
RT-Trust: Automated Refactoring for Trusted

Execution Under Real-Time Constraints

Yin Liu, Kijin An, and Eli Tilevich
Software Innovations Lab

Virginia Tech
{yinliu,ankijin,tilevich}@cs.vt.edu

Abstract

Real-time systems must meet strict timeliness requirements.
These systems also often need to protect their critical pro-
gram information (CPI) from adversarial interference and
intellectual property theft. Trusted execution environments
(TEE) execute CPI tasks on a special-purpose processor, thus
providing hardware protection. However, adapting a system
written to execute in environments without TEE requires
partitioning the code into the regular and trusted parts. This
process involves complex manual program transformations
that are not only laborious and intellectually tiresome, but
also hard to validate and verify for the adherence to real-time
constraints. To address these problems, this paper presents
novel program analyses and transformation techniques, ac-
cessible to the developer via a declarativemeta-programming
model. The developer declaratively specifies the CPI portion
of the system. A custom static analysis checks CPI specifica-
tions for validity, while probe-based profiling helps identify
whether the transformed system would continue to meet
the original real-time constraints, with a feedback loop sug-
gesting how to modify the code, so its CPI can be isolated.
Finally, an automated refactoring isolates the CPI portion for
TEE-based execution, communicatedwith through generated
calls to the TEE API. We have evaluated our approach by suc-
cessfully enabling the trusted execution of the CPI portions
of several microbenchmarks and a drone autopilot. Our ap-
proach shows the promise of declarative meta-programming
in reducing the programmer effort required to adapt systems
for trusted execution under real-time constraints.

Keywords trusted execution, real-time systems, declarative
meta-programming, software refactoring, program analyses

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the owner/author(s).
GPCE’18, November 2018, Boston, Massachusetts, United States
© 2018 Copyright held by the owner/author(s).
ACM ISBN 123-4567-24-567/08/06.
https://doi.org/10.475/123_4

ACM Reference Format:

Yin Liu, Kijin An, and Eli Tilevich. 2018. RT-Trust: Automated Refac-
toring for Trusted Execution Under Real-Time Constraints. In Pro-
ceedings of 17th International Conference on Generative Program-
ming: Concepts & Experience (GPCE’18). ACM, New York, NY, USA,
13 pages. https://doi.org/10.475/123_4

1 Introduction

The execution of mission-critical real-time systems must
comply with real-time constraints. Many such systems also
contain vulnerable critical program information (CPI, e.g.,
sensitive algorithms and data) that must be protected. Fail-
ing to satisfy either of these requirements can lead to cata-
strophic consequences. Consider using an autonomous de-
livery drone to transport packages, containing food, water,
medicine, or vaccines, to remote and hard-to-reach locations.
Emergency personnel and professional nature explorers of-
ten depend on drone delivery when dealing with various
crisis situations. The drone’s navigation component has real-
time constraints; if it fails to compute the instructions for
the autopilot to adjust the flight’s directions or airspeed in
a timely fashion, the drone may become unable to properly
adjust its trajectory and deviate from the programmed de-
livery route. Since the cargo often must be delivered under
strict time requirements, deviating from the shortest route
can cause the entire delivery mission to fail. In addition, the
software controlling the navigation module constitutes crit-
ical program information (CPI). If an ill-intentioned entity
takes control over the module’s execution, the entire drone
can be misrouted, causing the delivery to fail. Irrespective
of the causes, the consequences of a failed delivery can be
potentially life-threatening.
Hardware manufacturers have started providing trusted

execution environments (TEEs), special-purpose processors
that can be used to execute CPI-dependent functionality. TEE
can reliably isolate trusted code (i.e., in the secure world)
from regular code (i.e., in the normal world); the secure
world comes with its own trusted hardware, storage, and
operating system. A special communication API is the only
avenue for interacting with TEE-based code. With the TEEs
being hard to compromise, isolating CPI in the secure world
effectively counteracts adversarial attacks and prevents in-
tellectual property theft. However, to benefit from trusted
execution, systems must be designed and implemented to
use TEE. Adapting existing real-time systems to use TEE

https://doi.org/10.475/123_4
https://doi.org/10.475/123_4

GPCE’18, November 2018, Boston, Massachusetts, United States Yin Liu, Kijin An, and Eli Tilevich

requires non-trivial, error-prone program transformations,
while the transformed system’s execution must continue to
adhere to the original real-time constraints.
In particular, a developer transforming a system to take

advantage of the newly introduced TEE module requires
undertaking the following tasks: 1) isolate CPI-dependent
code; 2) redirect invocations of CPI functions to TEE com-
munication API calls; 3) verify that the transformed system
continues to meet the original real-time constraints. Notice
that all of these tasks are hard to perform correctly by hand.
To complete task 1), a developer not only needs to cor-

rectly extract the CPI-dependent code from the system, but
also correctly identify all the dependencies; due to the poten-
tial complexity of these dependencies, some CPI-dependent
code cannot be isolated in TEEs. To ascertain these depen-
dencies requires deep familiarity with the source code. As is
often the case, developers performing adaptive maintenance
are often not the ones who wrote the original system. To fa-
cilitate this difficult and error-prone process, prior work has
proposed automatic program partitioning, even in the pres-
ence of pointer-based function parameters [29]. However,
this prior work leaves out the issues of verifying whether
a given partitioning strategy is valid or whether the parti-
tioned system would comply with the real-time constraints.

To complete task 2), the developer needs to manually write
the communication logic required for the normal and secure
worlds to talk to each other, correctly applying suitable TEE
APIs that establish customized remote procedure calls (RPC).
However, the TEE provides more than 130 APIs and about
40 data types [39–41], requiring a great deal of time to learn
and master. To complete task 3), the developer must be will-
ing to develop additional test cases that can verify whether
the transformed system satisfies the original real-time con-
straints. Existing approaches take advantage of profiling
tools, including Pin tool [30] and gperftools [24], which re-
quire that profiling probes be added by hand.
To facilitate the process of adapting real-time systems to

protect their CPI-dependent code using a TEE, this paper
presents RT-Trust, a program analysis and transformation
toolset that supports developers in partitioning C-language
systems in the presence of real-time constraints. Through a
meta-programming model, the developer annotates individ-
ual C functions to be isolated into the secure world. Based on
the annotations, the RT-Trust static and dynamic analyses
determine whether the suggested partitioning strategy is
feasible and whether the partitioned system would comply
with the original real-time constraints. A continuous feed-
back loop guides the developer in restructuring the system,
so it can be successfully partitioned. Finally, RT-Trust trans-
forms the system into the regular and trusted parts, with
custom generated RPC communication between them. If the
transformed code fails to meet real-time constraints, it raises

custom-handled exceptions. RT-Trust reduces the program-
mer effort required to partition real-time systems to take
advantage of the emerging TEEs.

The contribution of this paper is three-fold:
1. AFullyDeclarativeMeta-ProgrammingModel for

partitioning real-time systems written in C to take ad-
vantage of the TEEs; the model is realized as domain-
specific annotations that capture the requirements of
different partitioning scenarios.

2. Static and Dynamic Checking Mechanisms that
identify whether a system can be partitioned as speci-
fied, and how likely the partitioned version is to meet
the original real-time constraints. The analyses inte-
grate a feedback mechanism that informs developers
how they can restructure their systems, so they can
be successfully partitioned.

3. RT-Trust Refactoring, a compiler-based program
transformation for C programs that operates at the IR
level, while also generating customized RPC commu-
nication and real-time deadline violation handling.

To concretely realize our approach, we have created RT-
Trust as custom LLVM passes and runtime support. Our
evaluation shows that RT-Trust saves considerable program-
mer effort by providing accurate program analyses and au-
tomated refactoring. RT-Trust’s profiling facilities also ac-
curately predict whether refactored subjects would continue
meeting real-time constraints.

The remainder of this paper is structured as follows. Sec-
tion 2 provides the technical background for this research.
Section 3 gives an overview of the RT-Trust toolchain. Sec-
tion 4 details the RT-Trust meta-programming model. Sec-
tion 5 and Section 6 further describe the RT-Trust mecha-
nisms for profiling and code refactoring, respectively. Section
7 describes our evaluation. Section 8 discusses related work.
Section 9 presents conclusions and future work directions.

2 Background

In this section, we introduce the technical background re-
quired to understand our contributions. We briefly discuss
CPI, TEE, and real-time constraints. Afterward, we discuss
known security risks that motivate this work.

2.1 Critical Program Information (CPI)

Although the concept of critical program information was
originally introduced by the US DoD as representing parts
of a system that can raise the technological superiority for
war-fighters [32], the term has been embraced by all security-
sensitive domains. The CPI can include algorithms, data,
and hardware of a security-sensitive system. In our design,
we designate C functions as constituting CPI, if they hap-
pen to contain critical algorithms and manipulate sensitive
data. Hence, RT-Trust operates at the function level, includ-
ing static analysis, profiling, and code transformation. Our

RT-Trust GPCE’18, November 2018, Boston, Massachusetts, United States

declarative programming model provides special-purpose
annotations for developers to mark the CPI functions (we
detail our programming model in Section 4).

2.2 Trusted Execution Environment (TEE)

TEE [19] offers a standardized hardware solution that pro-
tects CPI from being compromised. First, TEE isolates a se-
cure area of the CPU (i.e., the secure world for trusted ap-
plications) from the normal area (i.e., the normal world for
common applications). That is, the secure world possesses
a separate computing unit and an independent OS that pre-
vents unauthorized external peripherals from directly exe-
cuting the trusted tasks. In addition, TEE provides trusted
storage that can only be accessed via the provided API to
securely persist data. Finally, TEE offers an API to the se-
cure communication channel, as the only avenue for external
entities to communicate with the secure world.

OP-TEE [33] Following the Global Platform Specifications
of TEE, OP-TEE provides a hardware isolation mechanism
that primarily relies on the ARM TrustZone, with three es-
sential features: 1) it isolates the Trusted OS from the Rich
OS (e.g., Linux) to protect the executions of Trusted Applica-
tions (TAs) via underlying hardware support; 2) it requires
reasonable space to reside in the on-chip memory; 3) it can
be easily pluggable to various architectures and hardware.

2.3 Real-Time Constraints

In general, real-time constraints [23] are the restrictions on
the timing of events that should be satisfied by a real-time
system; these restrictions can be classified into time deadlines
and periodicity limits [28]. The former restricts the deadline
by which a particular task must complete its execution. The
latter restricts how often a given event should be triggered.
For example, given the periodicity limit of 50ms and the time
deadline of 20ms, a drone task must obtain its GPS location
within 20ms for each 50ms period.

In our case, due to the memory limitation of the TEE, the
event’s memory consumption is another constraint. As we
mentioned in Section 2.2, the TEE should maintain a small
footprint by occupying limited space in memory. Also, if the
TEE solution applies eMMC RPMB [34] as trusted storage
only, the memory consumption is limited by the size of the
RPMB partition, due to the persistent objects being stored
in the RPMB.

As determined by how strict the timeliness requirements
are, real-time constraints are categorized into hard and soft.
The former constraints must be satisfied while the latter can
be tolerated with associated ranges. For example, the drone’s
navigation algorithmmust respond on time (hard constraint),
otherwise, it will lose its way or crash. In contrast, when
watching amovie online, the delay in network transfer can be
accepted, as it will not crash the video player (soft constraint).

2.4 Security Risks

Attackers are known to go after compromising CPI. A large
amount of known relevant security risks have been reported
by the Common Vulnerabilities and Exposures (CVE). First,
without a proper access control and authentication mech-
anism for critical functions, attackers can maliciously ac-
cess and consume the significant amount of resources [3, 4,
10, 11, 13]. Secondly, the possibility of information leakage
sharply rises by the vulnerable critical functions [1, 2, 12], es-
pecially the functions processing sensitive data. For example,
by compromising the data transmitting process, attackers
maliciously obtain the current GPS locations [8]. In addi-
tion, arbitrarily exposing critical functions for interaction
with external actors can be illegally exploited, which causes
file deletion [6] or credential disclosure [5]. Further, reverse
engineering can disclose critical algorithms [9] or expose
sensitive data (e.g., the encryption keys) [7].

3 Solution Overview

In this section, we introduce the toolchain of our compiler-
based analyzer and code refactoring tool, and then we de-
scribe the input & output of RT-Trust.

Regular

Trusted

RPC

Exception
Handler

Domain-Specific
Annotation

1
2

3

4

Static
Analysis

Dynamic
Analysis

5

6

7 Generation

Partition

Figure 1. The RT-Trust Process

3.1 Software Development Process

Figure 1 describes the software development process of using
RT-Trust to partition real-time systems to take advantage of
TEEs. Given a real-time system, the developer first specifies
the CPI-dependent functions in the source code using the
RT-Trust domain-specific annotations (DSA) (step 1). The
annotated source code is then compiled to LLVM intermedi-
ate representation (IR). The compilation customizes Clang
to specially process the DSA metadata (step 2). To check
whether the specified partitioning scenario can be realized,
RT-Trust statically analyzes the system’s call graph (step 3).
Given the system’s call graph and a partitioning specification,
RT-Trust constructs the partitionable function graph (PFG),
which contains all the information required to determine if
the specification is valid.While static analysis determines the
semantic validity of a partitioning specification, a separate

GPCE’18, November 2018, Boston, Massachusetts, United States Yin Liu, Kijin An, and Eli Tilevich

dynamic analysis phase estimates whether the partitioned
systemwould continue complyingwith the original real-time
constraints. To that end, RT-Trust instruments the system
by inserting probes at the IR level (step 4). The system is
then exercised under expected loads. The results are then
reported back to the developer (step 5). This prior analysis
and validation routines make it possible for the developer to
modify the original system make it possible to move the CPI
functions to execute in the secure world. Once the developer
determines that the system can be partitioned with satisfying
performance, RT-Trust then automatically divides the sys-
tem’s IR into regular and trusted parts (step 6). The former
will be run in the normal world, while the latter in the secure
world. To enable these two portions to communicate with
each other, RT-Trust generates customized RPCs, including
marshaling and unmarshaling logic. In addition, to handle
the violations of real-time constraints, RT-Trust generates
exception handling code (step 7). Notice that all these code
generation processes are configured entirely by the DSAs
applied to the system’s CPI functions. Having undergone a
partitioning, the system then goes through the final round of
verification by dynamically profiling the partitioned system
(step 4). The profiling identifies the performance bottleneck
while estimating whether the transformed system continues
to satisfy the real-time constraints (step 5). Finally, RT-Trust
generates a descriptive report that includes the outcomes of
various profiling scenarios and suggestions for the developer
about how to remove various performance bottlenecks.

3.2 Code Transformation and Generation

Figure 2 shows RT-Trust’s code transformation and genera-
tion. As input, RT-Trust receives the annotated source code.
As output, it transforms the IR of the input source and also
generates additional code that is compiled and integrated
into the normal and secure world partitions. For the normal
world, RT-Trust transforms the IR by inserting profiling
probes, exception handlers, and RPC communication. All
generated code can be further customized by hand if neces-
sary. The transformed IR code, generated source code (i.e.,
RPC client stub), and referenced libraries (e.g., encryption,
profiling, etc.) are eventually linked with the normal world’s
executable. Similarly, for the secure world, the trusted IR,
RPC server stub, and the referenced libraries are linked with
the secure world’s executable, which can run only in the
secure world of TEE.

4 Meta-programming Model

To accommodate application programmers, RT-Trust fol-
lows a declarative programming paradigm, supported by
a meta-programming model. This model makes use of the
annotation facility recently introduced into the C language.
A C programmer can annotate functions, variables, parame-
ters, and code blocks to assign a customized semantics. The
semantics is realized by the compiler by means of a special

Normal world Secure world

Regular bytecode

Annotated Source Code

Inserted RPC
Callsites

Inserted Profiling
Probes

Inserted Exception
Handler Callsites

RPC client stub

Referenced
Libraries

Trusted bytecode

RPC server stub

Referenced
Libraries

Report

Input

Output

Figure 2. RT-Trust’s Input & Output
processing plug-in. For example, if a function is annotated
with nothrow, the compiler can check that the function con-
tains no statement that can raise exceptions; if the check fails,
an informative message can be displayed to the programmer,
who then can modify the function’s code accordingly. De-
spite the large set of built-in Clang annotations [38], none
of them are designed for real-time systems and TEE.
For our meta-programming model, we design and im-

plement a set of domain-specific annotations that describe
the real-time constraints, code transformation & generation
strategies required to automatically transform a real-time
system, so its subset can be partitioned to TEE for trusted ex-
ecution. We call our domain-specific annotations Real-Time
Trust Annotations, or RTTA for short. We integrate RTTAs
with the base Clang annotation system, so the compiler can
analyze and transform real-time systems, as entirely based on
the declarative annotations, thus reducing the development
burden by enabling powerful compiler-based code analysis
and transformation. In this section, we first describe the gen-
eral syntax of RTTAs. Then, we introduce each annotation
and its dependencies in turn. Finally, we illustrate how to
use these annotations through an example.

4.1 General Syntax

In the code snippet below, RTTA follows the GNU style
[20], one of the general syntaxes supported by Clang. The
form of attribute specifier is __attribute__((annotation-list)).
The annotation list is a sequence of annotations separated
by commas. Each annotation contains the annotation name
and a parenthesized arguments list. An arguments list is a
possibly empty comma-separated sequence of arguments.

1 __attribute__((annotation-list))

2 annotation-list ::= annotation_1, ..., annotation_n

3 annotation ::= name (argument-list)

4 argument-list ::= argument_1, ..., argument_n

4.2 Code Partition Annotation

The code partition annotation informs RT-Trust to per-
form two tasks: 1) analyze the validity of partitioning for
each annotated function, and 2) extract the annotated func-
tions that can be partitioned from the source code. The

RT-Trust GPCE’18, November 2018, Boston, Massachusetts, United States

annotation partition can be applied to any declared func-
tion in the source code, and takes no arguments, as follows:
__attribute__((partition))

subjects ::= Function

4.3 Code Generation Annotations

Code generation annotations that appear in the code snippet
below enable developers to customize 1) a specific commu-
nication mechanism (e.g., RPC) for the normal and secure
worlds to talk to each other, and 2) an exception handler for
handling the cases of violating real-time constraints when
executing a partitioned system. When annotating with rpc,
the developer can specify the “shared_memory” or “socket”
options as the underlying RPC delivery mechanism. The
options of “yes” and “no” specify whether to encrypt or
compress the data transferred between the partitions. By
annotating pointer and array parameters with paramlen, the
developer can indicate their length. The length attributes
are used by the marshaling and unmarshaling phases on the
RPC communication mechanism. For the pointer parameters,
the length attribute reports the size of the data the pointer
is referencing. Although recent advances in complex static
analysis make it possible to automatically infer the size of
pointer-based parameters [29], our design still relies on the
programmer specifying the length information by hand. This
design choice allows for greater flexibility. The paramlen an-
notation makes it possible for the developer to reserve the
required amount of space for the annotated parameters, and
then specify how to generate customized marshaling and
unmarshaling code. If the developer also annotates that func-
tion with memsize, the RT-Trust dynamic analysis suggests
an approximated length value (details appear in Section 5.2.2).
By annotating with exhandler, the developer can specify how
to handle the exceptions potentially raised by the annotated
function. The annotation includes a handler function’s name,
and after how many violations of the real-time constraints
it should be triggered. We explain how RT-Trust generates
code, as based on these annotations, in Section 6.

1 __attribute__((rpc(type, encryption, compression)))

2 type ::= shared_memory | socket

3 encryption ::= yes | no

4 compression ::= yes | no

5 subjects ::= Function

6
7 __attribute__((paramlen(length)))

8 length ::= n (n is integer, n > 0)

9 subjects ::= Variable and Parameter;

10
11 __attribute__((exhandler(times, method, constraint_type)))

12 times ::= n (n is integer, n > 0)

13 method ::= "default" | method name (string)

14 constraint_type ::= exetime | period | memsize

15 subjects ::= Function

4.4 Profiling Annotations

The annotations in the code snippet below configure the RT-
Trust profiler to determine if a partitioned system would
still meet the original real-time constraints.

Profiling Real-Time Constraints RTTA provides three
annotations for profiling to determine whether given real-
time constraints would remain satisfied: 1) exetime (i.e., ex-
ecution time), 2) period, and 3) memsize (i.e., memory con-
sumption). The“type” argument specifies whether the con-
straint is “hard” or “soft”. The “hard” mode means that vio-
lating the constraint is unacceptable, while the “soft” mode
means such violations, to some extent, can be accepted. Based
on these types, the profiler reports whether the annotated
function can be transformed for trusted execution, without
violating the specified real-time constraints. For the execu-
tion time attribute, the developer can specify the profiling
method (i.e., “timestamping” and “sampling”) and the com-
pletion deadline (i.e., “deadline”) to meet. For period, one
can specify the time interval between invocations of a CPI
function. For memory consumption, the memory size can be
limited by setting an upper-bound via the “limit” argument.

1 __attribute__((exetime(type, method, deadline)))

2 type ::= hard | soft

3 method ::= timestamping | sampling

4 deadline ::= n (n is integer, n > 0)

5 subjects ::= Function

6
7 __attribute__((period(type, interval)))

8 type ::= hard | soft

9 interval ::= n (n is integer, n > 0)

10 subjects ::= Function

11
12 __attribute__((memsize(type, limit)))

13 type ::= hard | soft

14 limit ::= n (n is integer, n > 0)

15 subjects ::= Function

4.5 RTTA Dependencies

As compared to the annotations that can be specified in-
dependently, such as partition, rpc, and the profiling anno-
tations, other annotations must be specified with their de-
pendencies. For example, the annotation paramlen cannot be
specified, unless rpc also appears among the function’s an-
notations. The paramlen annotation is used for generating
the marshaling and unmarshaling logic of the RPCs. Like-
wise, without annotations specifying real-time constraints,
the exception handling code is unnecessary: exhandler must
come together with real-time constraint annotations. The
RT-Trust analysis process checks the adherence to these
domain-specific semantics of RTTA and reports the detected
violations.

GPCE’18, November 2018, Boston, Massachusetts, United States Yin Liu, Kijin An, and Eli Tilevich

4.6 RTTA in Action

Consider the example originally described in Section 1: a
drone navigates, with its autopilot continuously obtaining
the current geolocation from the GPS sensor to adjust the fly-
ing trajectory in a timely fashion. The function of obtaining
geolocations is CPI-dependent, and as such should be pro-
tected from potential interference by placing it in the secure
world. To that end, the developer annotates that function,
informing RT-Trust to transform the code, so the function is
separated from the rest of the code, while also generating the
necessary code for communicating and exception handling.
Optionally, the system can be annotated to be profiled for the
expected adherence to the original real-time constraints after
it would be partitioned. The function getGPSLocation anno-
tated with RTTAs appears below. Based on these annotations,
our customized Clang recognizes that the function needs to
be partitioned and moved to the secure world (partition).
Meanwhile, RT-Trust will generate a communication chan-
nel over shared memory with the encrypted and compressed
transferred data between the partitions (rpc). In addition,
during the marshaling and unmarshaling procedure, the al-
located memory space for the function’s parameter will be
100 bytes (paramlen). Further, RT-Trust will insert the mea-
surement code to profile the function’s real-time constraints.
It instruments the function’s execution time with the “times-
tamping” algorithm and “hard” mode to check whether it
meets the deadline (20 ms) (exetime), and checks whether
the invocation interval would not exceed 50 ms (period). It
estimates the memory consumption, and checks whether
it exceeds 1024 byte in the “soft” mode (memsize). Finally, if
the real-time deadline constraint has been broken more than
once, it will be handled by the exception handler function
“myHandler” (exhandler). The declarative meta-programming
model of RT-Trust automates some of the most burden-
some tasks of real-time system profiling and refactoring. In
the rest of the manuscript, we discuss some of the details
of the RT-Trust profiling, code transformation, and code
generation infrastructure.

1 Location loc; // global variable
2 Location getGPSLocation // CPI function
3 (GPSState * __attribute__((paramlen(100))) state)

4 __attribute__((partition,

5 rpc(shared_memory, yes, yes),

6 exhandler(1, "myHandler", exetime),

7 exetime(hard, timestamping, 20),

8 period(hard, 50),

9 memsize(soft, 1024))) {...}

10 // adjusting Drone direction
11 void adjustDirection(Location l) {...}

12 void fly() {

13 loc = getGPSLocation(state);

14 adjustDirection(loc);

15 }

16

17 int main() {

18 fly(); ... }

5 Analyses for Real-Time Compliance

The automated refactoring described here has several appli-
cability limitations. One set of limitations stems from the
structure of the system and its subset that needs to be moved
to the trusted partition. Another set of limitations are due
to the increase in latency that results in placing a system’s
subset to the trusted execution zone and replacing direct
function calls with RPC calls. The increase in latency can
cause the system to miss its real-time deadlines, rendering
the entire system unusable for its intended operation. To
check if the structure of the system allows for the refactor-
ing to be performed, RT-Trust features a domain-specific
static analysis. To estimate if the refactored system would
still meet real-time requirements, RT-Trust offers several
profiling mechanisms, which are enabled and configured by
means of RTTAs.

5.1 Static Analysis

RT-Trust determines whether a given partitioning scenario
can be realized, as specified by the annotated functions, by
checking the following two rules that we call “zigzag” and
“global variable.” RT-Trust checks these rules in turn to
immediately identify and report those cases when a specified
partitioning request cannot be fulfilled.

Zigzag Rule Consider a set of functionsT1, annotated with
the partition annotation, and another set of functionsT2, con-
taining the rest of all the functions. The zigzag rule states
that functions in T2 cannot invoke functions in T1, as such
invocations would form a zigzag pattern. This restriction is
caused by the strict one-way invocation of the functions in
the trusted zone from the normal world. The normal world
can call functions in the trusted zone, but not vice versa. One
can fix violations of the zigzag rule by annotating the offend-
ing function, called from the trusted zone, with partition,
so it would be placed in the trusted partition as well, so it
would be invocable via a local function call. Our assumption
of relying on the static version of the call graph is reasonable
for the target domain of real-time systems written in C, in
which functions are bound statically to ensure predictable
system execution.

Global Variable Rule Since the partitioning is performed
at the function level, the distributed global state cannot be
maintained. As a result, each global variable can be placed
either in the normal or trusted partition and accessed locally
by its co-located functions. Violations of this rule can be
easily detected. One exception to this rule is constant global
variables, which due to being unmodifiable can be replicated
across partitions.

Partitionable Function Graph To check the above rules,
RT-Trust introduces a partitionable function graph (PFG).

RT-Trust GPCE’18, November 2018, Boston, Massachusetts, United States

Functions annotated
with “partition”

Parameters &
Global variables

Annotations

fly

adjustDirection getGPSLocation

main

subgraph of fly()

main

flyadjustDirection

getGPSLocation

Secure worldNormal world

fly

adjustDirection getGPSLocation

main

PFG

Global Var: loc

fly

adjustDirection getGPSLocation

Global Var: loc

Parameters: state

paramlen:100

exetime: hard,timestamping,20
frequency:hard,50
memsize:soft,1024
exhandler:1, myHandler, exetime
rpc: shared_memory, yes, yes

Functions

(a) (b) (c) (d)

Global Var: loc

Global
Var: loc

Figure 3. The RT-Trust PFG

This data structure extends a call graph with special mark-
ings for the functions that can be partitioned. To construct
a PFG, RT-Trust starts by walking the call graph for the
functions annotated with partition. By checking whether
these functions comply with the zigzag and global variable
rules, it removes the function nodes that break these rules.
The resulting graph is the PFG.

Specifically, RT-Trust sets each function annotated with
partition as the root function, and then traverses its sub-
graph. During the traversal, RT-Trust checks whether all
subgraph elements are also annotated with partition. If so,
RT-Trust adds the entire subgraph to the PFG, and then
moves to the next annotated function. After examining the
zigzag rule, the PFG contains several sub-callgraphs of non-
zigzag functions annotated to be partitioned. Next, RT-Trust
collects global variable information for each function already
in the PFG. It then examines whether the variables are oper-
ated by the functions in the PFG only. If so, RT-Trust adds
these functions to the PFG. Otherwise, RT-Trust removes
the entire subgraph containing the violating function from
the PFG. The final PFG contains all the necessary information
(e.g., global variables, parameters, annotations, etc.) required
to partition the system. Our deliberate design choice is to
exclude any automatically calculated dependencies of the
annotated functions, requiring the programmer to explicitly
specify each function to be placed into the trusted zone in
order to prevent any unexpected behavior.
Recall the example in Section 4.6: if the developer anno-

tates only function fly as partition, as shown in Figure 3
(a), the sub-callgraph of fly is fly->getGPSLocation and fly-
>adjustDirection. In that case, placing function fly in the
trusted partition leads to zigzag invocations between the
normal and secure worlds (Figure 3 (b)), which violates the
zigzag rule. To fix such violations, the developer can anno-
tate the other two offending functions (i.e., getGPSLocation
and adjustDirection) with partition, so that both of them will
also be placed in the secure world along with their caller fly.
After the zigzag violation is eliminated, RT-Trust then adds
fly’s sub-callgraph to the PFG.

Now, suppose the global variable loc are accessed not only
by function fly (i.e., the secure world) but also by function
main (i.e., the normal world). Because this scenario violates
the global variable access rule, the entire sub-callgraph of fly
should be removed from the PFG. To fix this violation, the
developer can modify function main, so it would no longer
access loc (Figure 3 (c)), or make this global variable constant.
Finally, RT-Trust constructs the PFG with all the necessary
information for each function, as shown in Figure 3 (d).

5.2 Dynamic Analyses

RT-Trust offers dynamic analyses to help identify how
likely the specified partitioning would meet the original real-
time constraints. Since it would be impossible to guarantee
whether the profiled executionwould produce theworst-case
scenario, our analyses are applicable only to soft real-time
systems. Figure 4 shows howRT-Trust provides the dynamic
analyses capability. The analyses start with the transforma-
tion of the original LLVM IR program. That is, RT-Trust
inserts profiling code at the affected call sites of the anno-
tated functions for their corresponding real-time constraints.
Instead of inlining the entire profiling code, RT-Trust inserts
calls to special profiling functions, which are made available
as part of shared libraries. Currently, RT-Trust provides
them on its own, but similar profiling functionality can be
provided by third-party libraries as well. This flexible design
enables developers to provide their custom profiling libraries
or add new features to the libraries provided by RT-Trust
to further enhance the profiling logic. After linking these
shared libraries with the transformed IR program, developers
run the executable to trigger the inserted function calls to
invoke the profiling functions in the shared libraries. These
functions measure the real-time constraints and persist the
result data for future analysis. Finally, RT-Trust analyzes
the data, estimating whether the annotated functions can
meet the original real-time requirements, and reporting the
results back to the developer.

GPCE’18, November 2018, Boston, Massachusetts, United States Yin Liu, Kijin An, and Eli Tilevich

Shared
Libraries

Transform Run Analyze

ReportIR

Result

Insert

exe

 Link

Figure 4. The RT-Trust Analyses Procedure

5.2.1 Analyzing Time Constraints

As mentioned in Section 2, time constraints mainly include
the time deadline and the periodicity limit. The former de-
fines the upper boundary for a function to complete its exe-
cution, the latter restricts the time that can elapse between
any pair of invocations.
To analyze these constraints, RT-Trust first transforms

the original LLVM IR program via two key steps: 1) find the
correct call sites, and 2) insert the suitable function calls. In
the transformation procedure below, given a function an-
notated with exetime, RT-Trust traverses its instructions to
locate the first instruction in its entry basic-block1, inserting
the profiling probes and then that starts a profiling session.
Likewise, RT-Trust locates each return instruction of the
annotated function, inserting the probes that issue the end
profiling session, which stops the profiling.

1 define i32 @function(i8* %param) { // annotated function
2 entry:

3 <--- start probe()

4 % first instruction
5 ...

6 <--- stop probe()

7 ret i32 %retval
8 }

Which probe functions are inserted depends on how RT-
Trust is configured by means of RTTAs. The two main
configurations are timestamping and sampling. For times-
tamping, RT-Trust inserts probes that invoke the timestamp
functions to retrieve the current system time by means of
gettimeofday() (in the normal world), or TEE_GetREETime() (in
the secure world to check the adherence to real-time con-
straints post-partitioning). For sampling, RT-Trust inserts
invocations to the sampling functions of ProfilerStart() and
ProfilerStop(), which make use of gperftools (a third-party
profiling tool). Similarly, to analyze periodicity limits, RT-
Trust locates the first instruction of the function annotated
with period, and then inserts invocations of the functions to
record the current system time.

All these measured results are first stored in a hash table,
with the key corresponding to the annotated function’s name
and the value to its profiling record. Finally, the hash table
is persisted into an external file for further exploration.

1basic-block is a straight-line code sequence. It has no in branches, except
at the entry, and no out branches, except the exit.

5.2.2 Memory Consumption Profiling

Memory consumption is an important issue for trusted exe-
cution. First, TEEs are designed to occupy limited memory
space (as discussed in Section 2). In addition, pointer parame-
ters of the trusted functions refer to data structures that need
to be dynamically allocated as part of their marshaling/un-
marshaling phases (as discussed in Section 4.3). To ascertain
the expected memory consumption requirements of the CPI
functions, RT-Trust profiles the amount of memory con-
sumed by the functions annotated with memsize. The profiling
comprises the traversal of the functions’ IR instructions to lo-
cate all the allocation sites (i.e., the alloca instruction). Each
allocation site is then instrumented to keep track of the total
amount of allocated memory.

1 %var = alloca i32 , align 4
2 <--- function(i32, 4)

The allocated memory volume is continuously monitored
as the profiled system is being executed. The presence of
pointers complicates the profiling procedure. To properly
account for all the memory consumed by the data struc-
ture referenced by a pointer, RT-Trust implements a heuris-
tic approach based on SoftBound [31]. To provide effective
memory safety checking, SoftBound transforms the subject
program to keep the base and bound information for each
pointer as metadata. This metadata is passed along with the
pointer. In other words, when passing the pointer as a pa-
rameter from one function to another, the metadata is also
be passed. SoftBound makes use of this metadata to enforce
program memory safety.
Based on SoftBound, RT-Trust inserts invocations to

record the pointer metadata (base and bound) of the anno-
tated function, whenever pointers are allocated or accepted
as parameters from other functions. RT-Trust calculates
each pointer’s length via the formula lenдth = bound − base .
By combining the basic and pointer type’s lengths, RT-Trust
finally determines the upper boundary of the memory vol-
ume consumed by each annotated function.

5.3 Exception Handling

Having annotated a function with real-time constraints, de-
velopers can also specify how to handle the violation of these
constraints via the exhandler annotation. To locate the correct
call site for inserting exception handling code, RT-Trust tra-
verses instructions of each defined function in the original
program, finding the invocations to the annotated functions.
Then, RT-Trust inserts “if-then-else” blocks by means of
LLVM API SplitBlockAndInsertIfThenElse. The “if-then-else”
blocks include: 1) the block that contains if condition, 2)
“then” block, 3) “else” block, and 4) the block after “then”
and “else” blocks. RT-Trust creates an if condition with the
annotated threshold for the number of violations of a given
real-time constraint. Then, it inserts the invocation to the
specified exception handling function into the “then” block,

RT-Trust GPCE’18, November 2018, Boston, Massachusetts, United States

and inserts the invocation to the original function into the
“else” block as follows:

1 Ret = function(Args); // is transforms to :
2 if (t reaches threshold)

3 Ret = exhandling_function(Args);

4 else

5 Ret = function(Args);

Then, RT-Trust inserts another invocation before the
“if-then-else” blocks to calculate the number of observed vio-
lations of the given real-time constraint (i.e., “t” in the above
code snippet). Finally, the inserted code logic can automati-
cally switch between the original function and the exception
handling function, which can be specified by the developer
or generated by RT-Trust as a default option.

6 Customizable RPC Communication

Generation and Transformation

The partitioning process entails dividing the original IR pro-
gram into two partitions: trusted and regular. The former
contains the partitioned CPI-dependent functions to be put
to execute in the secure world. The latter contains the re-
maining functions to keep executing in the normal world.
To enable these two partitions to communicate with each
other, RT-Trust first generates an RPC client stub (for the
normal world) and a server stub (for the secure world). The
client stub passes the function’s parameters and its unique ID,
which identifies the function to execute in the secure world.
The server stub receives this information and invokes the
corresponding CPI function in the trusted partition. Then,
RT-Trust transforms the functions in the regular partition,
redirecting local function invocations of the CPI function to
the invocations of the corresponding RPC stub.

6.1 Generating RPC stubs

RT-Trust generates RPC stubs based on the developer’s
configuration in annotation rpc and paramlen. The argument
“type” of rpc specifies which underlying delivery mechanism
(i.e., shared memory or socket) to generate. This delivery
mechanism also depends on the actual TEE implementa-
tion in place. To exchange data between the normal and
secure worlds, OP-TEE provides 4 shared memory buffers,
used as the delivery mechanism. However, RT-Trust must
marshal/unmarshal function parameters to and from these
buffers. This explicit parameter marshaling makes the gen-
erated code suitable for any communication mechanism.

The client stub includes four code sections: 1) prologue ini-
tializes the TEE context and opens the communication ses-
sion, 2) epilogue closes the session and finalizes the context,
3) marshaling allocates memory space and marshals the func-
tion’s parameters, and 4) the RPC function communicates
between the normal and secure worlds by calling TEE API
methods TEEC_InvokeCommand. Correspondingly, the server stub

also includes four code sections: 1) the entry points of open-
ing & closing the communication session, 2) unmarshaling

unmarshals the received data, 3) a dispatcher that receives
invocations and data from the client stub, and forwards it to
corresponding CPI wrapper functions, and 4) the wrapper
functions receive the data from the dispatcher and invoke
the actual CPI functions in the trusted partition.
During the code generation, RT-Trust checks the argu-

ments “encryption” and “compression” of annotation rpc. If
the developer specifies that encryption or compression is
needed, RT-Trust encrypts and compresses the data after
the marshaling phase in the client stub, and decrypts and de-
compresses the data before unmarshaling phase in the server
stub. Although RT-Trust uses existing open source libraries
for encryption and compression, developers can switch to us-
ing different implementations. Further, when generating the
marshaling component for the client stub, RT-Trust checks
the paramlen to determine how much memory to allocate.

For ease of portability, all generated code is compliant with
the C language specification, without any custom extensions.
Furthermore, all the referenced libraries are open source and
plug-in replaceable. Finally, all the TEE APIs in the generated
code conform to the Global Platform Specification of TEE.
Thus, developers can either directly use the generated code
for the trusted execution or extend that code in order to meet
some special requirements.

6.2 Redirecting Function Calls

As CPI functions are moved to the secure world, their callers
need to be redirected to invoke the original function’s RPC
stubs instead. RT-Trust exhaustively examines all function
invocation instructions, locates the ones invoking the CPI
functions, and replaces the callee’s name to the CPI func-
tion’s RPC stub. Since CPI functions and their RPC stubs
share the same signature, no other changes are necessary:

1 Ret = original_function(Args); // is transformed into :
2 Ret = RPC_function(Args);

Now, the original function call is redirected to RPC call to
invoke the corresponding partitioned function in the secure
world. Recall the transformation of exception handling in
Section 5.3, in that case, developers can specify the original
function as the exception handling function. That is, if the
violations of real-time constraints reach the threshold, the
inserted exception handling logic can automatically change
back to invoking the original function rather than the func-
tion in the secure world:

1 Ret = RPC_function(Args); //is transformed into :
2 Ret = (reach threshold) ? original_function(Args)

3 : RPC_function(Args);

GPCE’18, November 2018, Boston, Massachusetts, United States Yin Liu, Kijin An, and Eli Tilevich

7 Evaluation

We answer the following research questions in our eval-
uation: Effort: How much programmer effort is saved by
applying RT-Trust? Performance:What is the added per-
formance overhead imposed by performing a RT-Trust pro-
filing on a representative real-time system? Value: How ef-
fectively can RT-Trust determine whether a planned refac-
toring would preserve the original real-time constraints?
Accuracy: How accurately can our profiling infrastructure
predict the expected performance deterioration caused by a
RT-Trust refactoring? Limitations: What are some limita-
tions of RT-Trust’s applicability?

7.1 Experimental Setup

To answer the evaluation questions above, we have con-
cretely implemented RT-Trust and assessed its various char-
acteristics in a realistic deployment scenario, whose experi-
mental setup is as follows.

Software & Hardware RT-Trust integrates RTTAs with
the public release of Clang 4.0 and implements a series of
LLVM Passes (e.g., code analysis, partition, RPC stubs genera-
tion, profiling code insertion) in LLVM 4.0. Since ourmemory
consumption profiler relies on SoftBound, which runs only
in LLVM 3.4, RT-Trust implements a separate LLVM Pass
that profiles the memory consumed by specified functions
in that earlier LLVM version. The benchmarks that we use
for evaluating RT-Trust are set up on Raspberry Pi 3 (RPi3),
running OP-TEE 3.1.0 on Linux version 4.6.3, 1.4GHz 64-bit
quad-core ARMv8 CPU, and 1 GB SDRAM.

Microbenchmarks & Realistic real-time system Real-
time systems that can benefit from RT-Trust possess two
characteristics: 1) have CPI-dependent functions that should
be protected in the secure world, and 2) have the execution
of these functions restricted by some real-time constraints.
To establish the baseline for the performance behavior

of such systems, we choose several classic algorithms as
our microbenchmarks, which are widely used by existing
real-time system. To mimic the real-time invocations of our
microbenchmarks, we have written custom unit test suites
that exercise the CPI-dependent functionality. For example,
we simulate the invocation of a certain algorithm 50 times.
The selected benchmarks are algorithmic in nature and in-
clude CRC32, DES, RC4, PC1, and MD5. One can imagine
realistic application scenarios, in which the execution of
these benchmarks needs to be protected under real-time con-
straints. Because OP-TEE supports only C code as running in
the secure world, we select the C implementations of these
algorithms provided by one of the LLVM test suites [14].
To ascertain the applicability of RT-Trust to an actual

real-time system, we apply it to secure two CPI tasks of
an open-source autopilot PX4 (v1.8.0) [37]: airspeed and
waypoint computations.

Evaluation Design As described in Section 5 and 6, devel-
opers can customize the implementations of profiling and
RPC stubs. However, we evaluate only the default options of
using RT-Trust to establish its baseline performance, thus
not unfairly benefiting our implementation.

We evaluate programmer effort as the uncommented lines
of code (ULOC): 1) those required to write RTTAs, 2) those
automatically generated by RT-Trust, and 3) those that the
developer is expected to fine-tune by hand (e.g., some source
code may need to be modified to fix the violations of our
partitioning rules, or the parameter’s length in an RPC stub
may need to be manually adjusted). Since without RT-Trust,
the programmer would have to write all the code by hand,
we measure how much effort is saved by using RT-Trust.

To evaluate performance, we measure the overhead of
RT-Trust’s profiling for execution time, invocation interval,
and memory consumption. For the former two, RT-Trust
provides different profiling libraries, applying TEE APIs in
the secure world. Sowe evaluate them in both the normal and
secure worlds. For the latter, memory consumption should
be profiled before partitioning and generating RPC stubs. So,
we evaluate it only in the normal world.

To evaluate value and accuracy, we first apply RT-Trust
to profile the specified CPI functions before and after moving
them to the secure world. Then, we compare the results re-
ported by the profiling of the original unpartitioned system
with respect to meeting the real-time constraints with that
of its partitioned version. Further, by analyzing the perfor-
mance results, we discuss 1) which procedure causes the
performance deterioration after moving the CPI function to
the secure world, and 2) whether we can accurately predict
the specified function’s performance in the secure world by
analyzing its performance in the normal world. To explain
RT-Trust’s limitations limitations by describing several pro-
gram cases that require a prohibitively high programmer
effort to adjust the generated RPC stubs.

7.2 Results

We verify the correctness of RT-Trust by applying all its
LLVM passes (i.e., code analysis, transformation, and genera-
tion) to microbenchmarks. We evaluate RT-Trust as follows.

Table 1. Programmer Effort (ULOC)

Alg. RTTAs Generate & Transform Adjust
CRC32 5 388 0
PC1 4 344 6
RC4 3 292 3
MD5 3 364 3
DES 2 244 15

Effort Table 1 shows the effort saved by applyingRT-Trust.
Generally, the total number of ULOC automatically gener-
ated & transformed by RT-Trust (244 ∼ 388 ULOC) greatly

RT-Trust GPCE’18, November 2018, Boston, Massachusetts, United States

Table 2. Value & Accuracy of RT-Trust

Algorithm RPC (ms) Execution Time (ms) Invocation Interval (ms) Memory (byte)
Before After Before After Parameter Local

CRC32 253.17 1.15 1.30 1.24 269 40 92
PC1 273.38 68.22 13 68.10 314 32 22
RC4 236.96 500.52 447 506.95 705 240 1144
MD5 177.83 267.43 254 267.62 446 20000 316
DES 201.99 24.18 32 24.30 224 528 72

PX4 - airspeed 256.35 ≈ 0 ≈ 0 50.16 305 12 12
PX4 - next_waypoint 264.96 0.40 0.46 500.75 773.67 40 40

surpasses those required to manually annotate (< 5 ULOC)
and modify (0 ∼ 15 ULOC) the subject programs. RT-Trust
eliminates the need for the developer to write this code.
In other words, to apply RT-Trust, the developer adds a
tiny number of ULOC, mainly as annotations and minor ad-
justments of generated code. The number of annotations is
directly proportional to the number of CPI functions. The
manual adaptations are required to remove program patterns
that prevent RT-Trust from successfully partitioning the
code, and to support the pointer parameters of CPI functions.

Specifically, to move the 5 CPI functions of CRC32 to the
secure world requires exactly 5 ULOC of RTTAs. No man-
ual adjustment is necessary, as the code comes amenable to
partitioning and no pointer parameters are used. In contrast,
15 ULOC are required to adjust the generated RPC commu-
nication for DES, due to a CPI function’s pointer parameter
pointing to a struct of two char arrays. In other words, after
profiling the amount of consumed memory, the developer
needs to adjust the memory allocation for marshaling/un-
marshaling these pointer parameters. For PC1, 6 additional
ULOC are needed to fix a violated global variable rule.

Table 3. Overhead of RT-Trust profiling (ms)

Exec. Time Invocation Intvl. Memory
Normal Secure Normal Secure Parameter Local
0.442 144 0.418 139 0.051 0.053

Performance Table 3 reports on the overhead of RT-Trust
profiling, which captures and calculates the execution time,
invocation interval, and memory consumption. Recall that
RT-Trust profiles systems before and after refactoring them.
The before mode estimates whether the refactored system
would continuemeeting real-time constraints, while the after
mode compares the estimated execution characteristics with
those performed on TEE hardware. Hardware environments
heavily impact the profiling overhead, with an order of mag-
nitude difference: ≈ 0.4ms in the normal worlds vs. ≈ 140ms
in the secure world. This drastic performance difference is
due to the Linux system calls using in the normal world
(e.g., gettimeofday) being greatly more efficient than the TEE
APIs (e.g., TEE_GetREETime). The heavy performance overhead

of trusted execution prevents the profiling of real trusted
system operation. When estimating memory consumption,
the overhead of capturing the memory allocated for local
variables and the pointer parameters never exceeds 0.06ms .
However, the overall overhead depends on the total number
of local variables and pointer parameters. For example, if a
function allocates memory for n variables, the total overhead
would be ≈ 0.053 ∗ n. Thus, to prevent the profiling over-
heads from affecting the real-time constraints, the RT-Trust
profiling is best combined with the system’s testing phase.
Value & Accuracy Table 2 shows the results of profiling
the CPI functions, with the profiling overhead subtracted.
For the execution time, generally, the time consumed by
our micro-benchmarks and the CPI PX4 functions in the
secure world (“After” column) is similar to that in the normal
world (“Before” column). Hence, moving the CPI functions
to TEE should not deteriorate their performance. Thus, it is
reasonable to estimate the performance in the secure world
based on that in the normal world. However, the RPC com-
munication slows down the invoked functions due to the
introduction of two time-consuming mechanisms: connec-
tion maintenance to the secure world (e.g., initialize/finalize
context, open/close session), and invoking the partitioned
functions in the secure world (e.g., allocate/release shared
memory, marshal and unmarshal parameters).
Given a real-time deadline to complete the execution of

a CPI function, the post-refactoring profiling helps deter-
mine if the deadline is being met. The source code for PX4’s
airspeed calculation sets the execution timeout to 300 mil-
liseconds. Since the maximum post-refactoring latency of
256.35 is below this deadline, moving this CPI function to
TEE preserves its real-time constraints.

RPC communication delays the invocation interval of our
micro-benchmarks and the CPI PX4 functions. For the micro-
benchmarks, due to invoking each function in a loop, the next
invocation immediately follows the previous invoke. Thus,
in the normal world, each function’s invocation interval (“Be-
fore” column of “Execution Time”) is similar to its execution
time (“Before” column of “Invocation Interval”). However,
in the secure world, these invocation intervals become very
long, which is similar to the time consumed by RPC commu-
nication (“RPC” column) plus the time in the secure world

GPCE’18, November 2018, Boston, Massachusetts, United States Yin Liu, Kijin An, and Eli Tilevich

(“After” column of “Execution Time”). For the PX4 autopilot,
which computes airspeed and next waypoint every 50ms and
500ms, respectively, the RPC communication delays these
invocation intervals to 305ms (≈ 256.35(RPC) + 0(execution
time) +50) and 773.67ms (≈ 264.96(RPC) + 0.46(execution
time) +500). Hence, RPC communication is the performance
bottleneck of trusted execution.

Thememory consumption profiling helps determinewhich
functions can be run in the secure world. Based on the pro-
filed memory consumed, developers can increase the size of
TEE’s shared memory. For example, if the TEE’s memory
size is limited to 10 ∗ 1024 bytes, and the MD5’s char pointer
parameter requires 20000 bytes, to run MD5 in the secure
world requires modifying the TEE hardware configuration.
The PX4 CPI functions (i.e., airspeed and next_waypoint),
which perform numeric computations, require limited mem-
ory (i.e., for the double / float parameters / variables).

Limitations Consider the scenario of passing a struct pointer
to the specified function. The struct pointer is a linked list
that has 100 elements. Each element has a char pointer as the
data field. In that case, developers need to modify more than
100 ULOC in the generated RPC stubs to allocate the correct
memory size for the marshaling and unmarshaling opera-
tions. In other words, the more complex pointer-based data
structures are, the greater the programming effort is required
to adapt generated code. Thus, the utility of RT-Trust dimin-
ishes rapidly for refactoring functions with complex pointer
parameters. In addition, sometimes dynamically allocated
objects can greatly differ in size depending on input. Hence,
systems must be profiled with typical input parameters.

8 Related Work

RT-Trust is related to DSLs for real-time system, code refac-
toring for trusted execution, and execution profiling.
DSLs for real-time systems: Real Time Logic (RTL) formal-
izes real-time execution properties [26]. Subsequent DSLs
for real-time systems include Hume that helps ensure that
resource-limited, real-time systemsmeet execution constraints
[22]. Flake et al. [16] add real-time constraints to the Object
Constraint Language (OCL). Several efforts extend high-level
programming languages to meet real-time execution require-
ments [15, 18, 25]. The RTTAs of RT-Trust can also be
considered a declarative DSL for real-time constraints, al-
beit to be maintained when the original real-time system is
refactored to protect its CPI functionality.
Code refactoring for trusted execution: ZØ compiles an-
notated C# code of a centralized application into a distributed
multi-tier version to improve confidentiality and integrity, as
directed by an automatically produced zero-knowledge proof
of knowledge [17]. PtrSplit partitions C-language systems,
while automatically tracking pointer bounds, thus enabling
the automatic marshaling and unmarshaling of pointer pa-
rameters in RPC communication [29]. Senier et al. present a

toolset that separates security protocols into several isolated
partitions to fulfill security requirements [36]. Rubinov et al.
leverage taint analysis to automatically partition Android
applications for trusted execution [35]. TZSlicer automati-
cally detects and slices away sensitive code fragments [42].
Lind et al. present a source-to-source code transformation
framework that extracts subsets of C programs to take ad-
vantage of Intel SGX enclaves [27]. RT-Trust differs in its
ability to protect CPI under real-time constraints. RT-Trust
not only transforms code, but also applies static and dynamic
analyses to determine the validity of a partitioning plan and
its likelihood of meeting the original real-time constraints.
Execution Profiling: Several existing dynamic profiling
tools, such as Pin tool [30], gperftools [24], and Gprof [21],
ascertain program performance behavior. However, Pin and
gperftools require that developers manually add profiling
probes. Further, to profile program in TEE, one would have
to pre-deploy their dependent libraries, which may be in-
compatible with particular TEE implementations. RT-Trust
differs by automatically inserting profiling probes into the
specified functions. Further, it estimates TEE-based execu-
tion characteristics without any pre-deployment.

9 Future Work and Conclusion

One future work direction is to reduce the programmer effort
required to provide the code for marshaling and unmarshal-
ing complicated struct pointers with unknown bounds in-
formation. Another direction in this area is to automatically
detect which functions are CPI-dependent and need to be
protected in the secure world. Finally, we plan to experiment
with symbolic analysis as another way of estimating the
performance of refactored systems.

We have presented RT-Trust that provides a fully declar-
ative meta-programming model with RTTA, static and dy-
namic analyses for determining whether the suggested par-
titioning strategy is reasonable, and whether the partitioned
system would comply with the original real-time constraints,
and an automated refactoring that transforms the original
system while generating custom RPC communication and
exception handling code. Our approach automatically refac-
tors real-time systems with CPI-dependent functions for
trusted execution under real-time constraints. The evalua-
tion results of applying RT-Trust to micro-benchmarks and
a drone autopilot indicate the promise of declarative meta-
programming as a means of reducing the programmer effort
required to isolate CPI under real-time constraints.

Acknowledgements

The authors would like to thankDr. Thidapat (Tam) Chantem,
Zheng “Jason” Song, and the anonymous reviewers, whose
insightful comments helped improve the technical content
of this paper. The research is supported by the NSF through
the grant # 1650540.

RT-Trust GPCE’18, November 2018, Boston, Massachusetts, United States

References

[1] 2015. CVE-2015-8944. https://cve.mitre.org/cgi-bin/cvename.cgi?
name=CVE-2015-8944

[2] 2016. CVE-2016-9103. https://cve.mitre.org/cgi-bin/cvename.cgi?
name=CVE-2016-9103

[3] 2017. CVE-2017-12733. https://cve.mitre.org/cgi-bin/cvename.cgi?
name=CVE-2017-12733

[4] 2017. CVE-2017-13997. https://cve.mitre.org/cgi-bin/cvename.cgi?
name=CVE-2017-13997

[5] 2017. CVE-2017-1500. https://cve.mitre.org/cgi-bin/cvename.cgi?
name=CVE-2017-1500

[6] 2017. CVE-2017-17672. https://cve.mitre.org/cgi-bin/cvename.cgi?
name=CVE-2017-17672

[7] 2017. CVE-2017-2704. https://cve.mitre.org/cgi-bin/cvename.cgi?
name=CVE-2017-2704

[8] 2017. CVE-2017-5239. https://cve.mitre.org/cgi-bin/cvename.cgi?
name=CVE-2017-5239

[9] 2017. CVE-2017-6094. https://cve.mitre.org/cgi-bin/cvename.cgi?
name=CVE-2017-6094

[10] 2017. CVE-2017-7493. https://cve.mitre.org/cgi-bin/cvename.cgi?
name=CVE-2017-7493

[11] 2018. CVE-2018-1219. https://cve.mitre.org/cgi-bin/cvename.cgi?
name=CVE-2018-1219

[12] 2018. CVE-2018-6412. https://cve.mitre.org/cgi-bin/cvename.cgi?
name=CVE-2018-6412

[13] 2018. CVE-2018-8922. https://cve.mitre.org/cgi-bin/cvename.cgi?
name=CVE-2018-8922

[14] 2018. Mirror of official llvm git repository. https://github.com/
llvm-mirror/test-suite

[15] Gregory Bollella and James Gosling. 2000. The real-time specification
for Java. Computer 33, 6 (2000), 47–54.

[16] Stephan Flake and Wolfgang Mueller. 2002. An OCL extension for real-
time constraints. In Object Modeling with the OCL. Springer, 150–171.

[17] Matthew Fredrikson and Benjamin Livshits. 2014. ZØ: an optimiz-
ing distributing zero-knowledge compiler. In Proceedings of the 23rd
USENIX conference on Security Symposium. USENIX Association, 909–
924.

[18] Narain Gehani and Krithi Ramamritham. 1991. Real-time concurrent
C: A language for programming dynamic real-time systems. Real-Time
Systems 3, 4 (1991), 377–405.

[19] GlobalPlatform. 2011. GlobalPlatform, TEE System Architecture, Tech-
nical Report. https://www.globalplatform.org/specificationsdevice.
asp

[20] GNU. 2018. Using the GNU Compiler Collection (GCC). http://gcc.
gnu.org/onlinedocs/gcc/Attribute-Syntax.html

[21] Susan L Graham, Peter B Kessler, and Marshall K Mckusick. 1982.
Gprof: A call graph execution profiler. In ACM Sigplan Notices, Vol. 17.
ACM, 120–126.

[22] Kevin Hammond and Greg Michaelson. 2003. Hume: a domain-specific
language for real-time embedded systems. In International Conference
on Generative Programming and Component Engineering. Springer, 37–
56.

[23] Pao-Ann Hsiung. 2001. Real-Time Constraints. In Institute of Informa-
tion Science, Academia Sinica, Taipei.

[24] Google Inc. 2018. gperftools. https://github.com/gperftools/gperftools

[25] Yutaka Ishikawa and Hideyuki Tokuda. 1990. Object-oriented real-time
language design: Constructs for timing constraints. Vol. 25. ACM.

[26] Farnam Jahanian and Ambuj Goyal. 1990. A formalism for monitoring
real-time constraints at run-time. In Digest of Papers. Fault-Tolerant
Computing: 20th International Symposium. IEEE, 148–155.

[27] Joshua Lind, Christian Priebe, Divya Muthukumaran, Dan O’Keeffe,
P Aublin, Florian Kelbert, Tobias Reiher, David Goltzsche, David Ey-
ers, Rüdiger Kapitza, et al. 2017. Glamdring: Automatic application
partitioning for Intel SGX. USENIX.

[28] Chung Laung Liu and James W Layland. 1973. Scheduling algorithms
for multiprogramming in a hard-real-time environment. Journal of
the ACM (JACM) 20, 1 (1973), 46–61.

[29] Shen Liu, Gang Tan, and Trent Jaeger. 2017. PtrSplit: Supporting
General Pointers in Automatic Program Partitioning. In Proceedings of
the 2017 ACM SIGSAC Conference on Computer and Communications
Security. ACM, 2359–2371.

[30] Chi-Keung Luk, Robert Cohn, Robert Muth, Harish Patil, Artur Klauser,
Geoff Lowney, Steven Wallace, Vijay Janapa Reddi, and Kim Hazel-
wood. 2005. Pin: building customized program analysis tools with
dynamic instrumentation. In Acm sigplan notices, Vol. 40. ACM, 190–
200.

[31] Santosh Nagarakatte, Jianzhou Zhao, Milo MK Martin, and Steve
Zdancewic. 2009. SoftBound: Highly compatible and complete spatial
memory safety for C. ACM Sigplan Notices 44, 6 (2009), 245–258.

[32] United States. Department of Defense. 2015. Critical Program Informa-
tion (CPI) Identification and ProtectionWithin Research, Development,
Test, and Evaluation (RDT & E). http://www.secnav.navy.mil/ig/Lists/
Instructions%20Links/DispForm.aspx?ID=15

[33] OP-TEE. 2018. Open Portable Trusted Execution Environment. https:
//www.op-tee.org/

[34] Anil Kumar Reddy, Periyasamy Paramasivam, and Prakash Babu Vem-
ula. 2015. Mobile secure data protection using eMMC RPMB partition.
In Computing and Network Communications (CoCoNet), 2015 Interna-
tional Conference on. IEEE, 946–950.

[35] Konstantin Rubinov, Lucia Rosculete, Tulika Mitra, and Abhik Roy-
choudhury. 2016. Automated partitioning of android applications for
trusted execution environments. In Software Engineering (ICSE), 2016
IEEE/ACM 38th International Conference on. IEEE, 923–934.

[36] Alexander Senier, Martin Beck, and Thorsten Strufe. 2017. Pretty-
Cat: Adaptive guarantee-controlled software partitioning of security
protocols. arXiv preprint arXiv:1706.04759 (2017).

[37] PX4 Dev Team. 2018. PX4. http://px4.io/
[38] The Clang Team. 2018. Attributes in Clang. https://clang.llvm.org/

docs/AttributeReference.html
[39] GlobalPlatform Device Technology. June 2010. TEE Client API Specifi-

cation. https://www.globalplatform.org/specificationsdevice.asp
[40] GlobalPlatform Device Technology. June 2013. Trusted User Interface

API. https://www.globalplatform.org/specificationsdevice.asp
[41] GlobalPlatform Device Technology. June 2016. TEE Internal Core API

Specification. https://www.globalplatform.org/specificationsdevice.
asp

[42] Mengmei Ye, Jonathan Sherman, Witawas Srisa-an, and Sheng Wei.
2018. TZSlicer: Security-aware dynamic program slicing for hardware
isolation. In 2018 IEEE International Symposium on Hardware Oriented
Security and Trust (HOST). IEEE, 17–24.

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-8944
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-8944
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-9103
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-9103
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-12733
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-12733
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-13997
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-13997
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-1500
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-1500
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-17672
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-17672
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-2704
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-2704
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-5239
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-5239
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-6094
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-6094
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-7493
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-7493
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-1219
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-1219
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-6412
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-6412
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-8922
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-8922
https://github.com/llvm-mirror/test-suite
https://github.com/llvm-mirror/test-suite
https://www.globalplatform.org/specificationsdevice.asp
https://www.globalplatform.org/specificationsdevice.asp
http://gcc.gnu.org/onlinedocs/gcc/Attribute-Syntax.html
http://gcc.gnu.org/onlinedocs/gcc/Attribute-Syntax.html
https://github.com/gperftools/gperftools
http://www.secnav.navy.mil/ig/Lists/Instructions%20Links/DispForm.aspx?ID=15
http://www.secnav.navy.mil/ig/Lists/Instructions%20Links/DispForm.aspx?ID=15
https://www.op-tee.org/
https://www.op-tee.org/
http://px4.io/
https://clang.llvm.org/docs/AttributeReference.html
https://clang.llvm.org/docs/AttributeReference.html
https://www.globalplatform.org/specificationsdevice.asp
https://www.globalplatform.org/specificationsdevice.asp
https://www.globalplatform.org/specificationsdevice.asp
https://www.globalplatform.org/specificationsdevice.asp

	Abstract
	1 Introduction
	2 Background
	2.1 Critical Program Information (CPI)
	2.2 Trusted Execution Environment (TEE)
	2.3 Real-Time Constraints
	2.4 Security Risks

	3 Solution Overview
	3.1 Software Development Process
	3.2 Code Transformation and Generation

	4 Meta-programming Model
	4.1 General Syntax
	4.2 Code Partition Annotation
	4.3 Code Generation Annotations
	4.4 Profiling Annotations
	4.5 RTTA Dependencies
	4.6 RTTA in Action

	5 Analyses for Real-Time Compliance
	5.1 Static Analysis
	5.2 Dynamic Analyses
	5.3 Exception Handling

	6 Customizable RPC Communication Generation and Transformation
	6.1 Generating RPC stubs
	6.2 Redirecting Function Calls

	7 Evaluation
	7.1 Experimental Setup
	7.2 Results

	8 Related Work
	9 Future Work and Conclusion
	References

