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Abstract

When a mobile application is supported on multiple major platforms, its market

penetration is maximized. Such cross-platform native applications essentially

deliver the same core functionality, albeit within the conventions of each sup-

ported platform. Maintaining and evolving a cross-platform native application

is tedious and error-prone, as each modification requires replicating the changes

for each of the application’s platform-specific variants. Syntax-directed source-

to-source translation proves inadequate to alleviate the problem, as native API

access is always domain-specific.

In this article, we present a novel approach—Native-2-Native—that uses

program transformations performed on one platform to automatically synthe-

size equivalent code blocks to be used on another platform. When a programmer

modifies the source version of an application, the changes are captured. Based

on the changes, Native-2-Native identifies the semantic content of the source

code block and formulates an appropriate query to search for the equivalent

target code block using popular web-based programming resources. The discov-
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ered target code block is then presented to the programmer as an automatically

synthesized target language source file for further fine-tuning and subsequent in-

tegration into the mobile application’s target version. We evaluate the proposed

method using common native resources, such as sensors, network access, and

canonical data structures. We show that our approach can correctly synthesize

more than 74% of iOS code from the provided Android source code and 91%

of Android code from the provided iOS source code. The presented approach

effectively automates the process of extracting the source code block’s semantics

and discovering existing target examples with the equivalent functionality, thus

alleviating some of the most laborious and intellectually tiresome programming

tasks in modern mobile development.

Keywords: Recommendation Systems, Code Synthesis, Mobile Computing,

Android, iOS, Java, Swift

1. Introduction

Major mobile platforms, including Android, iOS, and Windows Phone, vig-

orously compete to dominate market share. The resulting mobile market frag-

mentation complicates the software process of those software vendors that strive

to maximize their customer base: each mobile application has to be supported

on all major platforms. Factoring out the conventions and formats of individual

platforms, application replicas essentially deliver an identical set of functionali-

ties. For example, a mobile application with a map component would use Google

Maps on Android and Apple Maps on iOS Devices. Even though from the

end-user’s perspective, the map feature provides identical functionality on both

platforms, from a software engineering perspective, implementing the same fea-

ture on different platforms requires the use of vastly dissimilar languages, APIs,

and software architectures. For instance, Android applications are written in

Java using the Android standard library, in which UI events are expressed by

means of callbacks; meanwhile, iOS applications are written in Swift using the

iOS standard library, in which UI events are expressed by means of delegates.
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As new features and functionalities are being added to a mobile application,

its developers must replicate the changes on all supported platforms. Having

invested the time and effort required to ascertain the application logic and im-

plementation details on one platform, the developer then essentially repeats the

same process on all the remaining supported platforms. That is, the expertise

gained by undertaking a programming task on one platform does not translate

into facilitating the performance of essentially the same task on other plat-

forms. What if it were possible to automatically glean the knowledge acquired

by adding a feature to an application on a source platform to semi-automatically

synthesize the code required to add the same feature on target platforms?

In this article, we present native-2-native—a novel approach that develops

a code synthesis algorithm to discover publicly available target code blocks

whose semantics are equivalent to a code block written for the source platform.

From a high-level perspective, the native-2-native approach works as follows.

When a programmer adds a feature to an application, the manually written code

is logged. A query is created from the code to search the web for the available

target platform code that implements the same functionality. The resulting

web pages are ranked using a ranking algorithm that applies a high-dimensional

feature vector to select the code block whose functionality is the closest to

the original code. The selected code then parameterizes a code generator that

synthesizes a semantically correct source code file that can be included into

the target application’s codebase—thus requiring minimal manual fine-tuning

in most cases.

It is the ability to automatically discover a code block that natively im-

plements a feature in Swift/iOS for an equivalent code block implemented na-

tively in Java/Android, and vice versa, that gives our approach the name of

native-2-native. Our approach focuses on the native resources in mobile

applications, such as sensors and services. Because the majority of mobile ap-

plications nowadays need to make use of such native resources, our approach

aims at facilitating one of the most common programming tasks undertaken by

the modern mobile application developer. Hence, our approach would be most
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applicable to adaptive maintenance, enhancing existing applications with new

features [1], as well as new development.

This article revises and expands our earlier paper [2] presented at the 14th

International Conference on Generative Programming: Concepts & Experience

(GPCE’15). For the journal edition, we extended our approach for bi-directional

operation. That is, while the original version works only from Android/Java to

iOS/Swift, the current version works also from iOS/Swift to Android/Java.

This major extension required us to essentially double our evaluation to assess

the effectiveness of our approach in both directions. Our revised and enhanced

evaluation required us to refine and expand our experiments with new and

updated analysis results now presented for both directions.

Our reference implementation of native-2-native extends the Eclipse IDE

with a plugin to support cross-platform mobile development. The plugin cap-

tures and analyzes the token frequency in the Java or Swift code block that

utilizes or accesses a resource by means of some native API. Based on the cap-

tured code, the plugin forms a query to search popular web-based programming

resources for Swift or Java code blocks accessing equivalent native APIs on the

iOS or Android platforms. The highest ranked discovered Swift/Android code

blocks are provided to the developer, who can further refine them with extra

functionality, such as fault tolerance capabilities or strengthened security.

We conduct an evaluation of test cases that include multiple application

methods, converting code blocks from Android to iOS and in the reverse direc-

tion. We show that the proposed approach provides a valuable tool that can be

used by developers charged with the challenges of supporting mobile applica-

tions on multiple platforms. We also show that the effectiveness of our method

depends on the source and the target platforms. More specifically, evaluating

the fitness of automatically discovered code for accessing subject native APIs

for the task at hand showed that the approach is effective in 74% of test cases

when going from Android to iOS and in 91% of test cases when going in the

opposite direction.

The rest of this article is organized as follows. Section 2 presents a running
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example. Section 3 describes the approach. In Section 4, we present exper-

imental results, and in Section 5, we discuss strengths and limitations of the

proposed method. Section 6 discusses related work. Section 7 presents future

work directions and conclusions.

public static LocationModel getLocation(Context context) {

locationManager = (LocationManager)context.

getSystemService(Context.LOCATION_SERVICE);

Criteria criteria = new Criteria();

String bestLocation = locationManager

.getBestProvider(criteria, false);

Location location = locationManager.

getLastKnownLocation(bestLocation);

LocationListener loc_listener = new LocationListener()

{

public void onLocationChanged(Location l) {}

public void onProviderEnabled(String p) {}

public void onProviderDisabled(String p) {}

public void onStatusChanged(String p, int status,

Bundle extras) {}

};

locationManager.requestLocationUpdates

(bestLocation,0,0,loc_listener);

location = locationManager.

getLastKnownLocation(bestLocation);

LocationModel loc = new LocationModel

(location.getLatitude(),location.getLongitude());

return loc;

}

Figure 1: Android get location basic functionality

2. Running Example

We provide a concrete example to motivate the need for native-2-native.

Consider a mobile application that determines if any of the user’s friends are
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func startLocationUpdate() {

locManager.requestWhenInUseAuthorization()

locManager.startUpdatingLocation()

}

func locationManager(manager: CLLocationManager!,

didUpdateLocations locations: [AnyObject]!) {

var location = locations.last as! CLLocation

var lat:Double = location.coordinate.latitude as

Double

var long:Double = location.coordinate.longitude

as Double

var result = NSString(format: "%.5f, %.5f",

location.coordinate.latitude,

location.coordinate.longitude)

self.location = result as String;

}

func locationManager(manager: CLLocationManager!,

didFailWithError error: NSError!) {

DLog("Location Error: " + error.description);

}

Figure 2: iOS get location basic functionality

in the vicinity. Hence, the application is in essence a person proximity locator

that continuously retrieves and processes GPS location information from the

requesting device. Let us assume that the application is supported on both

Android and iOS.

2.1. Obtaining GPS Location Information

Figure 1 shows the code block that retrieves GPS location in Android; Figure

2 shows equivalent functionality in iOS. Even though both code blocks accom-

plish the same task, they are structured quite dissimilarly. In particular, the
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Android version creates a locationManager object from the passed context object,

so that the initialized object can be queried for the GPS information. The iOS

version creates a CLLocationManager object, whose initialized state contains the

latitude and longitude variables. The code blocks on both platforms are rela-

tively short, following similar coding idioms (i.e., creating an object to query its

state) to retrieve the GPS information. Nevertheless, having written the code

block in Android would not equip the programmer with the required knowledge

to replicate this basic functionality in Swift.

Despite the popularity of source-to-source translators, they would be inap-

plicable if one wanted to automatically derive the iOS version of the code. The

reason for the ineffectiveness of source-to-source translation in this instance is

that native API access is always domain-specific, a complication that cannot

be tamed with syntax-directed translation. By contrast, native-2-native at-

tempts to identify the semantic content of the source code block and formulates

an appropriate query to search for the equivalent target code block. By au-

tomating the process of extracting the semantics of the source code block and

by discovering existing target examples with the equivalent functionality, the

presented approach can alleviate some of the most laborious and intellectually

tiresome programming tasks in modern mobile development.

2.2. Enabling Insights

Heretofore, the discussion in this article has focused on the what component

of our approach—our end goal of automatically synthesizing native code for a

target platform from equivalent code on a source platform, thereby enabling a

cross-platform translation of natively implemented features. Before discussing

the how component, i.e. the algorithmic and implementation details, we will ad-

dress the why component, which will identify enabling insights of our approach.

The presented approach is enabled by a confluence of the following insights,

derived from observing the realities of modern mobile software development:

the peculiarities of the mobile software market, the working preferences of the

modern mobile programmer, and the nature of platform-specific mobile APIs.
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We next describe each of these insights in turn.

Major mobile platforms have been competing with each other for market

domination. Mobile hardware vendors have embraced the competitive mindset,

which results in a so-called “arms race” when it comes to the devices’ features

and capabilities. As soon as one platform introduces a new hardware enhance-

ment, the competitors feel compelled to introduce the equivalent or improved

enhancement on their platform, lest they were to lose a major marketing advan-

tage. Consider the GPS sensor, which provides the foundation for our running

example. If this sensor and its corresponding capabilities were to be introduced

to the Android platform first, the iOS platform would have not only to mimic

this feature, but also to add extra enhancements in the closest release feasible.

Android, in its turn, would be compelled to match the latest iOS progress in

this area. This continuous competitive cycle, although driven exclusively by

market forces, unveils the first enabling insight of our approach: major mobile

platforms necessarily share an excessive amount of core native features.

Although the implementation languages and the corresponding native APIs

of the major mobile platforms typically differ, the underlying feature sets from

the end user’s perspective enjoy a remarkable degree of similarity, which, in

turn, leads to a high level of correlation in the vocabularies used to express the

native APIs for these features. Assuming that API designers aim at creating

intuitive-sounding and easy-to-understand names, reading in GPS information,

for example, can be expressed in a finite, reasonably sized number of ways.

Moreover, one can expect that the ways the GPS APIs are expressed on different

mobile platforms will overlap in non-insignificant ways. Going back to the code

blocks for this feature in Figures 1 and 2, one can see that the tokens location and

location manager are both heavily used in both Java/Android and Swift/iOS.

It is these shared vocabularies that make it possible to design a cross-platform

translation mechanism for native APIs for shared features. Furthermore, the

number of analogous features and their corresponding API shared tokens will

continue to increase as long as there is competition among the major platforms

on the market.
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Based on the growing number of online programming resources, the mod-

ern programmer increasingly relies on the Web to answer questions that come

up during their day-to-day operations ranging from simple bug fixes to com-

plex refactoring. For example, StackOverflow [3] receives 2.65 new questions

per minute and 4.41 new answers per minute on average, reaching close to

6,000 questions a day in peak sessions [4]. Indeed, StackOverflow and sim-

ilar online question/answer discussion forums have become the modern pro-

grammer’s primary medium of information exchange. One can attribute this

strong shift toward online programming documentation to sheer demographics—

StackOverflow reports that the average age of their user is 28.9 year old, based

on surveying over 26K developers across 157 countries [5], which places them

strongly within Generation Y, also known as the first digital generation, used

to rely on the Web for all kinds of information. At any rate, it is indisputable

that the Web has become an invaluable information sharing and acquisition

platform for mobile developers. An additional draw of programming resources

web sites is serving as reputation builders. Users of these websites commonly

have the ability to rank the quality of provided information, with top providers

earning high degrees of prestige and notoriety. These digital rankings can also

be leveraged to automatically assess the quality of the available programming

information.

Finally, we argue that figuring out how to express a native API on some

platform, having just expressed an equivalent API on another platform, consti-

tutes accidental complexity, and as such is a promising candidate for automated

treatment via software engineering innovation [6]. Consider the process by which

some native API becomes used in a typical mobile program. A developer de-

cides that some feature needs to be added to a program, and that feature will

make use of some native resource. Designing the feature is essentially complex,

while discovering which API one must invoke is accidentally complex. Fur-

thermore, this discovery process remains accidentally complex, irrespective of

the implementation platform. Removing accidental complexity is a key driving

force behind reducing the programmer workload. There is another peculiarity
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that arises when translating native APIs between Java and Swift. While Java

remains the most commonly used programming language [5, 7], Swift according

to StackOverflow is now regarded as “most loved” language. Hence, one can

expect an abundance of web-based programming resources for both languages.

By leveraging these three main insights, we were able to create a simple but

powerful approach to automatically translate native APIs between Java/An-

droid and Swift/iOS and vice versa. In the next section, we provide the algo-

rithmic and implementation details of our approach. In Section 4, we report

on the results of applying our approach to real-world examples of using native

APIs.

Swift

Java

Web Programming Resources

Plugin

Mobile Developer

Mobile 

Platform 

Code X

Mobile 

Platform 

Code Y

Query

Input

Output

Java

Swift

Figure 3: Native-2-Native: High-level Approach Overview
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3. The Native-2-Native Approach
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Figure 4: Full approach program flow

Figure 3 shows a high-level overview of our approach. A mobile application

developer first implements a new feature using some native API of the Android

platform in Java or of the iOS platform in Swift. Once the developer deems the

feature’s implementation completed, the feature’s code block is passed as input

into the Native-2-Native IDE plugin. The plugin performs the following tasks

in sequence: generalize the Java/Swift code block to form a search query, execute

the query against popular web-based programming resources, summarize and

rank the results, and, finally, present a synthesized Swift code block for the iOS

platform or Java code block for the Android platform back to the developer.

The presented code block is typically partially complete and implements the

same feature as the input code, but by means of the equivalent native target

platform’s API.

In the following sections, we detail the constituent parts of the native-2-

native approach. Section 3.2 describes the process of extracting core functional-

ity from the input Java/Swift code block. This process includes multiple tech-

niques in tokenization, filtering, and frequency analysis to generate an important
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set of query keywords. Next, Section 3.3 explains how the approach ascertains a

similarity index between the initial Java/Swift code block and all mined Swift/-

Java code blocks. The meta-data objects serve as the central representation of

platform and language-independent semantics for all mined documents as well

as the input source code. Finally, Section 3.4 delves into the underlying pro-

cess by which the approach is able to produce an equivalent target platform

code block. This process makes use of two algorithms: (1) a searching algo-

rithm that discovers the relevant resulting set of documents, and (2) a ranking

algorithm that operates on a set of mined documents to produce a platform-

and language-independent semantic ranking, which synthesizes the output code

block.

3.1. Terminology

For the rest of this article, the term source document will refer to the in-

put code block (written in Java or Swift), while target document will refer to

the output code block (synthesized in Swift or Java, respectively). Query key-

words will refer to terms extracted from the input code block that describe its

functionality and that are used to search for the target document’s constituent

components. Finally, token will refer to any single document element at the

level of individual space-separated strings.

3.2. Extracting Core Functionality from Source Input Code

This section describes the process of translating input code blocks into web

queries. This process extracts the core functionality of the code block by means

of tokenization, filtering, and frequency analysis.

3.2.1. Tokenizing and Filtering

The flowchart in Figure 4 details the process. The Java/Swift source input is

tokenized, with the superfluous tokens filtered out. As a result, a unique list of

tokens in the source document is generated. The tokenization procedure makes

use of the canonical bag-of-words model [8]. This model also separates camel
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case variables, title case variables, method declarations/invocations, and also

removes non-alphanumeric characters attached to strings.

The resulting tokens are then normalized by applying stemming. Specifically,

we remove verb inflections to eliminate verb-tense discrepancies that could arise

while searching web resources for the target document’s constituent components.

Then tokens that happen to be substrings of other tokens are filtered as well.

For example, tokens ‘location’ and ‘loc’ are assumed to possess related semantic

intent. Tokens that are likely to weaken the precision of the frequency analysis

are filtered out as well (e.g., comment designators, stop words, etc.)

3.2.2. Frequency Analysis to Generate Web Queries

The next step calculates the document frequency for each unique term occur-

ring in the source document that has not been filtered. The frequency analysis

produces a sorted list of the most used unique terms in the input. The top

k terms become the query keywords for the search routine in Figure 5. The

default value of k used in this work is 3 but can be customized at will. These

top 3 terms are then used to produce a set of queries as follows: for every sub-

set of terms from the list, we generate all possible term permutations, so that

each query contains up to 3 terms. The retrieved webpages are the union of all

results returned by each of the queries.

The procedure above uses a fixed number of terms to produce a query and,

while it uses Information Retrieval methods, it can be further enhanced via

Natural Language Processing techniques. Identifying most informative terms

to formulate a query is an important component of the proposed approach, but

is outside the scope of this work and we leave it for future research.

3.3. Meta-Data Objects

Meta-data, data that describes other data, has been used to facilitate the

search and discovery of related data objects [9, 10]. The presented approach uses

meta-data to describe source and target documents as a means of streamlining
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similarity comparison. The source document’s meta-data object is composed

upon the completion of the tokenizing and filtering steps as described next.

3.3.1. Meta-Data Fields

Meta-data fields serve as the abstraction that captures all pertinent infor-

mation from web-based programming resources and the source document in an

easily search-able and comparable format. The meta-data objects use their fields

to store features mined from all the searched web resources as well as those ex-

tracted from the source document. These fields also include general information

about each document that help identify categories used in later routines. This

differs from a pure feature vector which only contains the necessary features for

use in searching and ranking. A generate routine processes every search result

to populate the fields defined by a given meta-data object. Representing the

search results via meta-data objects makes them easily amenable to similarity

evaluation with various ranking models.

Some features are deliberately supplemented to indicate the functionality

to search for. For example, a preferred StackOverflow response would be a

so-called “accepted answer,” a code snippet check-marked by its originator as

having solved the posed question.1 In contrast, the source document lacks

this property, as it simply represents the input Android or iOS code block. To

prevent supplemented features from unduly skewing the final ranking, the source

document’s missing features are defaulted in the meta-data object as their ideal

functionality. Similarly, web search results returned from random programming

resources will also contain missing features, as well their own supplemental

features, to be steered toward the searched for functionality. The meta-data

objects’ fields are the union of all features across all mined web resources and

the source document.

1The StackOverflow website uses green check-marks to denote accepted answers.

14



3.4. Searching and Ranking

In this section, we first present a searching algorithm that queries web-

based programming resources for relevant data pertaining to the query key-

words. Then, we present a ranking algorithm that incorporates two different

models for determining similarity between the source document and all mined

potential target documents.

It is worth pointing out that both the searching and ranking algorithms

disregard the control flow constructs present in the source document, operating

solely on the extracted keywords described in the previous section. This design

decision renders our approach largely independent of the specifics of the business

logic of the native code blocks at hand, focusing exclusively on the native API

used. Nevertheless, the disregarded control flow constructs are fully restored

during the final code synthesis phase.

3.4.1. Searching Algorithm

Figure 5 shows the searching algorithm for mining the relevant data. The al-

gorithm’s input is the generated query keywords discussed above and the output

is a full list of the resulting searches stored in a custom-made, answer-wrapper

object. Before the core of the searching algorithm is executed, the initKeywords

subroutine first initializes the full query keyword set. Although the input is

just the set of query keywords, various permutations and subsets of the original

query keywords must be searched to locate all relevant results. The initKeywords

subroutine in Figure 5 explains how the full set of keywords involves three

components: 1) transcribe the original keywords as individual queries, 2) iden-

tify the first and second (by frequency-based importance) keywords, in both

orders, as subset queries, and 3) permute the complete set of the original key-

words. Although some flexibility in the number of query keywords is allowed

for user fine-tuning, the hard limit of 5 separate keywords for the permutation

component ensures that the input is computable in practical space and time

boundaries.
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/* INPUT: query keywords to search */

/* OUTPUT: full list of resulting searches */

DEF Search(keywords)

resultList← ∅

keywordSet← initKeywords(keywords)

FOREACH keyword ∈ ∀keywordSet DO

queryResultsSOF = execStackOverflow(keyword)

FOREACH result ∈ ∀queryResultsSOF DO

Ans← result, rank

resultList← resultList∪ {Ans}

END FOREACH

queryResultsGoogle = execGoogle(keyword)

FOREACH result ∈ ∀queryResultsGoogle DO

temp← execStackOverflow(result)

Ans← temp, rank

resultList← resultList∪ {Ans}

END FOREACH

queryResultsElse = execElse(keyword)

FOREACH result ∈ ∀queryResultsElse DO

Ans← result, rank

resultList← resultList∪ {Ans}

END FOREACH

END FOREACH

RETURN resultList

END Search

DEF initKeywords(keywords)

fullSet ← keywords

fullSet ← fullSet ∪ {key[0] + key[1]}

fullSet ← fullSet ∪ {key[1] + key[0]}

fullSet ← fullSet ∪ perm(keywords)

RETURN fullSet

END initKeywords

Figure 5: Search Algorithm Pseudo code
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Although the algorithm can be configured to search any web-based program-

ming resources, we next describe it by means of three representative categories:

(1) a live API call to StackOverflow with the given query keywords, (2) a Google

search on the current query keywords that specifically limits to StackOverflow

websites only to catch discrepancies in a StackOverflow search internally as well

as an external Google search on the same keywords; the Google search results

are funneled to StackOverflow to directly data-dump that post.2 (3) a Google

search that excludes StackOverflow posts to include less popular but potentially

also relevant online blogs and other web resources to the list of relevant search

results. All three methods’ results are standardized into the answer-wrapper

object and stored for later ranking and analysis. This entire process is con-

ducted for each of the permuted list of query keywords to generate the final list

of web-based search results.

3.4.2. Ranking Algorithm

The ranking algorithm determines the degree of similarity between the source

document and all potential target documents to present the most relevant Swift

or Android code blocks (depending on the input code block) to the user. Figure

6 details the algorithm. The input is the list of search results generated by the

searching algorithm, as well as the original source document (also in the answer-

wrapper format), and a k value for the number of results to be returned. The

output is the k-top results of the ranking. The algorithm’s main components

produce the vector space model and linear model with their respective feature

sets. The standardization into answer-wrapper objects described above facili-

tates the retrieval of this information for each document in the results list. The

standard format for the answer-wrapper objects is used to generate the target

set of meta-data objects that produce their respective vector space and linear

model scores. Next, the models are combined, sorted, and the top k of those

2Searching through Google and StackOverflow frequently yields dissimilar complementary

results in differing orders.
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are returned.

Figure 6 also includes the subroutine for calculating the cosine of the an-

gle between the current potential target document and the source document,

as required by the central logic of the vector space model [11]. The cosine

determines similarity from a constructed n-dimensional sphere, containing all

the n-dimensional feature vectors. Each vector’s dimension is calculated using a

term-frequency inverse-document-frequency (tf-idf) weighting function, which

accounts for a term’s frequency without over fitting by accounting for common

terms across the document corpus, where n is the total number of unique tokens

available in the current document corpus. Each value in the vector is represented

by the modified indicator function seen in equation 1 that incorporates the tf-idf

weights. Here d ∈ D represents some document in the full k set of documents,

including all potential targets and the source, with weight w.

vdk
(i) =

0 if token i 6∈ dk

wi if token i ∈ dk
(1)

The cosine value is calculated using the underlying vector space model shown

in Equation 2 [10]. The norm of each vector is the square root of the summation

of each dimension’s squared value. Given that the dot product of two vectors is

a scalar and this quantity is divided by the product of two norms, the resulting

value is also a scalar. The variables s and t are used to denote the source and

target documents, respectively.

coss(t) =
s · t

||s||2 ||t||2
(2)

Note that the linear model subroutine is not shown in figure 6, as it is simply

the linear combination of all relevant features in each meta-data object of the

results documents shown in equation 3. The model’s weights are derived from

a combination of tf-idf values and normalization by average feature quantities
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/* INPUT: source/targets MetaData, k top results */

/* OUTPUT: k closest ranked MetaDatas */

DEF Rank(Source, TargetMDs, k)

ranking, topK ← ∅

FOREACH target ∈ ∀TargetMDs DO

C ← getCos(target, source)

L← getLin(target)

temp← bag(C,L)

ranking ← ranking∪ (temp, target)

END FOREACH

sort(ranking)

FOR i IN k DO

topK ← topK ∪ ranking(i)

END FOR

RETURN topK

END Search

DEF getSimilarityUsingCos(t, s)

Nt, Ns, cos← ∅

FOREACH d ∈ ∀t DO

Nt ← Nt, d
2

END FOREACH

FOREACH d ∈ ∀s DO

Ns ← Ns, d
2

END FOREACH

Nt ← sqrt(Nt)

Ns ← sqrt(Ns)

cos←
t · s

Nt ·Ns

RETURN cos

END getCos

Figure 6: Rank Algorithm Pseudo code
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available from the StackOverflow API.

lin(t) =

n∑
i=1

(wi ∗ ti) (3)

3.4.3. Complexity Analysis

In this section, we briefly comment on the computational complexity in-

curred by the more exhaustive procedures of the native-2-native approach.

The ranking algorithm and following model combination process is the most

computationally intensive component, on which we hence concentrate our anal-

ysis. Recall Equations 1 and 2, presented in the previous section, that outline

the vector space model approach, as well as Equation 3 that explains the linear

model used. Equation 4 shows the complete model combination, along with the

weight calculation, as a function on all potential target documents. Note the

parameters α and β that are constrained such that α + β = 1, α ≥ 0, β ≥ 0

and represent the respective magnitude of the two models to each other.

max
t∈T

{
α(s · tj)√∑n

i=1 s
2
i ·
∑n

i=1 t
2
i,j

+
β
∑k

i=1 wi,jfi,j

max
a∈A

(∑k
i=1 wi,afi,a)

)} (4)

This equation is derived by combining the vector space model with a nor-

malized linear model and using the weighting function shown in Equation 5. In

Equation 5, note the I(t) indicator function that is 0 if the current term is not

present in the current document and 1 otherwise. Also of importance to this

equation is T which represents the total number of target documents mined by

the searching algorithm.

s,∀tj ∈ T : tf · log

(
|T |+ 1

I(t)

)
(5)

Given that ni is the total number of tokens in some document i, we bound the

maximum number of tokens on the overall approach as dim = {
∑|T |+1

i=1 {ni}}.

This bound being placed in set notation to represent the elimination of duplicate

tokens across not just a single document but all documents, and accounting for

the full set T of target documents in addition to the single source document.
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Lastly, d is the upper bound on the feature vector used for the vector space model

as we take all unique tokens. In essence, we have |<d1,i, d2,i, ..., dn,i>| ≤ dim,

where the vector represents some document di’s n features; that will be equal

across all targets and the single source document. Hence, the Big O of the

approach’s primary component in terms of documents is O(T + 1), which runs

in linear time, O(n). However, accounting only for documents fails to accurately

reflect the true computational complexity, as for certain operations one must

measure their more-numerous token operations to evaluate their complexity.

Thus, the complexity measured in tokens is O(dim2 + dim ∗ di + dim ∗ f + f),

where f is the number of linear features, a number strictly smaller than dim, and

where di is the current document’s token count, also strictly smaller than dim

as shown above. If di ≤ dim, then di ∗ dim ≤ dim2. Finally, we can simplify

the overall complexity in terms of tokens as O(dim2 + dim2 + dim2 + f) =

O(3dim2) = O(n2).

3.5. Programming Interface and Code Synthesis

The approach is concretely realized as an Eclipse IDE plugin publicly avail-

able and open-sourced for future improvements and enhancements at https:

//github.com/antuanb/Native-2-Native. Figure 7 (top half) displays the

initial plug-in view from an Android mobile developer’s perspective. The devel-

oper first highlights a code block to be rendered in Swift (since the source file

is in Java for Android) and then clicks the generate button. Figure 7 (bottom

half) highlights how the developer selects which of the top two presented results

they desire to be presented as a Swift source file. Note the URL of the corre-

sponding result is copied to the clipboard, so that the developer can refer to the

originating web-resource for further information. The generated Swift source

file is saved in the current working directory of the Android/Java project.

The top half of Figure 8 shows a sample generated Swift file in our running

example of GPS location. The control flow of the Android/Java file is replicated

to create a skeleton Swift source file first. Then, the developer-selected result

is incorporated into the Swift file to finalize the synthesized code block. In
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Figure 7: Plug-in showing user selecting GPS Location code and subsequent results returned

this example, the synthesized Swift file has the correct iOS/Swift protocol for

instantiating and utilizing the CLLocationManager native API to access a user’s

GPS location along with a logic flow outline. The remaining fine-tuning left for

the developer is to format and return the contained location information in the
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style desired.

3.6. Extension

Using the existing query extraction, searching and ranking algorithms of

Native-2-Native, we successfully implemented a robust converse implementa-

tion that took Swift/iOS source code as input and returned Java/Android code

snippets from web resources. Several Swift keywords were filtered out and an

automated code detection system was implemented for the algorithm to detect

what source code language was used as input. Both Swift and Java have distinct

method headers which allowed for a straightforward detection of whether the

intended search query was to find Java snippets or to find Swift snippets from

web resources.

Swift is a much more declarative or concise language than Java and that

made it slightly more difficult to generate relevant queries since there isn’t as

much code and context available for frequency analysis to be an accurate query

keyword generator. On the other hand, Java is a much more mature language

and therefore has a lot more solutions, code snippets and support available on

web resources such as StackOverflow. This suggested that despite not having

the best possible keywords in the query, there was still a higher chance of en-

countering a relevant search result and relying on our robust ranking algorithm

to display that result in the top 1 or 2 positions for the programmer to use.

This proposition was proven and discussed in Section 4, where tabular results

are shown with analysis on what the numbers signify.

By implementing the bidirectional component, we pave the path for a more

generalized code recommendation system which can be used for any combina-

tion of languages available. The next section focuses on the evaluation of the

presented approach, detailing the native APIs used, the evaluation process, and

the precision levels obtained.
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Figure 8: Synthesized Swift code snippet for GPS Location (top – YES Result) & and

HashMap (bottom – NO Result)

4. Evaluation

We now present the results of evaluating our approach. Native-to-native

was evaluated using various APIs in Android/Java and iOS/Swift. The APIs
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Table 1: Proof of concept - Android/Java → iOS/Swift

API Experiments Total
Answer

Exists

Pre-

Rank

1

Pre-

Rank 1

or 2

Rank 1
Rank 1

or 2

Services 6
2

(33%)

2

(33%)

2

(33%)

2

(33%)

2

(33%)

String 25
24

(96%)

23

(92%)

24

(96%)

21

(84%)

23

(92%)

ArrayList 22
17

(77%)

10

(45%)

12

(55%)

13

(59%)

14

(64%)

HashMap 13
13

(100%)

9

(69%)

10

(77%)

8

(62%)

10

(77%)

Totals 66
56

(85%)

44

(67%)

48

(73%)

44

(67%)

49

(74%)

Table 2: Proof of concept - iOS/Swift → Android/Java

API Experiments Total
Answer

Exists

Pre-

Rank

1

Pre-

Rank 1

or 2

Rank 1
Rank 1

or 2

Services 6
4

(67%)

2

(33%)

4

(67%)

2

(33%)

4

(67%)

String 25
24

(96%)

20

(80%)

23

(92%)

20

(80%)

24

(96%)

ArrayList 22
21

(95%)

11

(50%)

15

(68%)

19

(86%)

21

(95%)

Dictionary 13
12

(92%)

7

(54%)

7

(54%)

8

(62%)

11

(85%)

Totals 66
61

(92%)

40

(61%)

49

(74%)

49

(74%)

60

(91%)

included sensors (e.g. GPS, accelerometer), network interfaces (e.g. WiFi, Blue-

tooth Low Energy (BLE)), and canonical library classes/data structures (e.g.

String, ArrayList, HashMap).

The main goal of the evaluation was to determine whether the approach pro-
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posed in this work is suitable for adaptive maintenance (i.e., adding new features

to existing applications) and new development. The evaluation of the resulting

synthesized functionality was performed by hand by the primary author, San-

chit Chadha. A graduate of Virginia Tech with 4 years of Java and Android

experience, along with 2 years of iOS development experience with a majority

of applications written in Swift, the primary author was the best candidate to

evaluate the quality of the resulting code produced by native-2-native. Nev-

ertheless, this reliance on a single evaluator presents an external threat to the

validity of our experimental results, as we discuss in Section 5.

The manual annotation included compiling the obtained code with the target

platform compiler and testing its runtime behavior. We evaluated both parts

of the approach – the query formulation component and the ranking algorithm

itself.

To evaluate the quality of the algorithm for generating queries, we checked

for how many of the source code blocks a correct answer was present in at least

one of the retrieved web pages. This evaluation also sets an upper bound on

the performance of the ranking algorithm since the ranking algorithm is only

able to succeed in those cases for which a correct answer exists among all the

retrieved results.

For the evaluation of the ranking algorithm, the results were placed in one of

the following categories: (1) Yes, the synthesized code is correct or salvageable

for the implementation required or (2) No, the synthesized code is completely

irrelevant to the input source code block and unsalvageable. Note that the above

evaluation procedure is a modification of the evaluation presented in the earlier

version of this paper [2] in two respects. First, we evaluate the contribution

of each component; second, we eliminated the Maybe category when deciding

whether the selected code block is relevant. The results are thus not directly

comparable to those presented in the earlier version.

Tables 1 and 2 show the results of converting Java to Swift and Swift to

Java, respectively. The Answer Exists column evaluates the query formulation

algorithm by showing for how many test cases a correct answer exists in at least

26



one retrieved result. This result is higher for the Swift → Java direction, 92%

vs. 87% for the Java → Swift direction.

The Pre-Rank 1 and Pre-Rank 1 or 2 columns represent the correct an-

swers that are in Rank 1 only or either in Rank 1 or 2, respectively, before our

ranking algorithm is applied. This statistic serves as a baseline for the rank-

ing algorithm, as it demonstrates the performance of the ranking algorithm in

the commercial search engine that we query. As shown, pre-rank results for

both directions are fairly similar, indicating the commercial ranking algorithm

is performing consistently.

Finally, the last two columns, Rank 1 and Rank 1 or 2, represent the cor-

rect answers that are in Rank 1 only or in either Rank 1 or 2, respectively,

after our ranking algorithm is applied. If we consider the top 2 results after the

application of the ranking algorithm, 74% of the Java to Swift direction and

91% of the Swift to Java direction are found relevant. In the second-to-last col-

umn (Rank 1) it is shown that 67% and 74% are relevant when the top 1 result

only is considered. Compared to the baseline shown in columns Pre-Rank 1

and Pre-Rank 1 or 2, we obtain a slight improvement of 1% when going from

Java to Swift and a substantial improvement of 17% when going in the opposite

direction. These improvements demonstrate that the features that our search

algorithm is using and that are tailored to the task, are useful. The relevant

features include the number of votes or number of views that an answer from

a web resource has, as well as information about whether an answer has been

officially accepted or not.

Overall, performance is better for the Swift → Java direction, showing how

a more mature and imperative (wordy) language such as Java is more likely to

produce relevant code snippets from web resources.

5. Discussion

The experimental results show that the approach is effective and can serve

as a practical tool for mobile programmers who support cross-platform appli-
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cations. Because the automatically suggested code does not need to be perfect

to provide a high degree of utility to the programmer, our algorithms proved

surprisingly fit for the purposes intended. However, it is not only the fitness of

our algorithms that explains the effectiveness of our approach. These algorithms

work hand-in-hand with the realities of the mobile market, the availability of

web-based programming resources, and the process of suggesting equivalent na-

tive APIs being manageable via tool automation.

The development process of native-2-native is automated rather than

automatic. That is, the code snippets returned by our web queries are not

meant for immediate inclusion into the application codebase. The developer is

expected to first examine and adapt them if necessary. Nevertheless, we expect

that our approach can be conducive to boosting programmer productivity by

automatically forming relevant search queries and ranking the results.

Despite its practical utility, the native-2-native approach has several limi-

tations. The model underlying its searching and ranking algorithms is bound by

the dimensions of the feature vector. In other words, the accuracy of the algo-

rithms is inversely proportional to the size of the total number of unique tokens

comprising a given code block. As a result, mobile developers are likely to find

our approach most effective in those cases when they need to find equivalent

iOS code for small to medium (10-30 lines of code) Android native code blocks.

The second limitation stems from the original closed development model for the

iOS platform. Closed models traditionally result in reduced sharing of program-

ming solutions. Exacerbating the conditions for evaluating the applicability of

our reference implementation is a relative newness of the Swift language. In fact,

we were surprised that our reference implementation was able to synthesize cor-

rect suggestions from a relatively limited set of web-based Swift programming

resources. Nevertheless, several major technological trends are likely to address

this limitation. For one, Swift will be open-sourced in coming releases, while

the amount of available Swift code examples on the web seems to grow by leaps

and bounds.

Our experimental results are subject to both internal and external valid-
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ity threats. The internal validity is threatened by our choice of the program-

ming scenarios used in the experimental evaluation. Although selecting these

particular scenarios is influenced by our own programming practices, the selec-

tions represent fairly standard examples of native API usage and canonical data

structures, covering a wide range of APIs, both in Java and Swift. The external

validity is threatened by relying exclusively on the judgment of the first author

to evaluate the quality of the recommended code snippets. A mobile developer

with a different technical background in terms of familiarity with the Android

and iOS platforms may consider a different percentage of the recommended

code snippets acceptable for further refinement and integration into the code-

base. The first author’s exposure to the Android and iOS platforms was limited

to exclusively academic settings when the research was conducted, so seasoned

mobile developers with industry experience may find a larger percentage of

the recommended snippets useful. Additionally, using multiple annotators with

dissimilar mobile experiences would likely yield additional insights and gener-

alization. Hence, evaluating the native-2-native approach with respect to

multiple developers remains an important direction for future work.

Finally, synthesizing Swift from given Java input is a necessarily difficult

case of cross-language translation. Because Swift is much more declarative (i.e.,

concise) than Java, the translation must produce more declarative output from

more loquacious input. As software engineering is becoming more declarative

in terms of languages, specifications, and invariants, our approach holds a lot of

promise for automatically transitioning current mainstream methods of express-

ing programming information into their declarative counterparts. For example,

our approach can be used to get rid of the wordiness of anonymous inner classes

in the pre-Java8 world, replacing this with code lambda expressions.

6. Related Work

Native-2-native is a representative of a broad class of software engineering

applications known as recommendation systems [12, 13]. Several examples of
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recommendation systems synthesize code snippets from web-based programming

resources [14, 15, 16, 17] or build an intelligent code search engine [18]. We will

discuss how our approach differs from or improves over these examples.

Prompter [14] is an Eclipse plug-in that given the current working code con-

text automatically identifies relevant StackOverflow discussions. Its uniqueness

is in providing a user-controlled confidence threshold to suggest only discus-

sions that surpass this threshold. Compared to native-2-native, Prompter

also makes use of the StackOverflow API, albeit as the only source for rele-

vant discussion and code snippets. A larger search space of our approach [19],

which includes Google Search results in native-2-native, can achieve the level

of precision required for cross-language and platform translation, a feature not

supported by Prompter [14] or [17]. While Prompter locates and presents rel-

evant code snippets, it does not synthesize new code like native-2-native, a

feature that can make a major difference when it comes to user satisfaction.

Other related works make use of statically cached programming resources to

accelerate data retrieval. For example, the approaches presented in [14, 15] rank

output code blocks by normalizing a sigmoid function of the average StackOver-

flow vote count from a June 2013 static data dump. Selene [20] recommends

equivalent code blocks by searching a repository of 2 million example programs

to provide usage examples for a given input code block. Sourcerer [21] is another

code search engine for a large-scale code repository (SourceForge). Strathcona

[22], similarly to the systems above, also uses a repository-based search corpus

and provides the user with a structural overview of relevant code rather than

actual code examples and discussions. A recommendation system developed by

Bacchelli et al. [11] utilizes a vector space model with tf-idf as its frequency

weighting model along with a singular query corpus source of StackOverflow.

Seahawk [16] also uses a static and publicly available dump of StackOverflow

questions and lacks support for Swift.

As mentioned in subsection 2.2 above, StackOverflow receives close to 6,000

new questions a day. A static data snapshot from 2 years ago may be sufficient to

mine for information about established language ecosystems and environments.
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However, the focus of native-2-native is mobile computing with rapidly evolv-

ing programming environments and language ecosystems. By combining vector

space and linear models on live StackOverflow data, native-2-native returns

suggestions that are more relevant, up-to-date, and better geared toward newer

languages, such as Swift. Seahawk motivates the necessity of using the static

dump to be able to search by means of the Apache Solr search system to achieve

high performance efficiency. Although it would be unrealistic to try and match

the performance efficiency of searching against a static local snapshot, we dis-

covered that carefully calibrating weights and feature sets for the tf-idf analysis

and vector space model not only provides complete and relevant results for both

StackOverflow posts and other code sources, but also yields performance levels

sufficient for practical use. Lastly, [18] focuses on providing useful documenta-

tion that supersedes standard API usage documentation. While an important

aspect of the developer’s ability to create mobile applications can at times in-

clude understanding the necessary documentation, native-2-native focuses

instead on the code synthesis and not just on supplemental documentation for

the developer.

The recentness of the Swift language’s entry into the mobile computing space

renders mainstream native transpilation (i.e., source-to-source compilation) sys-

tems inapplicable. For example, Google’s J2ObjC [23] converts pure Java source

code into Objective-C source code. Although a powerful and practical tool used

by Google internally, J2ObjC lacks support for Android APIs and the controller

component of the MVC design pattern, as well as converting to Objective-C

rather than the new standard of Swift. J2ObjC is designed to convert Java

business logic into Objective-C and while this approach is quite useful for cross-

platform applications that are data intensive, it lacks in its ability to provide

support for native mobile APIs. By contrast, native-2-native embraces the

native mobile APIs such as Android and iOS. While it remains unclear whether

rule-based compiler translation is even capable of bridging the differences be-

tween the platforms as architecturally dissimilar as Android and iOS, in the

meantime native-2-native provides a practical solution for deriving working
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Swift code analogous to its Android counterpart.

Cross-platform mobile frameworks, such as ReactNative [24], Cordova [25]

and PhoneGap [26], are increasingly gaining traction, as supporting cross-platform

applications is rapidly becoming required for any non-trivial mobile venture.

Cordova and PhoneGap are designed to produce “web view” based applications

for a mobile platform by allowing the developer to write the base application

in HTML/Javascript/CSS and then to display the application’s UI components

using a provided special framework. ReactNative on the other hand, renders

this base application code into native platform widgets [27] that call native

APIs directly. However, such frameworks are specifically designed to aid in

the development of UIs and views. Hence, they lack support for native mobile

platform APIs that control other platform resources, such as sensors and net-

working. By contrast, the native-2-native approach provides the flexibility,

opportunity, and freedom to use any custom widgets and hardware specific APIs

for cross platform applications, without constraining the developer to a set of

pre-determined widgets, for which it would be impossible to cover all possible

application scenarios of using native APIs.

A representative of yet another approach to support the development of

cross-platform mobile applications is Mobl [28], which provides a domain-specific

language to express mobile functionality in a platform-independent fashion.

Similarly to the cross-platform mobile frameworks discussed above, Mobl also

relies on web application based architectures to simulate native application de-

ployment on mobile devices. Hence, it necessarily has to limit access to cer-

tain hardware services (e.g., low-level network interfaces). Despite its several

promising research ideas, the Mobl approach is not quite ready for practical use,

as its prototype implementation leaves out some language details, such as the

type checker not supporting all properties. Another impediment to practical

adoption is performance, with the non-native end application having to contin-

uously communicate with a server-based cache. By contrast, even our reference

implementation of the native-2-native approach can provide immediate prac-

tical value to the mobile developer by automating the most laborious aspects of
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searching the web for relevant code snippets.

Nguyen et al. [29] present a statistical semantic language model for source

code (SLAMC), an extendable language model that leverages the lexical in-

formation and local context of code tokens. By breaking up the code into

tokens and patterns, this model can aid in language translation and migration.

We could have made use of this model in native-2-native to produce search

queries by analyzing code input. However, the language design differences be-

tween Java and Swift would likely render this model inapplicable as the basis

for translating between these two languages. In other words, Swift’s declarative

design makes it hard to produce valuable semantic patterns, while the plethora

of available mobile APIs would render any semantic language model ineffective

for the native-2-native intended usage scenarios.

Mishne et al. present Prime [30], a tool that provides a searchable and

consolidated index for API usage. The tool mines and indexes code snippets

of a given API to uncover its inner intricacies, with the goal of assisting the

developer with using new APIs. Compared to native-2-native, Prime focuses

on a different problem domain, in which the user is expected to be able to

specify both the query and the intended purpose of using the API. By contrast,

native-2-native automatically generates a search query against a given set

of web-based programming resources rather than a batch of API related code

snippets.

Native-2-native utilizes common themes and features across various prior

recommendation systems, but it applies them to a problem that arises from the

realities of modern mobile development—the necessity of supporting popular

mobile applications on all major platforms, despite the inherent dissimilarities

in the platforms’ languages, APIs, and architectures. Potentially, this problem

may be addressed by state-of-the-art cross-platform source-to-source transla-

tion, with some inroads already in place [31]. Nevertheless, precise source-to-

source compilation capable of translating Java Android to and from Swift iOS

functionality for native APIs remains a futuristic vision.

Finally, by using sources other than just user-driven StackOverflow posts,
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native-2-native mines a wider feature net without being restricted to API

mappings [32]. This property allows our approach to provide potentially more

valuable and relevant search results based on the developer’s code context.

Given that the overriding goal of native-2-native is to aid the developer

by suggesting and synthesizing equivalent code, any new suggested code, as

long as it correctly implements some API, is likely to prove useful to the mobile

developer.

7. Future Work and Concluding Remarks

This article has presented a novel approach for automatic code synthesis from

Android/Java to iOS/Swift and vice versa by utilizing popular web-based pro-

gramming resources. To enable our approach, we first gleaned several insights

underlying the realities of modern mobile software development and the mobile

computing market. Our approach is concretely realized as native-2-native,

which includes primarily extracting core functionality from input Java or Swift

source code, searching, ranking, and code synthesis. The reference implemen-

tation of native-2-native is an Eclipse plug-in that allows the developer to

select input mobile source code and choose from the top two returned search

results before using this selection to synthesize the output target mobile source

file.

Since the approach is bidirectional, both Android and iOS developers can

take advantage of this system to ease their effort in developing a cross platform

mobile application. The evaluation showed that 74% of code block results from

Java → Swift and 91% of code block results from Swift → Java produce useful

and intended functionality for the subject native API experiments. These results

indicate that the presented approach can become a pragmatic and valuable

programming tool in the arsenal of mobile software developers.

One potential direction for future work entails reusing the search data in

an intelligent manner. Our current approach relies on generating a document

corpus upon each query, but these results are discarded for all future queries, not
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just locally for a particular user but across all users. If instead, these meta-data

objects were saved globally to become accessible for all users, then our approach

could be further optimized in the following two major ways. First, the potential

use of a preference server would facilitate an ability to predict the semantics of

future queries made by a particular user based on previous inquiries they made.

This predicted potential query could be weighted along with the newly generated

meta-data object and form the user’s next query. Secondly, we could store all

meta-data objects across all users in a set of online clusters. The clusters would

be defined by some similarity measure related to the original ranking model.

This optimization would facilitate a speedup when a user’s query is within the

cluster and within some threshold of similarity specified by the user, as one then

would not need to continue a full web search for potential equivalent Swift/Java

code blocks.

Another potential avenue for improvement is to incorporate the translation

of the “Model” component of an application’s Model-View-Controller pattern.

This enhancement could be accomplished by integrating with native-2-native

the previously discussed [23] or another source-to-source translator of non-

Android Java code. Similarly, we can further improve the translation and rank-

ing by allowing users to rate the code block returned by the algorithm. These

ratings would then be incorporated into future queries not just for this user but

for all users making similar queries.

Yet another future work direction would expand the number of target plat-

forms to Windows Phone and platform-independent JavaScript frameworks such

as PhoneGap [33]. The developer would implement a new feature on one plat-

form and then get suggestions for all the other supported platforms. Comparing

the software metrics of the equivalent code blocks on different platforms can

shed light on various software engineering properties of different languages and

architectures.

Finally, another interesting direction for future work concerns the query

component of native-2-native. As shown in Section 4, while for the majority

of test cases (85% when converting to Swift and 92% when converting to Java)
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the queries that we create can retrieve at least one relevant answer, we still miss

quite a few cases. In the future, we plan to explore the exact causes of the

cases in which our query generation fails and develop methods for improving

the generation of queries. In particular, we plan to increase the effectiveness

of our query generation algorithm by applying Natural Language Processing

techniques. These techniques have potential to increase the precision of selecting

relevant query terms as well as to enrich the queries by applying paraphrasing

and assigning linguistic structures to the resulting queries.

Availability. native-2-native is available from https://github.com/antuanb/

Native-2-Native. The site includes the full source code for the approach, in-

cluding the integration with Eclipse, open-source license, detailed results, and

additional evaluation use cases.
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