cryptography micro-benchmarks used in prior
related works. Although used in real projects and containing a
wealth of sensitive variable scenarios, our evaluation subjects
cannot possibly encompass all possible cases that involve
sensitive variables. We plan to mitigate this threat by open-
sourcing TEE-DRUP, so fellow researchers and practitioners
could apply it to additional evaluation subjects.

VI. RELATED WORK
1) Semantics Resolution for Detecting Vulnerabilities: Since
textual information can expose sensitive data, potential se-
curity and privacy risks can be detected by resolving sen-
sitive data semantics. Independently implemented SUPOR
and UIPicker automatically identify sensitive user input by
applying NLP techniques on the extracted UI resources to
identify suspicious keywords [25], [26]. UiRef solves the same
problem while also resolving ambiguous words [50]. ICONIN-
TENT identifies sensitive UI widgets in Android apps by both
resolving textual labels and classifying icons [51]. Different
from these techniques, TEE-DRUP focuses on data as the
origin of vulnerabilities by identifying sensitive variables.
2) Reduce Trusted Computing Base (TCB): Singaravelu et al.
identify the problem of large TCBs and how to reduce them
in three real-world applications [52]. Lind et al. present an
automated partition tool, Glamdring, that partitions a system
by placing only the sensitive data and code in the TEE [15].
Similarly, RT-Trust and Ptrsplit automatically move developer-
specified functions to TEE to reduce TCB [10], [13]. Qian et
al. reduce the size of deployed binaries by developing RAZOR,
an automatic code-debloating tool [53]. Rubinov et al. use
FlowDroid’s taint analysis to track developer-specified data,
so only the relevant functions can be moved to TEE [12].
TEE-DRUP differs from these prior approaches by focusing
on (a) assisting developers in determining which sensitive data
and code should be protected in the TEE; (b) automatically
moving non-sensitive code to the outside world.

In summary, both the aforementioned approaches and TEE-
DRUP suffer from false positives/negatives. However, as a
recommendation rather than a decision-making system, TEE-
DRUP is not as impacted by these problems. It identifies
and presents potentially sensitive variables to developers, who
ultimately decide which variables must be protected in TEE.

VII. CONCLUSION
We presented TEE-DRUP, a semi-automated toolchain that

helps developers analyze realistic systems by automatically
designating program variables as sensitive/non-sensitive, with
satisfactory accuracy, precision, and recall. Developers then
confirm which variables are indeed sensitive. TEE-DRUP’s
automated refactoring reduces TCB, thus both improving
system performance and decreasing attack surface.
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[52] L. Singaravelu, C. Pu, H. Härtig, and C. Helmuth, “Reducing tcb
complexity for security-sensitive applications: Three case studies,” in
ACM SIGOPS Operating Systems Review, vol. 40, no. 4. ACM, 2006,
pp. 161–174.

[53] C. Qian, H. Hu, M. Alharthi, P. H. Chung, T. Kim, and W. Lee, “Razor:
A framework for post-deployment software debloating,” in 28th USENIX
Security Symposium (USENIX Security 19), 2019, pp. 1733–1750.

9


