
CONCURRENCY AND COMPUTATION: PRACTICE AND EXPERIENCE
Concurrency Computat.: Pract. Exper. 2013; 00:1–18
Published online in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/cpe

Improving the Survivability of RESTful Web Applications via
Declarative Fault Tolerance

John Edstrom and Eli Tilevich∗

Virginia Tech

SUMMARY

The popular Representational State Transfer (REST) architectural style for constructing web applications
offers simplicity and scalability advantages. However, to improve the survivability of a RESTful application,
programmers commonly find themselves writing vast amounts of non-trivial, ad-hoc fault-tolerance code.
Network volatility, HTTP server errors, service outages—all require custom fault handling code, whose
effective implementation requires considerable programming expertise and effort. These implementation
impediments hinder the survivability of RESTful applications—without proper fault tolerance functionality,
these applications are likely to crash when experiencing faults.
To provide a systematic and principled approach to handling faults in RESTful applications, this article
presents FT-REST—an architectural framework for specifying fault tolerance functionality declaratively
and then translating these specifications into platform-specific code. FT-REST encapsulates fault tolerance
strategies in XML-based specifications and compiles them to modules that reify the requisite fault tolerance.
To validate our approach, we have applied FT-REST to enhance several realistic RESTful applications to
withstand the faults described in their FT-REST specifications. As REST is said to apply verbs (HTTP
commands) to nouns (URIs), FT-REST enhances this conceptual model with adverbs that render REST
reliable via reusable and extensible fault tolerance. Copyright c© 2013 John Wiley & Sons, Ltd.
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1. INTRODUCTION

As computation is moving from the desktop into the cloud, an increasing number of applications
rely on remote functionality provided by web services. Although traditional web services follow
the SOAP standard [25], Representational State Transfer (REST) [9] has been making deep inroads
into the design of the next generation of cloud-based applications. As compared to the previous
generation of SOAP-based applications, RESTful applications offer simplicity, scalability, and
composability advantages. Coined by Roy Fielding in his Ph.D. dissertation, the REST architecture
codifies a set of principles for constructing network-based software, in which a small set of
commands manipulate heterogeneous network resources. The canonical example of REST is HTTP,
a ubiquitous network protocol that manipulates uniform resource identifiers (URIs) by means of
four primary commands: PUT, GET, POST, and DELETE. A foundation of the world wide web,
REST is increasingly becoming the preferred standard for defining web services. In the context of
this article, we refer to RESTful web services as those made available over HTTP.

RESTful services have seen enormous growth and adoption in recent years. Consider the
Programmable Web [17], a web services directory that counts more than 3,000 REST APIs as of
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2 EDSTROM & TILEVICH

this writing. Furthermore, numerous programming frameworks have been developed to facilitate
accessing RESTful services from mainstream programming languages. Examples of popular
commercial frameworks for accessing RESTful services include the Apache HttpClient [1] for Java
and the httplib [18] for Python. In addition, server-side programming frameworks, including Jersey
[15] for Java and Ruby on Rails [19], provide facilities for easy development and deployment of
RESTful services. By alleviating the burdens of developing RESTful applications, these frameworks
spur the growth of RESTful applications.

RESTful applications, as all distributed systems, are vulnerable to partial-failure, in which
different parts of a distributed execution can fail independently. Unfortunately, REST programming
frameworks are designed under the assumption that fault-tolerance is highly application specific,
and as such is better left for the programmer to implement. Although this design assumption is true
in general, the thesis of this work is that fault tolerance in RESTful applications can be rendered
reusable and extensible through an expressive programming framework.

In particular, we observe that the prevailing majority of faults in RESTful applications are
due to one of the following three conditions: network volatility, service unavailability, and server
errors. Furthermore, each of these conditions can be reliably detected with straightforward system
implementation idioms. For example, network volatility is exemplified by unusually high latencies,
congestion, dropped packets, and low bandwidth—all reported as exceptions in the network
APIs of modern programming languages. Service unavailability may not be trivial to detect,
but if this condition is not handled effectively it can quickly render the underlying application
unusable, particularly if the application comprises multiple, distinct services. Nevertheless, a simple
systematic policy that, for example, times-out after a given threshold can meaningfully inform the
user who can then take corrective actions. HTTP server errors have been standardized as error codes
that can easily be identified and appropriately mitigated.

The existing state of the art in creating robust RESTful applications require that the programmer
code defensively taking into consideration all the possible conditions that may arise during the
execution of the application. These conditions depend not only on the application’s business logic,
but also on the specificities of the application’s deployment environment and operation mode.
As a result, the code required to render a RESTful application fault tolerant can quickly grow in
complexity because of the need to handle various special cases, specific to different deployments.
What is even worse is that this painstakingly developed fault tolerance code is inherently non-
reusable, as each deployment environment and application may possess a unique combination of
fault characteristics. Plagued by the necessity to provide custom fault handling code, the RESTful
programmer is left unable to leverage any uniformity in the fault characteristics across services.

In this article, we propose a new approach to rendering RESTful applications fault tolerant
that exploits their architectural commonalities to provide reusable and extensible fault tolerance
modules. Our approach—called FT-REST—is an architectural framework realized as a domain-
specific Fault Tolerance Description Language (FTDL) and a client-side library. To add fault
tolerance to a RESTful application, programmers specify the fault tolerance policies in FTDL; the
FT-REST framework then compiles these FTDL specifications into platform-specific code modules
that can be added to the business logic, rendering it fault tolerant. FTDL specifications can be reused
not only across applications, but can be compiled to a variety of platforms. Furthermore, existing
FTDL specifications can serve as convenient building blocks for designing custom fault handling
strategies.

By addressing the limitations of existing approaches to fault tolerance in RESTful applications,
this article makes the following contributions:

• Fault Tolerant REST (FT-REST): an architectural framework that systematically enhances
RESTful applications with platform-specific fault tolerance functionality.

• Fault Tolerance Description Language (FTDL): an XML-based domain-specific, platform-
independent language that enables reusable and extensible fault tolerance for RESTful
applications.

• Empirical evaluation: a set of case studies that demonstrate how FT-REST can render
realistic RESTful applications resilient against faults common to the REST architecture.
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IMPROVING THE SURVIVABILITY OF WEB APPLICATIONS VIA DECLARATIVE FAULT TOLERANCE 3

1 HttpClient cli = new DefaultHttpClient();
2 cli.getParams().setIntParameter(
3 CoreConnectionPNames.SO_TIMEOUT, 5000);
4 HttpResponse resp = null;
5 for (int i = 0 ; i < 5 ; i++) {
6 try {
7 resp = cli.execute(
8 new HttpGet("http://example.org/products"));
9 }

10 catch (ClientProtocolException e) {
11 //Handle exception
12 }
13 catch (IOException e) {
14 //Means we timed out. Sleep then retry.
15 try {
16 Thread.sleep(1000);
17 }
18 catch (InterruptedException ex) {
19 //Handle exception
20 }
21 continue;
22 }
23 if (resp != null)
24 break;
25 }

Figure 1. Make a GET request using Apache’s HTTPClient library. Retry five times at intervals of 1000 ms.

The rest of this article is structured as follows. Section 2 motivates the problem. Section 3
outlines major fault tolerance strategies in the literature. Section 4 presents the FT-REST framework
and the Fault Tolerance Description Language (FTDL). Section 5 describes FT-REST design and
implementation. Section 6 evaluates our work through case studies. Section 7 discusses the potential
impact of FT-REST. Section 8 compares this work to the related state of the art, and Section 9
explores future directions for FT-REST and presents concluding remarks.

2. MOTIVATION

A typical e-commerce service enables remote users to browse product catalogs, place orders,
and track shipments. These functionalities are commonly exposed as a RESTful web service
interface. Depending on the relative locations of the service’s clients, they may experience various
kinds of faults when invoking different service operations, including network volatility, temporary
service unavailability, and server errors. To handle these faults, programmers employing this
service must provide custom fault handling functionality that suffers from three major limitations:
programmability, reusability, and extensibility.

2.1. Programmability

In a typical client application, fault tolerance functionality is cumbersome to implement. Consider
using the Java Apache HttpClient [1] (Figure 1) or the Python Requests library [2] (Figure 2)
to obtain a list of products. The fault tolerance functionality is simple: if the network times-out,
sleep for one second and retry; repeat five times before giving up. However, the code to implement
this simple fault tolerance functionality is scattered throughout the method, located in exception
handling clauses. A maintenance programmer would be challenged to understand how this code
handles faults.

Notice that almost every RESTful application will likely need to put in place a fault handling
policy as presented here. And yet, this policy is scattered around 25 lines of Java code and around
18 lines of Python code. The implemented policy has hard-coded values for the timeout duration,
number of retries, and the idle period between the retries. Also, this is somewhat of a toy example,
because typically invoking a service requires that more than one fault is properly detected and
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4 EDSTROM & TILEVICH

1 import requests
2 import time
3
4 CONNECTION_TIMEOUT = 5000
5 response = None
6 for i in range(5):
7 try:
8 response = requests.get("http://example.org/products",
9 timeout=CONNECTION_TIMEOUT)

10 except requests.exceptions.Timeout:
11 # Means we timed out. Sleep then retry.
12 time.sleep(1000)
13 continue
14 except Exception:
15 # Handle exception
16 pass
17 if response is not None:
18 break

Figure 2. Make a GET request using the Python Requests library. Retry five times at intervals of 1000 ms.

handled. It would not be unusual to expect a service programmer to spend more time implementing
various fault tolerance features than implementing the core service functionality.

2.2. Reusability

The only way to reuse the fault tolerance functionality in Figure 1 is through copy-and-paste, which
is prone to introducing insidious errors. Additionally, all variables associated with the fault tolerance
functionality would have to be properly updated for each new service invocation. But what is worse
is that any new fault characteristics introduced by a service must be handled in concert with the fault
handling functionality.

With respect to fault tolerance, reusability can be achieved at three different levels. First,
intra-application reusability enables all faults pertaining to invoking the same service in
a given application to be handled uniformly. In our example, an order-placement service
invoked from multiple locations within an application should be able to reuse the same fault
tolerance functionality. With existing fault tolerance implementation mechanisms, intra-application
reusability is impossible.

Second, inter-application reusability enables all faults pertaining to invoking the same service
across multiple applications to be handled uniformly. In our example, the product browsing service
will likely be used by multiple applications. Although each application will use this service for its
individual business purposes, the potential faults are likely to be identical, defined by the nature
of the service rather than the business context under which it is used. However, the hand-coded
fault tolerance functionality does not lend itself to easy reuse even within the ecosystem of a single
language.

Finally, cross-platform reusability enables all faults pertaining to invoking the same service across
multiple applications written in different languages to be handled uniformly. Standard web services
have achieved a remarkable level of cross-platform reusability of their core logic, in which XML-
based interfaces can be easily translated to any client platform. Unfortunately, the corresponding
manually-coded, fault tolerance functionality has to be reimplemented for each client platform. As
a specific example, the code within Java exception handlers would not be reusable in C#, even if the
fault characteristics of the service and the fault tolerance policy in place are exactly the same. When
the amount of custom fault handling code starts to surpass that of core business logic, the Platform
Lock-In anti-pattern [3] is likely to manifest itself.

In summary, traditional approaches to implementing fault tolerance in RESTful applications
cannot achieve reusability at the intra-application, inter-application, or cross-platform levels.
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IMPROVING THE SURVIVABILITY OF WEB APPLICATIONS VIA DECLARATIVE FAULT TOLERANCE 5

1 HttpClient cli = new DefaultHttpClient();
2 cli.getParams().setIntParameter(
3 CoreConnectionPNames.SO_TIMEOUT, 4000);
4 HttpResponse resp = null;
5 int sleepTime = 1000;
6 for (int i = 0 ; i < 10 ; i++) {
7 try {
8 resp = cli.execute(
9 new HttpGet("http://example.org/products"));

10 }
11 catch (ClientProtocolException e) {
12 //Handle exception
13 }
14 catch (IOException e) {
15 //Means we timed out. Sleep then retry.
16 try {
17 Thread.sleep(sleepTime);
18 sleepTime *= 2;
19 }
20 catch (InterruptedException ex) {
21 //Handle exception
22 }
23 continue;
24 }
25 if (resp != null) {
26 if (resp.getStatusLine().getStatusCode() == 503)
27 continue;
28 break;
29 }
30 }

Figure 3. If network times out or a status code is 503, retry the service (Java version).

1 import requests
2 import time
3
4 CONNECTION_TIMEOUT = 4000
5 response = None
6 sleep_time = 1000
7 for i in range(10):
8 try:
9 response = requests.get("http://example.org/products",

10 timeout=CONNECTION_TIMEOUT)
11 except requests.exceptions.Timeout:
12 # Means we timed out. Sleep then retry.
13 time.sleep(sleep_time)
14 sleep_time *= 2
15 continue
16 except Exception:
17 # Handle exception
18 pass
19 if response is not None:
20 if response.status_code == 503:
21 continue
22 else:
23 break

Figure 4. If network times out or a status code is 503, retry the service (Python version).

2.3. Extensibility

Extensibility refers to the programmer effort required to derive closely-related functionality from a
given base form. Custom, hand-coded fault tolerance does not lend itself to being easily extended.
Consider needing to slightly modify the fault handling code in Figures 1 and 2, in response to
changes in the deployment environment. Assume that the error code 503 now signals that the web
service is temporarily unavailable and has to be reinvoked later. In addition, the wait time between
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GET /search?w=… 
Response: XML 

a.com 

GET /search?w=… 
Response: XML 

b.com 

GET /searcher?w=… 
Response: XML 

c.com 

GET /search?word=… 
Response: XML 

d.com 

GET /search?w=… 
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GET /search?w=… 
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Endpoint REST interface 
Equivalent 
Endpoint? 

Yes 

Yes 

No 

No 

Yes 

No 

Figure 5. Equivalent and non-equivalent service endpoints. Equivalent endpoints have URI “/search” taking
parameter “w” and returning XML.

invocations should be now doubled. Furthermore, the number of retries should be increased from
five to ten. Finally, the timeout should now decrease to 4 seconds. Figures 3 and 4 depict the
code that the programmer must now implement to meet these requirements in Java and Python,
respectively. Even for a toy example like this, the amount of changes in different locations of the
codebase is staggering. As a result, this re-engineering effort is cumbersome and error-prone.

3. IDENTIFYING FAULT TOLERANCE STRATEGIES

The key insight that enables our approach is that fault tolerance functionality of RESTful
applications follows well-defined patterns. By organizing fault tolerance functionality around these
patterns, our approach enables higher degrees reusability and extensibility than the existing state of
the art.

To identify fault tolerance patterns, we have examined several representative prior approaches to
increasing service reliability. These approaches range from replicating SOAP web services [5, 8, 10]
to introducing transactional processing [11], as well as adding special fault tolerance code to server
and client sides of a service-oriented application [21, 27]. Although our approach focuses on client-
side fault tolerance, we were able to apply lessons learned from all these approaches when designing
FT-REST.

To handle a fault, it must first be detected. The faults in RESTful applications we aim at handling
stem from three abnormality classes: network volatility, service outages, and internal service errors.
Setting and detecting a timeout can usually reliably detect the first two conditions. The challenge
is to choose a timeout value that is meaningful for the application at hand and its operating
environment. Therefore, timeouts must be easy to specify and fine-tune as necessary. HTTP was
designed to convey server-side errors as numerical status codes. In particular, the codes with values
greater than 200 indicate a deviation from a normal execution.

Another design consideration is the notion of equivalent service endpoints. A web service can be
accessed through one of its endpoints, a set of unique network addresses exposing identical service
interfaces. When making a RESTful application fault tolerant, the endpoints of its constituent
services can be used for implementing various replication-based fault handling strategies. Endpoints
are equivalent if their service parameters and responses match, given the same set of parameters.
Figure 5 details equivalent and non-equivalent service endpoints.
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IMPROVING THE SURVIVABILITY OF WEB APPLICATIONS VIA DECLARATIVE FAULT TOLERANCE 7

Having reviewed the research literature on the topics related to fault tolerance in web applications,
we have distilled the massive body of approaches and techniques into the following list that we
consider relevant and useful in the context of RESTful applications.

3.1. Retry

Arguably, the most widely used fault tolerance strategy for web services is Retry. This strategy
prescribes reattempting a service’s endpoint in response to a failure for a given number of times.
Several parameters determine how a retry is executed: nr specifies the number of attempts, i backoff
interval, and t backoff type (constant, linear, exponential, etc.). Thus, the tuple of {nr, t, i} can
express an unlimited number of parameterizations for this strategy.

In fact, the example in Figure 1 implements the Retry strategy. Each subsequent iteration through
the for-loop executes a GET request to the same service endpoint. In this case, nr = 5 since the
number of retries is five, i = 1000 since we wait 1000 ms between requests, and t = constant since
we are not changing the backoff interval.

On their website, Twitter [22] recommends both linear backoff and exponential for failures in their
Streaming API. If the error is related to a network failure (e.g., a timeout), clients should backoff
linearly starting at 250 ms and going up to 16 seconds. If an HTTP failure occurs, as signaled
by a status code greater than 200, the client should backoff exponentially starting at 10 seconds
and ending at 2 minutes. This real world web service is trying to impose a specific fault tolerance
strategy on its users. However, programmers are free to handle faults in a fashion that best satisfies
their application design needs.

3.2. Sequential

Another widely used fault tolerance strategy is Sequential. Sometimes referred to as passive
replication, this strategy prescribes that a web service invocation iterates through its endpoints,
in response to a failure.

For instance, consider invoking the service endpoint at a.com/search, which times out due
to high network volume. This strategy prescribes that, when the failure is detected, the endpoint
at b.com/search is attempted. Although not guaranteed to succeed, this strategy provides
yet another opportunity to successfully invoke a given service. This strategy is dubbed passive
replication because it waits for a failure to occur before falling back to additional endpoints.

3.3. Parallel

A more complex fault tolerance strategy is Parallel. This strategy prescribes that a service be
actively replicated, with web service endpoints being invoked simultaneously to protect against
any potential service unavailability.

For instance, in our example, both a.com/search and b.com/search can be invoked
simultaneously to proactively guard against any of these endpoints being unavailable. This strategy
incurs a slight performance overhead by launching two network requests, which use expensive
I/O operations. Because this strategy entails speculative parallel execution, the first successfully
executed request enables the application to proceed. As a result, the overall performance may
improve by exploiting the fastest available network connection. Alternatively, rather than selecting
the first result returned, one could implement a strategy whereby the returned services were voted
on and the “best” response was selected as described in reference [6].

3.4. Composite

In practice, a single strategy may not yield the requisite levels of reliability and performance. As a
result, system designers often resort to combining multiple fault tolerance strategies. Specifically,
all of the aforementioned strategies can be combined into composite fault tolerance strategies. The
selection of which strategy to employ is based on a service’s QoS characteristics, as per reference
[27]:

Copyright c© 2013 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2013)
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8 EDSTROM & TILEVICH

Retry-Sequential: A group of endpoints will be invoked one after the other. If all of them fail, the
entire sequential block is retried.
Retry-Parallel: A group of endpoints will be invoked in parallel. If all of them fail, the entire block
is retried in parallel.
Sequential-Retry: A group of endpoints will be invoked one after another, but each endpoint may
have its own retry semantics.
Sequential-Parallel: The list of endpoints for a service are grouped into parallel blocks that will
be invoked simultaneously. These parallel blocks are then attempted one after another if a failure
occurs.
Parallel-Retry: A group of endpoints will be invoked concurrently, but each endpoint may have its
own retry semantics.
Parallel-Sequential: The list of endpoints are grouped into sequential blocks that will be invoked
one after another. These sequential blocks are then attempted concurrently.

4. FAULT TOLERANT REST (FT-REST)

Next we present Fault Tolerant REST (FT-REST), our architectural framework that can render any
standard RESTful application resilient against specified faults. FT-REST takes advantage of the
common fault tolerance patterns found in the implementations of the majority of realistic RESTful
applications. FT-REST comprises the following three key architectural components:

1. Service: The RESTful service being rendered fault tolerant, defined by its set of equivalent
endpoints.

2. Fault Conditions: The unique system state that signals the presence of a fault to be handled.
3. Handling Strategy: The specific fault tolerant strategy to be followed when handling a given

fault (e.g., Retry, Sequential-Retry, Retry-Parallel, etc.).

4.1. Motivating Example Revisited

Consider how FT-REST can be used to render our motivating example in Figure 3 fault tolerant.
The FT-REST architectural components for this example correspond to:

1. Service: The service consists of only one endpoint located at example.org/products.
2. Fault Conditions: The two fault conditions that signal the presence of a fault that we want to

handle are: (1) a network timeout of 4000 milliseconds, and (2) a status code of 503.
3. Handling Strategy: The strategy we want to put in place is Retry; this strategy is

parameterized with: # retries (10), a backoff interval (1sec), and a backoff type (exponential).

In line with web services standards, we specify FT-REST as a machine-readable XML file (e.g.,
Figure 6). The XML-based language for defining FT-REST specifications is called Fault Tolerance
Description Language (FTDL).

An FTDL specification file can define multiple strategies. As seen on line 6, each strategy
is delineated by a <service> tag, which also contains the URI containing the service
being rendered fault tolerant. As stated previously, because a service comprises a set of
equivalent endpoints, there may not be a one-to-one correspondence between a service and a
URI. For greater genericity, FTDL takes advantage of regular expressions to express multiple
endpoints concisely. By specifying a single string, a programmer can tie a web service to
its endpoint URI. This design facet of FTDL is well-aligned with one of the foundational
principles of REST: resources are to be keyed by unique URIs. In the context of our example,
this design facet can be realized as follows. If http://example.org/products had
a backup endpoint at http://example.co.uk/products, the programmer could use
http://example.*/service to match all endpoints.

This approach’s expressiveness makes it possible for the matchesUri attribute not even be a
well-formed HTTP URI to specify a service. The only requirement is that this identifier be unique
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IMPROVING THE SURVIVABILITY OF WEB APPLICATIONS VIA DECLARATIVE FAULT TOLERANCE 9

1 <?xml version="1.0" encoding="UTF-8">
2 <!DOCTYPE ftdl SYSTEM "ftdl.dtd">
3 <ftdl>
4 <strategies>
5 <strategy>
6 <service matchesUri="http://example.org/products"
7 method="GET" />
8 <conditions>
9 <timeout>4000</timeout>

10 <status>503</status>
11 </conditions>
12 <sequential>
13 <endpoint uri="http://example.org/products"
14 method="GET" numRetries="10"
15 backoffInterval="1000" backoffType="exponential" />
16 </sequential>
17 </strategy>
18 </strategies>
19 </ftdl>

Figure 6. An FTDL specification file

amongst other services. In our example, the service could be identified by ftrest://service1
or even service1. Thus, our approach provides a high degree of flexibility with respect to naming
conventions that the programmer wants to follow in a given application. The only drawback is that
service URIs that are too generic may lead to name conflicts amongst services.

Another advantage of FTDL design is that the list of endpoints need not be explicitly declared
with the service. Rather, the endpoints are defined within the strategy’s context, as seen on line
13. Thus, to define complex strategies (e.g., Sequential-Parallel), programmers can freely divide
the endpoints into blocks as they see logically fit. Instead of hard-coding any particular scheme for
splitting the endpoints into groups, our approach provides the programmer with complete flexibility
in endpoint assignment.

As seen on line 8, failure conditions are specified in their own <conditions> tag. The
individual conditions are connected with a logical-or operator that evaluates each condition in
sequence. This feature enables programmers to specify multiple conditions that may trigger a
fault tolerance strategy. In our current implementation, we support <timeout>, measured in
milliseconds, and <status>. However, the list of conditions can be easily extended.

In this example, the employed strategy is Retry. The <sequential> tag on line 12 seems
to indicate passive backup, although no secondary endpoint is defined. In fact, retrying a single
endpoint is a special case of the Sequential-Retry strategy, in which the number of endpoints is
exactly one. The FTDL compiler enforces the semantics of the root strategy tag taking either the
<sequential> or <parallel> values, as a means of maintaining consistency in the strategy
definition. Intuitively, the fault tolerance can either be applied sequentially or in parallel.

The Retry strategy’s parameters are expressed as XML attributes of the <endpoint> tag. By
setting these attributes to different values, the programmer can flexibly fine-tune fault handling on a
per-endpoint basis. To highlight the versatility of FTDL, consider what it would take to change the
fault handling strategy in place from Retry to Retry-Sequential. The only editing required to put
this change into effect is moving the retry attributes to the <sequential> tag. Retry attributes
can decorate <sequential>, <parallel>, and <endpoint> tags, depending on the strategy.

Once the fault tolerance functionality is encapsulated within an FTDL specification, the main
source code file can be streamlined as follows in Java:

1 FTHttpClient cli = new FTHttpClient();
2 HttpResponse resp =
3 cli.execute(new HttpGet("http://example.org/service"));

Or in Python:
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Prepared using cpeauth.cls DOI: 10.1002/cpe



10 EDSTROM & TILEVICH

1 from ftrest import requests
2
3 response = requests.get("http://example.org/service")

The only change to the Java API is to replace the Apache HTTP client with a special library
class, FTHttpClient, that mirrors the method interface of the original Apache class. The Python API
follows the same strategy. All the boilerplate fault tolerance code has now been removed, so that it
does not clutter the application’s core business logic.

5. DESIGN AND IMPLEMENTATION

5.1. FTDL Definition

The Document Type Definition grammar in Figure 7 defines the Fault Tolerance Description
Language (FTDL). This simple grammar provides a pragmatic approach to defining and configuring
a variety of fault tolerance strategies. Furthermore, being knowledgeable of XML, any programmer
can extend FTDL to include other fault tolerance strategies.

5.2. FT-REST Framework Implementation

Because FT-REST is an architectural framework, we designed it with the goal of being
straightforward to realize in major programming languages. As our proof-of-concept, we
implemented FT-REST in Java due to its portability benefits and rich HTTP libraries. Our
implementation exposes a programmatic interface similar to that of the Apache HttpClient [1] to
ease the transition for programmers switching to FT-REST. Figure 8 provides an example of how

1 <?xml version="1.0" encoding="UTF-8"?>
2 <!ELEMENT ftdl (strategies)>
3 <!ELEMENT strategies (strategy*)>
4 <!ELEMENT strategy (service,conditions,
5 (sequential|parallel))>
6 <!ELEMENT service EMPTY>
7 <!ELEMENT conditions (timeout|status)>
8 <!ELEMENT timeout #PCDATA>
9 <!ELEMENT status #PCDATA>

10 <!ELEMENT sequential (parallel*,endpoint*)>
11 <!ELEMENT parallel (sequential*,endpoint*)>
12 <!ELEMENT endpoint EMPTY>
13
14 <!ATTLIST service matchesUri CDATA #REQUIRED>
15 <!ATTLIST service method (GET|POST) "GET">
16 <!ATTLIST sequential numRetries CDATA #IMPLIED>
17 <!ATTLIST sequential backoffInterval CDATA #IMPLIED>
18 <!ATTLIST sequential backoffType
19 (constant|linear|exponential) #IMPLIED>
20 <!ATTLIST parallel numRetries CDATA #IMPLIED>
21 <!ATTLIST parallel backoffInterval CDATA #IMPLIED>
22 <!ATTLIST parallel backoffType
23 (constant|linear|exponential) #IMPLIED>
24 <!ATTLIST endpoint uri CDATA #REQUIRED>
25 <!ATTLIST endpoint method (GET|POST) "GET">
26 <!ATTLIST endpoint numRetries CDATA #IMPLIED>
27 <!ATTLIST endpoint backoffInterval CDATA #IMPLIED>
28 <!ATTLIST endpoint backoffType
29 (constant|linear|exponential) #IMPLIED>

Figure 7. The Document Type Definition file for FTDL
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Figure 8. The FT-REST implementation diagram and example.

a typical client would use FT-REST. A client invokes a RESTful service and wishes to reify the
application with the fault tolerance strategies prescribed in the FTDL specification file. The major
steps in the FT-REST implementation are strategy population, client invocation, strategy discovery,
and fault tolerant service invocation.

5.2.1. Strategy Population As depicted in Step 1 in the diagram, the FT-REST runtime first parses
the FTDL specification file. It extracts and stores each strategy in a structure that maps the tuple
{method, uri} to the values of {conditions, strategy}. The map is then stored in the FTManager
class for quick lookup.

5.2.2. Client Invocation As depicted in Steps 2 and 3 in the diagram, clients initiate service
invocation through the FTHttpClient class. Before invoking the requested service, this class must
lookup the service’s endpoints, the failure conditions to detect, and the fault tolerance strategies to
implement in the FTManager class. All fault handling code is encapsulated within FTHttpClient,
and the class is flexible enough to implement all strategies outlined in Section 3.

5.2.3. Strategy Discovery As depicted in Steps 4 and 5 in the diagram, the process of discovering
strategies is among the most complex pieces of FT-REST. First, the local copy of the parsed FTDL
specification is consulted. If a matching {method, uri} tuple is found, the strategy is returned to
the FTHttpClient class that requested the lookup. If no matching strategy is found, FT-REST can
perform an optional “online discovery” of the fault tolerance strategy. In online discovery mode,
FT-REST first attempts to lookup the strategy at the URI of the web service. Then, if no strategy
is found there, it checks the root folder of the domain providing the service for a specification file.
In our example, a.com/service/ftdl is first checked, followed by a.com/ftdl.xml. If
online discovery fails, no strategy is reified in the underlying application.

5.2.4. Fault Tolerant Service Invocation As depicted in Step 6 in the diagram, FTHttpClient
invokes web services after the strategies have been received. In case of a timeout or an error status
code, FT-REST checks to see if the condition matches a fault. If so, the strategy is deployed within
FTHttpClient as prescribed by the FTDL specification. In our example, the Sequential strategy is
employed, attempting a.com/service then b.com/service.

6. CASE STUDIES

We claim that FT-REST provides reusable, programmable, and extensible fault tolerance
functionality. To validate these claims, we have conducted two case studies, in which we applied
FT-REST to realistic RESTful services, thereby rendering them fault tolerant.
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1 <strategy>
2 <service
3 matchesUri="http://ft-rest.appspot.com/timeout"
4 method="GET" />
5 <conditions>
6 <timeout>3000</timeout>
7 </conditions>
8 <sequential>
9 <endpoint uri="http://ft-rest.appspot.com/timeout"

10 method="GET" numRetries="5"
11 backoffInterval="1000" backoffType="linear" />
12 </sequential>
13 </strategy>

1 <strategy>
2 <service
3 matchesUri="http://ft-rest.appspot.com/status"
4 method="GET" />
5 <conditions>
6 <status>503</status>
7 </conditions>
8 <sequential>
9 <endpoint uri="http://ft-rest.appspot.com/status"

10 method="GET" numRetries="5"
11 backoffInterval="1000" backoffType="linear" />
12 </sequential>
13 </strategy>

Figure 9. Reusing FT-REST specification files requires minimal programming effort.

The first case study validates the FT-REST reusability claim, while the second study demonstrates
that FT-REST offers a programming model that is concise and extensible.

6.1. Reusing Fault Tolerance Strategies

In this case study, we analyzed the ability of FT-REST to reuse its strategy implementations across
different RESTful applications. Reuse is useful only when the reused functionality retains its
effectiveness. To that end, we demonstrate that the same FT-REST specification not only can be
applied to different applications but also handles failure equally effectively for all the applications.

Our setup consisted of two synthetic services, with randomly injected faults. The first service
was injected with network timeouts, while the second one with HTTP error codes. Thus, the
fault characteristics of these services differ. However, applying the Retry strategy can improve
the fault tolerance of both of these services. When hand-coding the fault tolerance functionality,
the differences in fault detection require two separate implementations. With FT-REST, we were
able to apply the same FTDL specification to both services with only minimal changes and keep
the applications running in the presence of the injected faults. Figure 9 shows these two FTDL
versions, with the delta depicted in bold. Notice that the complexity of the services being rendered
fault tolerant does not affect the required FTDL sophistication. Because well-designed RESTful
services represent a single, isolated unit of functionality, this case study does not unfairly benefit
our approach due to the simplicity of our synthesized test services.

6.2. Extending Fault Tolerance Strategies

To demonstrate the software engineering benefits of FT-REST, we show how our approach compares
with the hand-coded approach to implementing fault tolerance. Our subject application is an online
banking service that exposes five equivalent REST endpoints, each with the following functionality:
create a new account (PUT), add money to an account (POST), and retrieve an account balance
(GET). To handle faults related to network volatility and service unavailability, each service
invocation needs a unique fault tolerance strategy. One design option that can make this application

Copyright c© 2013 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2013)
Prepared using cpeauth.cls DOI: 10.1002/cpe



IMPROVING THE SURVIVABILITY OF WEB APPLICATIONS VIA DECLARATIVE FAULT TOLERANCE13

Traditional FT-REST
Java XML Java XML

Total LOC 199 0 32 39
Lines modified 12 0 0 14
Lines added 15 0 0 3

Figure 10. The lines of code in the two versions of fault tolerance.

fault tolerant is to apply the Retry-Sequential strategy to the create an account operation; the
Sequential-Retry strategy to the add money operation; and the Parallel-Retry strategy to the
retrieve an account balance operation.

To demonstrate the benefits of FT-REST, we developed two versions of this applications: (1)
using hand-coded fault tolerance, and (2) using FT-REST introduced fault tolerance. It is desirable
to reduce the amount of code that the programmer has to write. Thus, the fewer lines of code the
programmer has to write, the higher are the perceived software engineering benefits.

Figure 10 shows the respective lines of code for the two versions. The “Total LOC” row represents
the total lines of Java and XML code needed to create each version. Under the traditional approach,
199 total lines of Java code are needed. A majority of this code implements fault tolerance—parallel
service invocation, exception handling, error code detection—often obfuscating the core business
logic. Using FT-REST, however, only 32 lines of Java and 39 lines of XML were required, thus
drastically reducing the programming burden and removing the intermingling of fault tolerance and
business logic code. Therefore, FT-REST effectively encapsulates fault tolerance as a separate and
reusable FTDL specification file.

To show how straightforward it is to extend existing FT-REST strategies, we modified each
aforementioned fault tolerance strategy and analyzed the impact on the source code. In particular,
the strategies were changed as follows: (1) change the number of retries for each service invocation,
(2) change the backoff interval, (3) change the backoff type, (4) add the HTTP status code of 503
as a failure condition, and (5) change the default timeout value. The last two rows in Figure 10
summarize the results. The traditional approach required modifying 12 non-consecutive lines of
Java code, while FT-REST required no changes to the Java code and only 14 changes to XML, all of
which were applied to consecutive sections of the FTDL file. In terms of new code, the traditional
approach added 15 lines of Java code, while FT-REST added three lines of XML. Therefore, FT-
REST can systematically extend fault tolerance with no changes to the core business logic, and
minimal, straightforward changes to XML-based FTDL specifications.

7. DISCUSSION

FT-REST provides numerous software engineering benefits for building and maintaining resilient,
fault tolerant RESTful applications. Compared to hand coded fault tolerance, FT-REST improves
programmability, reusability, and extensibility. Additionally, FT-REST does not impose an undue
performance overhead on the underlying RESTful applications. Finally, FT-REST enhances the
REST model with adverbs that describe service interactions.

7.1. Programmability

Separation of concerns is the holy grail of software engineering. FT-REST treats fault tolerance
as a separate concern, enabling programmers to specify fault handling logic independently of the
underlying business logic. The separation of the fault handling concern empowers the programmer
to fully focus on implementing the core business logic, thus lessening the cognitive load and
reducing the amount of code to be written and maintained.

As demonstrated, the characteristics of many fault tolerance strategies can be parameterized and
expressed in a concise XML format. FTDL provides a major building block for FT-REST, as it
equips the programmer with a consistent model for creating and deploying fault tolerance strategies.
We argue that FTDL is easily learned by developers because it is based on XML, an industry
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standard. While some effort is required to extract the specific fault tolerance parameters for each
service invocation, codifying these parameters in XML is much simpler than implementing the core
logic needed to realize these strategies.

7.2. Reusability

FT-REST enables intra-application, inter-application, and cross-platform reusability. First, FTDL
specifications are reusable across service invocations within the same application. With manual
fault tolerance, when programmers add a new service invocation, they are responsible for manually
inspecting each service invocation to ensure uniform fault handling. FT-REST enables them to
simply add the invocation to the code, allowing the framework to ensure that the same strategy
is used across all invocations. Hence, FT-REST reduces the amount of code that a developer needs
to write and maintain by a factor of n, where n is the number of service invocations.

FT-REST also enables reuse across different applications. It is not uncommon for separate
applications to use the same web service, albeit for different purposes. An application that locates
restaurants in an area and an application that streams local tweets might both use a mapping web
service. The fault characteristics of the mapping service will most likely be the same for both
applications. And yet both applications might need vastly different mechanisms to handle faults.
FT-REST enables the sharing of FTDL specification files, allowing fault tolerance to be written by
experts and sparing the programmer from having to write the FTDL file.

Finally, FT-REST enables reusability across platforms. FTDL specifications are simply XML
files, a universal data format with automated parsers in all major programming languages. While we
have presented a Java variant of the FT-REST framework in this article, the framework could just
as easily have been written in C# or Python. Hand-written fault tolerance strategies are language-
dependent, making porting an application to a new language tedious, as the fault handling code
must be completely rewritten. However, FT-REST makes it possible to reuse FTDL files with any
applications in any language; the FT-REST framework handles all the language-specific parsing and
runtime interactions.

7.3. Extensibility

FT-REST provides systematic extensibility that enables the programmer to more robustly extend
their fault tolerance strategies than manually adding fault handling code. Consider Figure 9 again.
We wished to add the 503 HTTP status code as a failure condition for a separate web service.
While this could be trivially added in several lines of Java code if we chose to manually code
fault tolerance, the task of manually changing several instances would unnecessarily burden the
programmer. With FT-REST, the programmer only needs to add a single <status> tag and modify
two other lines in the FTDL specification file to enable the needed fault tolerance for all service
invocations.

7.4. Performance Overhead

From the software architecture perspective, one can reason about FT-REST as a client-side fault
handling proxy [4]. As compared to invoking RESTful services directly, the performance overhead
when using FT-REST comes from the proxy combining the core service invocation functionality
with the reified fault tolerance strategies. The most computationally intensive operation of FT-REST
is strategy population, as it requires parsing FTDL specification files. However, FTDL files are
parsed only once per service type, with the results cached for future use. Thus, this cost is amortized
across all the invocations of the same service. The other steps in the execution of FT-REST involve
invoking local method calls within the runtime. Because the latency of a remote service call is
known to be several orders of magnitude larger than that of a local call within a shared address
space, the overall overhead of FT-REST is negligible when compared to the latency of invoking
RESTful services across a wide-area network spanning multiple domains.
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7.5. Adding Adverbs to REST

REST is commonly described as applying verbs (HTTP methods) to nouns (URIs). The Web
Application Description Language [23] and Web Services Description Language 2.0 [24] provide
schemas for defining the endpoints, parameters, and responses that comprise a RESTful web service.
These standards are used to describe each resource URI (noun) in greater detail and can be thought
of as adjectives in the REST vocabulary. FT-REST qualifies the HTTP methods (verbs), delineating
how a method should be called and reifying the requisite fault tolerance. Accordingly, FT-REST
enhances the REST vocabulary with adverbs, which equip programmers with fine-grained control
in defining and utilizing RESTful services.

8. RELATED WORK

Several prior approaches share our goal of improving the survivability of web service applications
by facilitating the implementation of their fault tolerance functionality. We next compare the most
closely related approaches with FT-REST.

The work in WS-DREAM [27] represents a unique approach to web service fault tolerance. The
authors present a distributed fault tolerance framework that gathers QoS information of web services
from geographically dispersed users. The QoS information is then input into a strategy selection
algorithm to determine the optimal fault tolerance strategy to employ with a given web service. This
design makes it possible to dynamically configure fault tolerance strategies. However, by aiming to
completely automate the process, WS-DREAM disallows any involvement by the programmer in
introducing application-specific fault handling code (e.g., backing up to an internal mirror, forcing
a parallel invocation, etc.). FT-REST, however, provides programmers with the capability to specify
application-specific fault tolerance strategies.

The Fault Tolerant Web Services Framework (FTWSF) [12] attempts to solve problems related to
fault tolerance in web service invocations. The client-side C# library provides a set of classes and an
XML-based language for defining retry and alternate URL semantics. For example, a programmer
could specify that if a given web service does not respond, retry five consecutive times at intervals of
five seconds. In addition, FTWSF provides a GUI that automatically produces the underlying XML
configuration file. However, FTWSF does not provide semantics for trying multiple web services in
parallel, and is targeted solely for SOAP web services. FT-REST builds off this work, extending it
to include RESTful services and a more versatile set of fault tolerance strategies.

The FTWeb project [21] builds off the FT-CORBA project [14], bringing a fault tolerance
infrastructure to web services. Mirroring the architecture of FT-CORBA, FTWeb replicates SOAP
web service endpoints to provide fault tolerance, proxying all client web service requests by means
of WSDispatchers, which maintain universal replica information to forward client requests to
specific endpoints based on their health. If one replica goes down, the invocation is retried using a
different endpoint and the WSDispatcher periodically queries the failed endpoint with isAlive()
method calls until it is brought back online. This approach requires that programmers have control
over the server as well, to respond to queries from WSDispatchers. By not relying on clients
controlling the servers, FT-REST can add fault tolerance to independently administered services.

BPEL for REST [16] extends the Business Process Execution Language (WS-BPEL [13]) to
include tags for sending and processing REST invocations. WS-BPEL allows programmers to
declaratively structure business processes in an XML-like language, and have that specification
translated into working code. Business processes traditionally used SOAP web services, but BPEL
for REST introduces the <get>, <post>, <put>, and <delete> tags to enable business
processes to use RESTful web services. Additionally, <onGet>, <onPost>, <onPut>, and
<onDelete> tags represent the steps that servers should take upon receiving REST requests.
Although BPEL for REST powerfully automates business processes, it lacks sufficient failure
handling support. Although it can specify when a failure occurs, it cannot prescribe a specific
handling strategy, thus burdening the programmer with the necessity to implement a fault handling
mechanism.
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The work in reference [26] presents a mechanism for presenting customizable and transparent
durability in Service Oriented Architectures (SOAs). This work is similar to FT-REST in that the
authors explore how best to treat service durability (i.e., fault tolerance) as a separate concern. They
encapsulate durability policies within proxies that wrap web services to make their state durable.
However, their approach relies on Java reflection, thus hindering its portability to other programming
languages that may lack this facility. After the programmer implements these proxies, a separate
durability mapping links proxies to a given service to provide fault tolerance. FT-REST extends this
work by leveraging XML as a representation language for both durability policies and durability
mappings. As a result, FT-REST features improved portability and reusability across platforms.

Salatge and Fabre [20] introduce fault tolerance connectors for unreliable web services. These
connectors proxy abstract web services, defined as having numerous equivalent endpoints, and
employ recovery strategies that exploit endpoint replication. The authors outline a model by which
endpoints can be invoked passively or actively, depending on the desired fault tolerance strategy.
Additionally they evaluate their work using several realistic web service applications. However,
their approach works only for SOAP services. By contrast, FT-REST works with RESTful services
and can also be extended to other distributed models.

9. FUTURE WORK AND CONCLUSIONS

There are numerous future directions for the work presented in this article. First, BPEL for REST
[16] lends itself well to the inclusion of some of the concepts in FT-REST as it provides an
automated mechanism for choreographing RESTful web services. Additionally, integration with the
WS-DREAM [27] seems like a natural next step for FT-REST. WS-DREAM provides an algorithm
for determining the optimal fault tolerance strategy for given QoS metrics of a web service. FT-
REST can be extended to provide an optional strategy in FTDL called <optimal> whereby the
service’s QoS metrics are measured and run through the selection algorithm. Based on the output,
we would instrument the FT-REST runtime to follow the strategy. The strategies in the WS-DREAM
project lend themselves well to inclusion in FT-REST.

The FTDL specification language is also amenable to defining additional fault tolerance strategies
from other distribution paradigms. While we have implemented fault tolerance strategies associated
with RESTful web services, the architectural framework presented in this article can be extended
to middeware like distributed object models, publish/subscribe systems, and transactional services.
FTDL is extensible enough to encapsulate other fault tolerance strategies, including caching, pre-
fetching, and transaction rollback.

REST offers promising solutions for constructing scalable and composable web services.
Consistent interface definitions, scalability through replication, and the ubiquity of the HTTP
infrastructure—all make REST a convenient architecture for a variety of applications. RESTful
applications must deal effectively with failures due to network volatility, service outages, and
server errors, requiring the programmer to code defensively and produce fault tolerance code
whose volume often exceeds that of core business logic. Not amenable to encapsulation, this fault
tolerance code is strewn throughout client applications, hindering programmability, reusability, and
extensibility.

As an improvement over hand coded fault tolerance for RESTful applications, this article
has presented FT-REST, an architectural framework for enhancing RESTful applications with
reusable and extensible fault tolerance. FT-REST effectively encapsulates fault tolerance strategies,
systematically declaring and reifying them in a given application. To demonstrate the effectiveness
of FT-REST, we showed how it can add reusable and extensible fault tolerance to realistic RESTful
applications. As computing is becoming increasingly distributed, the issue of fault tolerance has
come to the forefront of engineering the majority of computing applications. To that end, FT-REST
presents innovative designs that can advance the state of the art in implementing fault tolerance
across all distributed applications.
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Strategy FTDL Representation

Retry <endpoint uri="http://a.com/service" method="GET" numRetries="5"
backoffInterval="1000" backoffType="exponential" />

Sequential
<sequential>

<endpoint uri="http://a.com/service" method="GET" />
<endpoint uri="http://b.com/service" method="GET" />

</sequential>

Parallel
<parallel>

<endpoint uri="http://a.com/service" method="GET" />
<endpoint uri="http://b.com/service" method="GET" />

</parallel>

Retry-Sequential
<sequential numRetries="5" backoffInterval="1000" backoffType="exponential">

<endpoint uri="http://a.com/service" method="GET" />
<endpoint uri="http://b.com/service" method="GET" />

</sequential>

Retry-Parallel
<parallel numRetries="5" backoffInterval="1000" backoffType="exponential">

<endpoint uri="http://a.com/service" method="GET" />
<endpoint uri="http://b.com/service" method="GET" />

</parallel>

Sequential-Retry

<sequential>
<endpoint uri="http://a.com/service" method="GET" numRetries="5"

backoffInterval="1000" backoffType="exponential" />
<endpoint uri="http://b.com/service" method="GET" numRetries="5"

backoffInterval="1000" backoffType="exponential" />
</sequential>

Sequential-Parallel

<sequential>
<parallel>

<endpoint uri="http://a.com/service" method="GET" />
<endpoint uri="http://b.com/service" method="GET" />

</parallel>
<parallel>

<endpoint uri="http://c.com/service" method="GET" />
<endpoint uri="http://d.com/service" method="GET" />

</parallel>
</sequential>

Parallel-Retry

<parallel>
<endpoint uri="http://a.com/service" method="GET" numRetries="5"

backoffInterval="1000" backoffType="exponential" />
<endpoint uri="http://b.com/service" method="GET" numRetries="5"

backoffInterval="1000" backoffType="exponential" />
</parallel>

Parallel-Sequential

<parallel>
<sequential>

<endpoint uri="http://a.com/service" method="GET" />
<endpoint uri="http://b.com/service" method="GET" />

</sequential>
<sequential>

<endpoint uri="http://c.com/service" method="GET" />
<endpoint uri="http://d.com/service" method="GET" />

</sequential>
</parallel>

Table I. The FTDL representations of popular fault tolerance strategies.
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