
Flexible and Efficient In-Vivo Enhancement for Grid Applica tions

Dong Kwan Kim, Yang Jiao, Eli Tilevich
Center for High-End Computing Systems (CHECS)

Dept. of Computer Science, Virginia Tech
Blacksburg, VA 24061

{ikek70, jiaoyang, tilevich}@cs.vt.edu

Abstract

In a grid application, some requirements may change
while the execution is in progress. This paper presentsin-
vivo enhancement–updating running grid applications to
facilitate their perfective maintenance. Because applica-
tions in this domain are not only typically long-running, but
also time-consuming to deploy, we propose a dynamic up-
date technique that can change a running application flexi-
bly and efficiently. Specifically, this paper presents a novel
technique for dynamically updating grid applications de-
ployed on the Java Virtual Machine (JVM). Our technique
overcomes constraints of JVM HotSwap, a facility for re-
placing classes at runtime. While HotSwap precludes the
programmer from adding new methods and fields, chang-
ing the signatures of existing methods, and has no support
for transferring state between old and new objects, our ap-
proach effectively removes these constraints by rewriting
program bytecode. Further, the rewritten programs incur
only minimal performance overhead (less than 2% on aver-
age). We demonstrate the efficiency and extensibility of our
approach through micro and macro benchmarks, as well
as through a case study of dynamically updating a paral-
lel bioinformatics application.

1. Introduction

The behavior and performance of a distributed applica-
tion can only be fully ascertained in a production environ-
ment. This, in turn, could lead to a change in program re-
quirements. Grid applications are difficult to develop incre-
mentally, as they are often time-consuming to deploy. Thus,
the typicaltry-change-try againdevelopment cycle may not
fit well for applications in this domain. In particular, any
code change involves stopping the execution, changing the
program, re-deploying the changed program, and re-starting
the computation anew. In a distributed environment, all
these actions can be quite time-consuming and disruptive.

Besides this development model may not utilize expensive
computing resources most effectively, wasting valuable pro-
cessing time. To address these inefficiencies, a running ap-
plication could be updated dynamically, thus saving the pro-
grammer’s time and computing resources. With dynamic
updates, one could adapt a program for changed require-
ments, observing the results of the updates in almost real
time.

The raison d’être of high end computing is to reduce
time-to-discovery, the total time it takes from posing a prob-
lem to arriving to a solution. This metrics is the sum of the
time it takes to run an application and the time it takes to
develop and fine-tune it. To reduce time-to-discovery, this
paper presentsin-vivo enhancement–updating a distributed
application dynamically, after it has been deployed in its in-
tended execution environment. Since the ability to update
distributed grid applications dynamically can shorten their
development time, we argue that it should become an essen-
tial step in their development process.

This work is concerned with distributed
computationally-intensive applications that use the
JavaTMtechnology to operate seamlessly in a heterogeneous
environment. The Java technology has been successfully
applied to the domain of distributed parallel computation:
heterogeneous computational grids are commonly Java-
based [1]. The Java Virtual Machine (JVM) is one of the
most advanced virtual execution environments ported to a
multitude of different platforms.

The JVM features the HotSwap API [3], which replaces
loaded classes in a running application. However, the sig-
nature of a replaced class must remain the same, and only
method bodies can change. Thus, the programmer modi-
fying the swapped classes is significantly constrained. To
overcome these HotSwap constraints, allowing the pro-
grammer to update classes without restrictions, this paper
presents a novel bytecode rewriting and code generation ap-
proach, using the standard HotSwap to replace the changed
code in a running JVM. The flexible and efficient dynamic
updates make it possible to enhance a running application

at will. This, in turn, enables an incremental develop-
ment model for grid applications, thereby reducing time-
to-discovery.

The technical material presented in this paper makes the
following novel contributions:

• A new methodology that uses dynamic updates to re-
duce the time it takes to enhance grid applications.

• A novel proxy indirection technique suitable for
performance-sensitive applications due to its minimal
performance overhead.

• A binary rewriting technique that leverages the proxy
indirection to overcome limitations of JVM HotSwap,
without changing its API or runtime libraries.

The rest of this paper is structured as follows. Section
2 motivates this work through an example from the bioin-
formatics domain. Section 3 details our approach to en-
abling in-vivo enhancement of distributed computationally-
intensive applications. Section 4 evaluates the efficiency
and expressiveness of our approach. Section 5 compares
our approach with the existing state of the art. Section 6 dis-
cusses future work directions, and Section 7 presents con-
cluding remarks.

2. Motivating Example

Our motivating example is concerned with pairwise se-
quence alignment, a well-known problem in bioinformatics.
The use of computers has made it possible to answer a larger
spectrum of questions in biology. Most of these problems
are solved by representing a biological entity such as a gene
computationally and manipulating the resulting representa-
tion using a variety of algorithms.

To motivate the need for flexible dynamic updates in
in-vivo enhancement of distributed applications, we next
describe how the well-known Smith-Waterman algorithm
could be parallelized and developed incrementally to run
in an ad-hoc grid environment. The sequential version of
this algorithm [2] calculates a similarity score between two
sequences. A parallelization of this algorithm will align
an unknown sequence against an entire database of known
sequences, with the database partitioned among different
computational nodes. The resulting computation will fol-
low a simple Master Worker model, with the Master node
assigning tasks to the Worker nodes as well as collecting
and filtering the results. Specifically, the Master accepts
an unknown sequence as input and sends it to individual
Worker nodes. Each worker node aligns the unknown se-
quence against its portion of the partitioned database. The
sequences having the highest similarity scores (e.g., above
a given threshold) are then sent back to the Master. The

Master collects the results, sorts them, and reports the top-
ranked results to the user.

We would be amiss if we did not mention up front that
mature grid computing infrastructures often come with so-
phisticated simulators. These simulators make it possible
for the programmer to test a grid application on a single ma-
chine and get a realistic picture how the application would
work when deployed on the grid. Nevertheless, such sim-
ulators only come as a part of a mature grid infrastructure,
and would not be available for light-weight environments
such as ad-hoc grids using the JVM. Even if such a simula-
tor were available, parameterizing it with the exact informa-
tion about an ad-hoc grid would be a prohibitively-difficult
undertaking, on par with deploying and running the applica-
tion on the grid. Another capability of properly developed
grid applications is checkpointing, which allows restarting
an upgraded application without losing intermediate results.
Again, many ad-hoc grid applications may not include any
checkpointing functionality and thus could benefit from our
approach.

Thus, after creating an initial parallelization of the
Smith-Waterman algorithm described above, the program-
mer could deploy and test it in its intended deployment en-
vironment. One common difference between sequential ap-
plications and their parallelizations is that the parallelver-
sion produces much more output data. It is quite likely,
for example, that while in the sequential version of Smith-
Waterman algorithm, all the results could comfortably fit on
the same output window, in the parallel version, the results
would be more numerous. As a result, it is possible that the
output data in the parallel version could only be properly
examined, if they were saved to a disk file. Thus, the pro-
grammer may wish to change the piece of functionality that
simply dumps the results to standard output to write them
to a disk file instead.

It also may turn out that certain assumption made during
the design phase would no longer hold true. For example,
the programmer may have assumed that thefloat preci-
sion would be sufficient for representing similarity scores,
while after seeing the initial results realize that thedouble
precision is needed.

Finally, it may turn out that the implementation of the
alignment algorithm does not satisfy the expected perfor-
mance or accuracy requirements. A slight variation of the
algorithm could satisfy these requirements to a greater ex-
tent.

In-vivo enhancementmakes it possible to fine-tune and
troubleshoot a distributed application in its real deployment
environment, while sidestepping the inefficiencies of a typ-
ical upgrade cycle through flexible dynamic updates.

Unfortunately, the dynamic updates required to address
the change in requirements outlined above would be im-
possible with HotSwap. To address the insufficiencies

Targets Changes
Method Adding a new method

Removing an existing method
Adding formal arguments of a method
Removing formal arguments of a method
Changing the return type of a method
Changing method modifiers

Field Adding a new field
Removing an existing field
Changing the type of a field
Changing field modifier

Table 1: HotSwap Constraints (the addressed ones are shaded)

of HotSwap to support the utility and efficiency of in-
vivo enhancement, we present a novel binary rewriting
approach that transforms the bytecode of a distributed
computationally-intensive application. These transforma-
tions enhance the bytecode with the capabilities required
to enable flexible dynamic updates with the standard
HotSwap, but they do so while incurring only minuscule
performance overhead on the rewritten programs, as de-
tailed in Section 4. To validate the expressive power of
our approach, we dynamically update the Smith-Waterman
algorithm to address the deficiencies described above and
thoroughly document our experiences.

3. Enabling In-Vivo Enhancement

Our approach to in-vivo enhancement of grid applica-
tions leverages the facilities offered by the standard JVM
Hotswap API, which imposes serious constraints on what
kinds of changes can be made to the swapped classes. In
a previous publication [13], we have outlined our basic ap-
proach to overcoming these constraints. Next we summa-
rize the main principles underlying our approach and de-
scribe how we have perfected it to support grid applications.

3.1 HotSwap Constraints

The JVM HotSwap disallows any changes to the signa-
ture of a class: a swapped class has to contain the same
set of methods and fields as the currently deployed ver-
sion, and only method bodies can be changed. Whenever
the programmer tries to perform any of the updates listed in
the second column of Table 1 using the JVM HotSwap, the
JVM throws an exception.

Because in Java, one cannot assume one-to-one corre-
spondence between source files and their classes in byte-
code, complying with HotSwap restrictions can be nontriv-
ial. For example, a Java inner class is commonly trans-

+bar() : int

+getI() : int

+setI(in i : int) : void

Proxy_A

+bar() : int

+getI() : int

+setI(in i : int) : void

Super_A

-i : int

(Proxy Class)

(Virtual Superclass)

+bar() : int

A

-i : int

Bytecode
Transformation

Figure 1: Virtual superclass binary refactoring.

lated by addingsynthetic access methods to its enclos-
ing classes, so that the inner class could access their non-
public members. This translation strategy is likely to leave
the programmer unaware that a change to one class caused
the compiler to add methods to other classes, thus violating
the HotSwap constraint on adding new methods and render-
ing the enclosing classes unswappable.

3.2 Binary Refactoring for Proxy Indirec-
tion

Binary refactoring applies structural semantics-
preserving transformations to a program’s binary represen-
tation, with the goal of enabling its functional enhancement.
One of the most common binary refactorings in existence
is changing direct references into proxy references. Our
approach uses this refactoring to address limitations of
HotSwap described in Section 3.1. A common implemen-
tation of indirect referencing is a binary refactoring that
we call Virtual Interface1. Virtual Interface refactors the
bytecode of a class into proxy, interface, and implementa-
tion classes. The bytecode rewriter makes the client part of
the target version refer to the proxy class in the refactored
version. As we describe in Section 4.1, this indirection
style can incur between 8% and 44% performance over-
head, which is prohibitively high for performance-sensitive
applications.

As an alternative, we have created a novel technique for
introducing indirect referencing that we callVirtual Super-
class, which incurs only minuscule performance overhead
on the refactored programs. Our approach applies Virtual
Superclass to all application classes loaded into the JVM;
Figure 1 depicts the Virtual Superclass refactoring transfor-
mations. Every classA is changed to extend avirtual super-
classSuper A, with the virtual superclass being inserted

1The adjectivevirtual emphasizes the fact that the introduced interface
is not seen by the client program and is only used as an implementation
artifact. The client code never accesses the introduced “virtual” interface
directly.

Class A

Superclass

of A

Proxy of A

JVM

New

Superclass

of A

Helper

Classes

New

Superclass

of A

Proxy of A

JVM

Helper

Classes

New

Version of

Class A

Phase II : Replacement of Class A at runtime

(solid lines)

Phase I : Deployment of Class A

(dashed lines)

Class Difference

Finder

Virtual

Superclass

Generator

Proxy Class

Generator

Helper Class

Generator

HotSwapping

Figure 2: Supporting a full range of dynamic updates using HotSwap.

into the class’s inheritance hierarchy.2 Thus, the original
classA becomes a proxy for the virtual superclass, which
contains all the original method bodies and fields.

Another advantage of Virtual Superclass is its generality.
The existing state of the art in enabling proxy indirection
[10] creates subclass-based proxies, which have limitations
for final classes and methods. By contrast, Virtual Super-
class works foranyclass or method, as thefinalmodifier
does not constrain the creation of superclasses.

The performance efficiency of Virtual Superclass is ex-
plained by the sophisticated optimization capabilities of
modern JVMs, which can inline delegating method calls,
if the delegation does not involve dynamic dispatch. In
Figure 1, the call tosuper.bar can be effectively in-
lined by modern JVMs, thus completely eliminating any
indirection overhead in most cases. The call is trans-
lated into theinvokespecial bytecode instruction, re-
served for invoking constructors and methods in super-
classes. The delegating call in Virtual Interface uses
theinvokeinterface instruction, which implements a
form of dynamic method dispatch, and as such cannot be
safely inlined, though its performance has been improved
significantly in modern JVMs [5]. Thus, Virtual Superclass
leverages the low-level differences of bytecode instructions
to attain its performance advantages.

3.3. Flexible In-Vivo Enhancement with
HotSwap

To be able to use the standard HotSwap to replace classes
in a running JVM, our approach rewrites all the classes at
the bytecode level before deployment. It is these rewrites

2The virtual superclass is inserted for each class in the inheritance hi-
erarchy. Thus,A ext B⇒ A ext Super A ext B ext Super B.

that make it possible to change the signatures of replaced
classes, without violating the HotSwap constraints.

The first phase, illustrated in Figure 2, refactors all
the loaded classes at the bytecode level and generates
their corresponding virtual superclasses. The virtual su-
perclasses have actual methods implementing application-
specific logic and are swapped by the updating system.
Thus, the original code is rewritten into updateable soft-
ware, structurally different from the original version, be-
fore being deployed on a virtual machine. When the initial
program is changed, the programmer inputs the changed
classes to the updating system, which refactors them into
virtual superclasses and special helper classes. HotSwap
can then replace older class versions of virtual superclasses
with newer versions, as they have the same schema. Helper
classes make the updates conform to the HotSwap API
when new methods or fields are added. The new members
are added to helper classes, so that the signatures of virtual
superclasses remain the same.

In addition to transforming classes at load time with the
Javassist library [9], our system includes a class differenc-
ing module and code generators for proxy, virtual super-
class, and helper classes. The differencing algorithm op-
erates at the bytecode level, and its output parameterizes
the code generators and the bytecode rewriter. The rewriter
translates newly-added methods, constructors, and fields to
helper classes as follows:

New methods/constructors The rewriter adds a special
invokemethod to all the instrumented classes as a facility
to invoke newly-added methods without changing the up-
dated class’s signature. Each new method is translated into
a method in a helper class, whose invocation logic is added
to the body of theinvoke method. Each call site of a
newly added method becomes a call toinvoke, with the

Version 1 of A Version 2 of A

of original classes

A

void foo(){}

A

void foo(){super.foo();}

Object invoke(

String name,

Class[] argTypes,

Object[] args){}

Super_A

void foo(){}

Object getHelperClass(){}

void foo(){}

void bar(int i){}

A

HelperClass

void bar(int i){}

Super_A

void foo(){}

Object getHelperClass(){}

A

void foo(){super.foo();}

Object invoke(

String name,

Class[] argTypes,

Object[] args){}

bar() added

of enhanced classes

HelperClass

added

Figure 3: Adding a new method using a helper class.

added method name as the first argument.
Figure 3 shows an example of adding a new method; the

newer version ofA has a new methodbar. The first and
second columns in Figure 3 illustrate class diagrams rep-
resenting classes and their relationships at the source code
and the corresponding bytecode, respectively. The special
helper classHelperClass contains the new methodbar
and each proxy class contains theinvoke method. Each
invocation ofbar is translated to invokeinvoke instead.

Each new constructor is translated into an invocation of a
”do-nothing” constructor and a special initialization method
that contains the added constructor’s logic.

New fields New fields are translated according to two ap-
proaches, one optimized for performance, while the other
for space. The first uses a separate helper class for the new
fields whenever a class is replaced with a newer version.
The second uses a single class that contains a mapping data
structure that represents all the added fields for all classes.

Object state update One complication of using HotSwap
for updating running applications is that it can only update
classes–HotSwap has no facilities for upgrading objects cre-
ated from an older version of a class to a newer version.
In dynamic update systems, this operation is calledObject
State Update. Our approach also can efficiently transfer
state between old and new objects, enabling instances of
different versions of a class to coexist in the running appli-
cation. Our system updates the state between old and new
helper objects for new fields, based on their respective ver-
sion numbers. In particular, the update system checks if the
version of a helper object is older than the latest version.
If so, a special helper object is instantiated for the newly
added state (i.e., extra fields). The values of the fields in
the older helper object then are copied to the corresponding
fields in the newer helper object.

3.4. Support of Language Features and Lim-
itations of the Rewrite

Monitor Concurrency Control For synchronized
original methods, we leave this attribute only for methods
in subclasses only, but remove it from their proxies. Thus,
if indirected methods call each other directly, they will lock
on the same object, avoiding a potential deadlock.

Reflection The use of reflection to locate and invoke
newly-added methods will render our approach invalid, as
the new methods are not members of an updated class but
of a helper class instead. Fortunately, the use of reflection
is uncommon in high performance applications written in
Java, and JVM-based languages such as X10 even disallow
reflection completely to enable a wider range of optimiza-
tions.

Native Code Some of the functionality in JDK is pro-
vided as native code, executing as part of the JVM libraries.
These native libraries are used in Java to achieve better per-
formance and to obtain access to system resources. Since
our approach changes bytecode, it would not be applicable
for dynamic updates of native code. We do not foresee the
need to update such native code dynamically in this appli-
cation domain.

Removing methods and fields Our approach does not
support the deletion of methods or fields, as the presence
of unused methods and fields in a program does not affect
its execution with one notable exception. If polymorphic
dispatch is present and an overriding method in a subclass
is deleted, the overridden method must be invoked in the
new version. We ensure this behavior by changing the body
of the deleted method in a subclass to delegate to the over-
ridden method in a superclass.

32.73 (44.19%)

44.63 (28.99%)

74.02 (8.28%)

22.79 (0.40%)

35.29 (1.99%)

68.38 (0.04%)

22.7

34.6

68.36

20

40

60

80

2 4 8

Virtual IF

Virtual SC

Orig. App.

Work

Seconds

Figure 4: Overhead of binary refactoring microbenchmark.

Class hierarchy changes In addition to ignoring the dele-
tion of methods and fields, which does not affect the pro-
gram execution, we also do not aim at supporting changes
in class hierarchies. While our proxies maintain the origi-
nal inheritance relationship, which allows subclass proxies
to be used in place of a superclass, changing a class inheri-
tance hierarchy is too destructive to the overall structureof
a program to be of value for a dynamic update.

Query/Result Query/ResultQuery/Result

Query/Result

Worker

Node 1

Worker

Node 2

Worker

Node N

Master Node

. . .

Figure 5: High-level view of parallelizing Smith-Watermanpro-
gram

4. Evaluation

We have evaluated the performance and effectiveness
of our approach. First, we have compared the respective
performance of Virtual Superclass and Virtual Interface,
and then we have dynamically updated a parallelization of
Smith-Waterman algorithm.

4.1. Performance Evaluation

The following micro and macro benchmarks demon-
strate the performance advantages of Virtual Superclass.
The experimental environment consisted of a workstation
with an Intel Pentium 4 (3.6GHz) processor, 1GB RAM,
running Ubuntu Linux 7.10 (Gutsy Gibbon), JDK version
1.5.014.

The first micro benchmark assessed the overhead of indi-
recting a single method invocation. Figure 4 shows that the
cost of indirection depends on the amount of computation
performed by the indirected method. In this benchmark, the
indirected method performed two, four, and eight multipli-
cations, increments, and test operations. Each invocationis
repeated1∗10

9 times. The maximum overhead of less than
2% makes this refactoring suitable for introducing indirec-
tion to the majority of performance-sensitive applications.

To assess the performance of the Virtual Superclass in-
direction in more realistic programs, we used five differ-

0

20

40

60

80 Original App.

Virtual Superclass

Virtual Interface

Seconds
VS:1.86%

VI:4.25%

VS:0.72%

VI:15.37%

VS:0.16%

VI:0.34% VS:1.99%

VI:15.79%

VS:1.15%

VI:1.84%

Figure 6: Overhead of binary refactorings on SpecJVM98.

ent full program benchmarks from SpecJVM98 [4]. Fig-
ure 6 shows that similarly to the micro benchmark numbers
above, the total overhead of Virtual Superclass never ex-
ceeds 2%, whereas for Virtual Interface it can go as high as
16%.

4.2. The Smith-Waterman Parallelization
Revisited

Next we demonstrate how the novel binary rewriting
techniques presented above enable effective dynamic up-
dates of the Smith-Waterman parallelization used to moti-
vate this work, thereby making it possible to perfect and
adapt this application on the fly. As our experimental en-
vironment, we have assembled a small grid of five nodes
connected by a LAN. We used the Ibis [1] grid infrastruc-
ture, even though the grid nodes communicated with each
other through Java sockets rather than through the MPJ mid-
dleware provided by Ibis. Figure 5 shows an example de-
ployment of the parallelization.

Recall that the required dynamic updates included
changing the display method, the precision of the results,
and the alignment algorithm used. As it turns out, all
of these three updates involve structural changes to the
bytecode, rendering the standard HotSwap facilities un-
suitable for the task. Specifically, changing the display
from the console to a disk file required replacing classes
AlignCommentLine and FileOutput, as well as
adding a new methodwriteToFile, thereby changing
the signature of classFileOutput. Such a seemingly
trivial change as using thedouble rather that thefloat
precision for the similarity scores required modificationsof
5 fields, 11 methods, and 9 classes! Because the similarly
score is computed through the interaction of multiple meth-
ods in different classes, changing its type (i.e., fromfloat
to double) requires changing the signatures of all of the
involved methods. Finally, modifying the alignment algo-

Cases Requirements

of updates

Field Method
Class

Method
body

Sig.
change

Replaced
classes

Case1:
Console File

Saving alignment results as a

file
1 1 1 1 2

Case2:
float double

Displaying alignment results

in a double precision
5 11 6 4 9

Case3:
SW SWG

A need of more practical

alignment algorithm
0 4 1 1 2

Figure 7: Changes to Smith-Waterman program using extendedHotSwap. SW:Smith-Waterman algorithm [18], SWG:Smith-Waterman-
Gotoh algorithm [12].

rithm required modifying the signatures of 4 methods in 2
different classes. Because the base algorithms use different
parameter sets, the methods’ signatures, invoked when the
algorithm is executed, had to be changed accordingly. Fig-
ure 7 presents the exact statistics of the changes involved.

For this case study, we have included our binary rewrit-
ing infrastructure into the standard class loading process.
All the dynamic updates are initiated from the Master node,
which has remote debugging connections to each Worker
node.3 The programmer interacts with an upgrade script
that takes the classes of a new program version, compares
this version with the current version, computes the neces-
sary updates, and applies them dynamically through the re-
mote debugging connection to the remote nodes. Figure
8 shows the indirection overhead on the rewritten Worker
code. Because the cost of indirection is incurredonly when
invoking methods, and the Worker process does most of the
computation within a single method, the overall overhead is
negligible. Thus, our novel binary rewriting approach made
it possible to use the standard HotSwap to update a running
distributed application, without either having to modify the
JVM or having to degrade the performance. Furthermore,
the updates were applied without having to stop the parallel
execution and wasting valuable HPC resources. These re-
sults indicate that in-vivo enhancement can become a valu-
able tool for delivering parallel solutions under tight dead-
lines.

5. Related Work

The existing state of the art in dynamic updates includes
program transformation, custom virtual machines and run-
time libraries, as well as special programming models.

Our approach uses refactoring transformations–
changing the structure of a program without affecting
its functionality. Orsoet al.’s technique [16] similarly
refactors bytecode to enable its dynamic updates. Our
approach differs by using HotSwap, allowing changes to

3Starting from JDK 1.4, remote debugging connections do not impose
performance overhead, allowing programs to run at full speed.

the signatures of swapped classes, and introducing a more
efficient implementation of the Proxy pattern. Bialeket
al.’s system [6] also rewrites the updated software at the
source or bytecode levels to enable its dynamic updates;
however, instead of replacing classes using HotSwap,
which is a standard JVM facility, their approach globally
renames classes. Several approaches [17, 15, 11] have
introduced custom virtual machines to support dynamic
updates of Java applications. These approaches, however,
require installing a custom JVM, which may have lim-
ited functionality and interoperability. Some approaches
[14, 8, 19, 7] introduce new languages features, middleware
systems, or require that software developers abide by
specific component models or programming rules. Warthet
al. presents Expanders [19], a new programming language
construct that specifies new methods, fields, and interfaces.
Expanders enable the programmer to express new methods
and fields to be added to an existing program statically.
Biermanet al.’s UpgradeJ [7] is a Java-like language for
upgrading classes dynamically. UpgradeJ is concerned
with type-safety for dynamic updates rather than with a
particular implementation technique.

6. Future Work

Possible future work will include applying our approach
to larger-scale applications. Meeting the goal of scalability
is likely to uncover new research challenges. In addition,
improving the usability of our approach further can make
it accessible to non-expert programmers. It remains to be
seen whether the complex functionality enabled by our in-
frastructure can be exposed through an intuitive GUI. The
usability of our infrastructure can greatly affect its adop-
tion rate. Finally, our approach can benefit new JVM-based
high-productivity languages. Their new language features
are likely to pose new challenges for dynamic updates.

7. Conclusions

This paper has presented flexible and efficient dynamic
updates for JVM-based, distributed, computationally-

0

50

100

150

200

250

300

350

400

450

500

Original App.

Refactored App.

0.15%

0.11%

0.09%

0.14%

DB
Size
(KB)

of
seq.

DB
Size
(KB)

of seq.

alu.a 221 1,962 drosoph.aa 8,300 14,331

yeast.aa 3,321 6,312 pdbaa 22,169 37,882

Seconds

Figure 8: Refactoring overhead on the worker portion of Smith-
Waterman parallelization.
x-axis: the databases names in FASTA format
y-axis: the total execution time.

intensive applications. The presented approach leverages
a new binary refactoring that rewrites program binaries,
thereby overcoming constraints of the HotSwap API. The
resulting flexibility has been demonstrated via a case study
of perfecting and adapting a parallelization of a popular
bioinformatics algorithm on the fly. The minimal over-
head of our approach and the flexibility it affords make it
a powerful tool for shortening the time-to-discovery in dis-
tributed computationally-intensive applications. Further, as
dynamic reconfiguration and maintenance are becoming an
indispensable part of evolving modern software systems,
our approach can benefit the broader software development
community.

Acknowledgments The authors would like to thank
Taweesup Apiwattanapong, Dennis Kafura, and the anony-
mous reviewers, whose comments helped improve the pa-
per.

References

[1] Ibis: Grids as Promised,http://www.cs.vu.nl/
ibis/.

[2] JAligner,http://jaligner.sourceforge.net/.

[3] Java HotSwap,http://java.sun.com/j2se/1.4.
2/docs/guide/jpda/enhancements.html.

[4] Specjvm98 benchmarks, http://www.spec.org/
jvm98/.

[5] B. Alpern, A. Cocchi, S. Fink, and D. Grove. Efficient im-
plementation of Java interfaces: Invokeinterface considered
harmless. InOOPSLA ’01: Proceedings of the 16th ACM
SIGPLAN conference on Object oriented programming, sys-
tems, languages, and applications, pages 108–124, 2001.

[6] R. P. Bialek. Dynamic updates of existing Java applications.
Ph.D. Thesis, the University of Copenhagen, pages 1–216,
June 2006.

[7] G. Bierman, M. Parkinson, and J. Nob. UpgradeJ: Incremen-
tal typechecking for class upgrades. InEuropean Conference
on Object-Oriented Programming (ECOOP), July 2008.

[8] X. Chen. Extending RMI to support dynamic reconfigura-
tion of distributed systems.Proceedings of the 22 nd In-
ternational Conference on Distributed Computing Systems
(ICDCS’02), pages 401–408, 2002.

[9] S. Chiba and M. Nishizawa. An easy-to-use toolkit for ef-
ficient Java bytecode translators.Proc. of 2nd Int’l Conf.
on Generative Programming and Component Engineering
(GPCE’03), pages 364–376, 2003.

[10] P. Eugster. Uniform proxies for Java. InOOPSLA ’06: Pro-
ceedings of the 21st annual ACM SIGPLAN conference on
Object-oriented programming systems, languages, and ap-
plications, pages 139–152, 2006.

[11] B. Gharaibeh, D. Dig, T. N. Nguyen, and J. M. Chang.
dReAM: Dynamic refactoring-aware automated migration of
Java online applications.Technical Report, Iowa State Uni-
versity, August 2007.

[12] O. Gotoh. An improved algorithm for matching biological
sequences.J. Mol. Biol., 162:705–708, 1982.

[13] D. K. Kim and E. Tilevich. Overcoming JVM HotSwap con-
straints via binary rewriting. InFirst ACM Workshop on Hot
Topics in Software Upgrades (HotSWUp 2008). ACM, 2008.

[14] Y.-F. Lee and R.-C. Chang. Java-based component frame-
work for dynamic reconfiguration.IEE Proceedings - Soft-
ware, 152(3):110–118, June 2005.

[15] S. Malabarba, R. Pandey, J. Gragg, E. Barr, and J. F.
Barnes. Runtime support for type-safe dynamic Java classes.
Proceedings of the 14th European Conference on Object-
Oriented Programming, 1850:337–361, June 2000.

[16] A. Orso, A. Rao, and M. J. Harrold. A technique for dynamic
updating of Java software.Proceedings of the International
Conference on Software Maintenance (ICSM’02), October
2002.

[17] T. Ritzau and J. Andersson. Dynamic deployment of Java
applications. InJava for Embedded Systems Workshop, Lon-
don, May 2000.

[18] T. Smith and M. Waterman. Identification of common molec-
ular subsequences.J. Mol. Biol., 147:195–197, 1981.

[19] A. Warth, M. Stanojević, and T. Millstein. Staticallyscoped
object adaptation with Expanders. InOOPSLA ’06: Pro-
ceedings of the 21st annual ACM SIGPLAN conference on
Object-oriented programming systems, languages, and ap-
plications, pages 37–56, 2006.

