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Abstract

Programmers declare variables to serve specific implemen-
tation purposes that we refer to as variable usage semantics
(VUS). Understanding VUS is required for various software
engineering tasks, including program comprehension, code
audits, and vulnerability detection. To help programmers
understand VUS, we present a new program analysis that
infers a variable’s usage semantics from its textual and con-
text information (e.g., symbolic name, type, scope, informa-
tion flow). To support this analysis, we introduce VARSEM, a
domain-specific language, in which a variable’s semantic cat-
egory is expressed as a set of declarative rules. VARSEM’s exe-
cution determines which program variables belong to a given
semantic category. VARSEM translates high-level declarative
rules into low-level program analysis techniques, including
natural language processing and data flow, and provides a
highly extensible architecture for specifying new rules and
analysis techniques. We evaluate VARSEM with eight real-
world systems to identify their personally identifiable infor-
mation variables. The evaluation results show that VARSEM
infers variable semantics with satisfying accuracy/precision
and passable recall, thus potentially benefiting both software
and security engineers.
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1 Introduction

In a computer program, variables are introduced for spe-
cific implementation purposes. We refer to such purposes
as variable usage semantics. Understanding variable usage
semantics is required for the majority of maintenance and
evolution tasks, ranging from program comprehension to
code audits [20, 31]. To that end, both the textual (e.g., nam-
ing scheme) and context (e.g., data flow) information of a
variable should be examined, as it is their confluence that
uncovers the variable’s intent and responsibility [31].

Consider the task of identifying the variables that store
user-entered passwords. This task is required for inspecting
how passwords are protected in a system. As is shown in
Figure 1, a security engineer, would need to @ search for
variables whose names bear similarity to the word “pass-
word” (e.g., “pwd”, “passwd”, and “pass_word”), @ search
for variables whose type can store password information
(i.e., string), and @ search for variables whose context in-
formation matches certain usage patterns (e.g., information
flows from user input to a variable). These search rules can
be executed either independently or as a logical chain.
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Figure 1. Identify variables storing user-entered passwords

For task @, programmers typically use a source code
search facility, such as the Unix grep. For example, issuing
the command grep "pass*word" x.c on the Unix shell would
return all the textual matches with the prefix “pass” and the
suffix “word” contained in the C source files located in the
current directory. However, this method is quite brittle: 1)
the actual names for password variables often differ greatly
from the word “password”. A simple search of GitHub re-
veals the following names for password variables and their
frequencies: "passwd" — 11M cases, "p_wd" - 9,258 cases,
"pass_wd" — 280 cases, and "p_w_d" — 164 cases. Even worse,
a lazy developer may name a password variable with a single
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letter “p” or an irrelevant string “abc” Hence, string match-
ing would be quite inadequate in its ability to identify all
potential password variable names. Besides, not all matches
would be against variables, as some of them will appear in
comments, annotations, and class/function names, thereby
requiring additional manual efforts to filter out.

For tasks ® and ©, manually inspecting the variables’
types and information flows would be feasible for small
projects, but quite unrealistic for large projects. Compiler-
based analysis tools (e.g., LLVM ASTMatcher [46]) and ex-
isting program analysis frameworks [32, 43, 52] can be used
to search for variable types and information flows automati-
cally. However, to apply these tools correctly requires that
programmers build sufficient expertise in compilers and pro-
gram analysis. It would be unrealistic to expect that level of
expertise in esoteric topics from all application programmers
or security engineers.

The latest developments in machine learning (ML), deep
learning (DL), and natural language processing (NLP) pro-
vide new tools for analyzing variable usage semantics. How-
ever, applying these state-of-the-art approaches correctly
is quite challenging due to the following reasons: (a) exist-
ing applications of these tools are quite dissimilar, including
recommending identifier names [1, 2, 4, 5], summarizing
code [3, 51], de-obfuscating code [50], completing code [40],
and debugging method names [25]. In other words, these
approaches apply dissimilar ML/DL/NLP models to fit their
specific scenarios, so no single model or technique could
be used out of the box for variable usage semantics analy-
sis; (b) the accuracy, precision, and recall of many of these
techniques are insufficient for practical variable usage se-
mantics analysis tasks. Consider recommending descriptive
identifier names as an example: the state-of-the-art approach
code2vec [5] achieves an imperfect precision (63.1%) and re-
call (54.4%). Even worse, Jiang et al. [28] show that in more
realistic settings, code2vec’s performance decreases even
further; (c) the targets of these techniques are usually code
segments rather than individual variables. That is, the con-
tained variables’ textual and context information are treated
as tokens and attributes of the entire code snippet. However,
variables are distinct program constructs. Not only does a
variable store information, but it also can interact with other
program constructs (e.g., class fields, function parameters)
and be part of every program context (e.g., control and data
flow). Understanding what variables are used for (i.e., their
usage semantics) has not been pursued previously as a dis-
tinct program analysis problem.

What if one could write simple statements that would ex-
ecute tasks @@® by correctly employing the required state-
of-the-art analysis techniques and tools as well as leveraging
the available domain knowledge (e.g., software/security en-
gineers)? In this paper, we present variable usage semantics
analysis, a new program analysis that identifies variable us-
age semantics, and VARSEM, a domain-specific language that
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reifies this analysis. As shown in Figure 1, one can declara-
tively specify the rules to execute tasks @ (Rulel: compare
variables’ symbolic names to the word “password”), ® (Rule2:
identify variables whose type is string), and @ (Rule3: iden-
tify variables whose values flow from user input). By execut-
ing the specified rules, VARSEM assigns a statistical probabil-
ity value to each program variable to designate how closely
it matches the given rules (e.g., pwd 71.2%), thus assisting
the user in understanding the variables’ usage semantics.

To ensure satisfactory accuracy, precision, and recall, VARSEM
programs express both the textual and context information
of variables. VARSEM provides built-in analyses: data-flow for
the context information and a novel NLP-based analysis for
the textual information. To cover potentially enormous anal-
ysis scenarios, VARSEM’s extensible architecture enables soft-
ware/security engineers to contribute highly customizable
rules, and integrate with other ML/DL/NLP-based program
analysis techniques.

The contribution of this paper is three-fold:

(1) We introduce a new program analysis, variable us-
age semantics analysis (VUSA), that infers a variable’s usage
semantics from its textual and context information.

(2) We reify VUSA as the VARSEM DSL that offers: (a) an in-
tuitive declarative programming model; (b) built-in analyses:
an NLP-based and data-flow analyses, for textual and context
information, respectively; (c) an extensible architecture for
including custom rules/analyses.

(3) We evaluate VARSEM’s performance in inferring per-
sonally identifiable information (PII) variables in eight open-
sourced projects. VARSEM infers variable semantics with sat-
isfying accuracy (>= 80% in 13 out of 16 scenarios), precision
(>=80% in 13 out of 16 scenarios), and passable recall (> 60%
in 8 out of 16 scenarios).

2 Design Philosophy and Overview

We first introduce the key idea behind VARSEM and explain
its high-level design. Then, we discuss the technical back-
ground required to understand our contribution. Finally, we
revisit the motivating example above by applying VARSEM.

2.1 Variable Usage Semantics Analysis

Our basic idea of variable usage semantics analysis is in-
spired by philosopher Ludwig Wittgenstein’s Theory of Nat-
ural Language Construction: “the meaning of a word is its
use in the language [55]” That is, the meaning of a word is
determined not only by its textual representation, but also by
the total set of usages of this word in the language. As a re-
sult, a word’s meaning is not immutable: once its new usages
appear and become acceptable, its meaning will gradually
change as well. Hence, any dictionary-provided definition
can only approximate the actual meaning of a word [25].

Inspired by Wittgenstein’s theory, we treat program vari-
ables as words in a natural language, so the semantics of
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variable usage can be interpreted analogously to the mean-
ing of words. Thus, to infer a variable’s usage semantics, our
approach is to consider both the variable’s symbolic name
(i-e., textual information) and how it is used in the program
(i.e., context information).

A typical practical application of variable usage semantics
analysis is determining the likelihood of variables belonging
to a given semantic category (e.g., “password”, “user infor-
mation”, “phone number”). Because of the intrinsic ambi-
guity of determining such likelihood, our approach relies
on statistical probability to report the inferred results. Our
approach defines a semantic category as a set of rules against
which each program variable is evaluated. When matched,
a rule increases the likelihood of a variable belonging to
the category specified by the whole rulebase. This approach
is driven by the well-known insight that the results of data
analysis depend on the analyst’s domain knowledge (e.g., the
analyst understands how password variables are used in a
system) [50, 54]. The ability to specify a highly configurable
rulebase, with both predefined rules and new customized
rules, avails VARSEM for the dissimilar needs of domain ex-
perts in need of inferring variable usage semantics.

2.2 Definitions & Assumption

Textual & Context variable information. The properties
of any program variable divide into intrinsic (e.g., symbolic
name, type, and scope) and extrinsic (data and control flow).
Textual information refers to a variable’s symbolic name;
context information refers to all its other properties.
Personally identifiable information (PII)[44]. PIl encom-
passes all information that would harm a person’s security or
privacy if exfiltrated. Typical PII examples are social security
numbers, credit/debit card numbers, and healthcare-related
data. Our evaluation focuses on PII variables, specifically the
ability of VARSEM to identify them, so developers could then
protect PII from being leaked and tampered with.
Expected Expertise Assumption. To be able to describe tar-
get variables in VARSEM, users are expected to possess some
domain knowledge about how the functionality of interest
is implemented. For example, to specify variables that store
passwords, a VARSEM user is expected to be knowledgeable
about how password-based authentication works in the an-
alyzed projects. For example, in a certain “login” function,
a password candidate, entered by an end user, is compared
with the known password, retrieved from some storage.

2.3 Motivating Example Revisited

Recall the problem of identifying the variables that store
user-entered passwords. Variables that belong to this seman-
tic category match the following three rules: @ their sym-
bolic names bear close similarity to the word “password”, @
their type must be able to store textual data (i.e., string), and
® their value must have flown from some input. In VARSEM,
these rules can be expressed in a few lines of code as follows:
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1 sem ("identifyPWD") {

2 $var.Name ~ "password"

3 $var.Type ~ STRING

4 $var.Value <~~ USER_INPUT

5}

6 Result res = run ("identifyPWD")

7 on ("./src/*x.c") threshold 0.8

The keyword sem creates a new semantic category, identi-
fied by its unique parenthesized name (sem ("indentifyPWD")
on line-1). This semantic category is defined by the three
rules described above: @ (line-2), ® (line-3), and @ (line-4),
respectively. The keyword $var represents a program vari-
able, and it includes attributes (e.g., Name, Type, Value) that can
be used to form rules. VARSEM provides several built-in op-
erators (e.g., ~: match, <~~: information flow), each of which
returns a statistical probability, expressed as a percentage
point. The informal semantics of Rule @ on line 2 is “compare
a variable’s symbolic name to the word ‘password’, return-
ing their degree of similarity.” Rule @ determines whether
a given variable’s type can hold a textual representation
(e.g., char x, char[], const charx, string). Rule ® determines
whether an information flows from any user input to the
given variable’s value. Each program variable is bound to var,
one at a time, with the rules executed, once their semantic
category (“identifyPWD”) is run on a given codebase (lines
6,7). These rules execute in any order, in sequence or in par-
allel. The optional threshold filter applies a weighted average
formula to report only those variables whose likelihood of
matching the rules are above the given threshold.

2.4 Required Language Features

The example above is simplified for ease of exposition.
To become a truly versatile tool for inferring variable usage
semantics, VARSEM must provide the following features:

(1) Rules should be straightforward to reuse within and
across semantic categories. It should be possible to make the
execution of a rule conditional on the results of executing
other rules.

To provide feature (1), a semantic category supports add/re-
move/update rule operations (§ 3.3-3). Besides, the results of
running a category can be examined, with the results used
as conditional and control flow statements (§ 3.4-2).

(2) It should be straightforward to redefine how rules and
their analysis routines are bound to each other. Although
each built-in rule has a default analysis routine, it should be
possible to change these routines.

To provide feature (2), the bind keyword makes it possible
to bind new analysis routines to existing rules (§ 3.3-2).

(3) It should be possible for rules to have different levels of
importance. When determining whether a variable belongs
to a given semantic category, each rule can have a dissimilar
impact. For example, how can the user specify that it is more
important for a variable’s name to be similar to the word
“password” than to have some user input to flow into the
variable’s value?
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To provide feature (3), a rule can be followed by the key-
word impact and an integer value between 1 and 10 (§ 3.3-2).

(4) VARSEM should be extensible with both new rules and
their analysis routines. Due to the large number and variety
of analysis techniques and tools, it would be highly advan-
tageous to be able to add them to VARSEM or use them to
update the analysis routine of existing rules.

To provide feature (4), VARSEM can generate keywords/op-
erators for new rules and function skeletons for correspond-
ing analysis routines (§ 3.5).

3 The VARSEM Language

We start by presenting the high-level architecture of VARSEM.
Then, we briefly introduce the major technologies that enable
VARSEM. Finally, we detail each major VARSEM component.

| A Rue
. ! @ Analysis Routine
1
a Rules;
User |\ N ------nc----S o - - -
! ]
Function | ! 1
GeneratorJ.\‘,. ]
I
IRARSECIRY,
) - VARSEM Runtime %? - @
Result Program files

Figure 2. VARSEM overview

3.1 Architecture

Figure 2 shows the three main components of VARSEMm:
Rules,Library,and Runtime.Rules are user-defined search
criteria that define a semantic category. Library provides a
collection of program analysis routines (i.e., green circles),
both standard and custom, that are bound to rules (i.e., red
triangles) to reify them. The bindings can be default or user-
defined. For example, a standard data-flow analysis method
can be bound to the rule — “variable’s value comes from user
input” Runtime executes the rules in VARSEM’s semantic cat-
egory by invoking the bound methods. It keeps track of each
rule’s execution, weighted-averaging the statistical proba-
bility of each program variable’s belonging to the semantic
category specified by the rulebase.

VARSEM’s programming model supports five inter-related
development tasks: @ define a semantic category, ® add/re-
move/update rules in a semantic category, ® bind rules to
analysis routines, @ create new rules and analysis routines,
and @ apply a semantic category to a codebase, filtering
and analyzing the results. Thus, by defining a semantic cat-
egory with its associated rules (@®), VARSEM can flexibly
express a variable’s combined textual and context informa-
tion. VARSEM’’s built-in rules and their analysis routines make
use of a novel NLP-based analysis (for textual information)
and classic data-flow techniques (for context information).
By creating and binding rules and their analysis routines
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(®0), VARSEM can be extended with new and improved anal-
ysis techniques and frameworks. Finally, VARSEM’s execution
results can be analyzed and filtered as required to support
various scenarios in inferring variable usage semantics (®).

3.2 Technical Background

Next we briefly describe the main technologies that power
VARSEM. 1) Scala, a modern programming language, com-
bines object-oriented and functional programming features
[24]. Scala serves as the host language for VARSEM, defined
as an embedded DSL. We choose Scala because of its flexible
syntax (e.g., optional parentheses), its support for defining
new keywords and custom syntax, and functional program-
ming features (e.g., support for higher-order functions). It
is these features of Scala that make it possible for VARSEM’s
library to be easily extended with new analysis techniques.
Finally, as a JVM-based language, Scala runs on multiple
platforms, making VARSEM platform-independent.

2) Natural language processing (NLP) approaches have
been widely applied to identify program’s sensitive textual in-
formation (e.g., comments, descriptions) [26, 37, 57]. VARSEM
relies on NLP to provide a novel textual analysis that is more
powerful than that of a regular expression search.

3) Data-flow Analysis, a standard static program analysis
technique, infers how values propagate through a program.
Data-flow analysis has been applied to detect code vulner-
abilities [10, 29, 43]. By employing the standard data-flow
analysis, VARSEM identifies variables’ context information
(e.g., information flows from user input to a variable).

4) LLVM [33] is a compiler-based program analysis infras-
tructure. LLVM features libtooling tool [48] and AST-
Matcher[46] that analyze at the source code level. By means
of a customized 1libtooling tool, VARSEM extracts the in-
trinsic properties of variables (e.g, name, type, and scope).

3.3 Syntax, Semantic Category, and Rules

The two key abstractions of VARSEM are a semantic cate-
gory and rules, explained in turn next. !

(1) Semantic Category defines a category of variables
with the same usage semantics. In VARSEM, it is expressed as
a group of rules (i.e., a rulebase) that describes a variable’s
intrinsic and extrinsic properties. A variable’s membership in
a semantic category is determined by the variable matching
the category’s rules. The keyword sem creates a new semantic
category that comprises a unique name and a rulebase.

(2) Rule matches each program variable’s intrinsic or ex-
trinsic properties. A typical VARSEM rule includes an operator
and two operands. The lhs operand is an analyzed variable,
while the rhs operand is a specific target (i.e., intrinsic or
extrinsic targets). A rule can also include its impact modifier
and custom analysis routine.

1VaRSEM’s complete EBNF specification appears in drive.google.com/file/d/
1cAI5XmN791TXjp3T8CUgjicfCbr_N4jw/view?usp=sharing
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To describe a variable’s intrinsic properties, a rule starts
with the keyword $var, an intrinsic attribute (Name, Type, or
Scope), the intrinsic operator (~), and the attribute’s match-
target. VARSEM predefines several match-targets: string val-
ues for matching the attribute Name, STRING/INT/BOOL/DOUBLE/COM-
PosITE for the attribute TYPE, and LocAL/GLOBAL for the attribute
Scope. $var.Scope ~ LOCAL expresses “match if the variable’s
scope is local”

To describe a variable’s extrinsic properties, a rule starts
with the keyword $var, the extrinsic attribute (value), one of
VARSEM’s extrinsic operators: data flow (<~~ or ~~>) or compar-
ison (<=>), and one of the right-hand side (rhs) operands. The
data flow operator’s rhs operands can be one of USER_INPUT,
STABLE_STORAGE, WWW, or a function name. The comparison oper-
ator’s rhs operands can be either another variable’s attribute
(i.e., value) or no operand. The comparison operator with no
rhs operand (e.g., $var.value <=>), expresses that any com-
parison with the variable’s value should be matched.

To create rules that involve more than one variable, VARSEM
provides the var_ operator. If more than two variables need
to be differentiated, var_ takes optional numeric parame-
ters (e.g., var_(1)). To describe scenarios that use extrinsic
properties, multiple rules can be combined. For example, the
code snippet below describes one such scenario: one variable
flows from some user input (line 1), another variable flows
from some stable storage (line 2), and these two variables
are compared (line 3).

1 $var.Value <~~ USER_INPUT &
2 $var_.Value <~~ STABLE_STORAGE &
3 $var.Value <=> $var_.Value

Because each matched rule can dissimilarly impact whether
a variable belongs in a given semantic category, VARSEM pro-
vides the impact keyword that takes an integer in the range
[1, 10]. Impact levels control the calculation of weighted av-
erages that determine which variables belong to the specified
semantic category (see § 3.4).

Finally, a specific analysis routine can be bound to a rule
using the bind keyword. VARSEM’s standard library comes
with a set of predefined analysis routines for core analy-
sis techniques (e.g., NLP_VAR_NAME_ANALYSIS, STRING_MATCH, and
DATA_FLOW_ANALYSIS). For example, the code snippet below is
the rule (“match a variable’s name to the word ‘password”™),
with the rule impacting the final statistical result to the de-
gree of 7, and the analysis routine NLP_VAR_NAME_ANALYSIS per-
forming the required analysis.

1 $var.Name ~ "password" impact 7
2 bind NLP_VAR_NAME_ANALYSIS

If impact is not specified, the default value of 10 is as-
signed. Without custom analysis routines, VARSEM binds
NLP_VAR_NAME_ANALYSIS for rules of textual information and
DATA_FLOW_ ANALYSIS for rules of context information.

(3) Supporting Reuse and Evolution of VARSEM pro-
grams. Both semantics categories and individual rules can
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be systematically reused and evolved. In particular, rules
can be inserted, removed, or updated in a semantic category,
while semantic categories can be combined or intersected.

3.4 Reporting Output

(1) Obtaining results. The overloaded function run takes
either a single rule or a semantic category as the parame-
ter. The keyword on specifies the target codebase. The re-
turned Result is a collection of key-value pairs, where the
key points to a program variable and the value points to
the likelihood of the variable belonging to the specified se-
mantic category. The returned collections can be filtered
to include only those variables whose likelihood exceeds a
given threshold. The code snippet below runs the semantic
category “identifyPWD_2” on the codebase located in “/s-
rc/*.c”, and filters out all the variables whose likelihood value
is less than 0.8.

1 Result res_2 = run ("identifyPWD_2")
2 on ("./src/*.c") threshold 0.8

(2) Analyzing the results: The Result object provides
the max, min, mean, and standard deviation operations, to be
executed against the likelihood values. In addition, top/bot-
tom percentages can be retrieved and filtered out. The code
snippet below retrieves the maximal likelihood value from
“res_2” (line 1), and then retrieves those variables whose
likelihood value is in the top 1% (line2).

1 var max = res_2.max
2 res_2 = res_2.top(0.1)

Conditional and control flow statements can operate on
Result. The code snippet below has the following logic: if the
results of executing the semantic category (“identifyPWD_2”)
are unsatisfactory (i.e., the max likelihood is less than 0.9),
then run the semantic category (“identifyPWD”).

1 Result res_2 = run ("identifyPWD_2") on ("./src/*.c")
2 if (res_2.max < 0.9)
3 res_2 = run ("identifyPWD") on ("./src/x.c")

Revisiting The Motivating Example Again. Consider
evolving the motivating example to return those variables
whose likelihood values are in the top 1% and their mean
value greater than 0.7. Further, we want to increase the impor-
tance of the variable’s name. The code snippet accomplishes
these changes.

1 Result res_2 = run ("identifyPWD_2") on ("./src/*x.c")
2 for (i <- 1 to 10 if res_2.top(@.1).mean > 0.7) {

3 update ("identifyPWD_2") {$var.Name ~ "password"}
4 to {$var.Name ~ "password" impact i}

5 res_2 = run ("identifyPWD_2") on ("./src/*.c")

6 3

Please, note that even with an impact suffix, the updated rules
are identified by their $var.Name ~ "password" prefix.
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3.5 Meta-Programming Support for Creating new
Operators and their Analysis Routines

Because variable usage can be defined in a variety of dif-
ferent ways, it would be impossible to provide a fixed set
of rules and their analysis techniques to cover all possible
scenarios. To make it possible to easily create new rules and
their analysis routines, VARSEM provides meta-programming
facilities. A new attribute can be created with the keyword
attr followed by the attribute’s name. A new operator can be
created with the keyword op followed by the operator’s sym-
bols. VARSEM supports the creation of binary operators only,
so each new operator has to be accompanied with the decla-
rations of its right-hand side and left-hand side operands by
means of the 1hs and rhs keywords, respectively. A new analy-
sis routine can be created with the keyword impl followed by
the analysis routine’s unique name. The code snippet below
shows how to add to VARSEM a new attribute “Const”(line
1), a new operator‘tainted” with its lhs “$varValue” (ie.,
variable’s attribute), rhs “("source_{")'sink_f")” (i.e., a string
pair), and an analysis routine “TAINT” that can be bound to
this rule (line 2). Given this meta-programming declaration,
VARSEM will generate a library that reifies the new attribute
(usage example: $var.cConst), as well as the new operator
tainted and its analysis routine “TAINT” (usage example:
$var.value tainted ("source_function","sink_function") bind "TAINT").

Note that, it would be impossible to generate a complete
analysis routine, so VARSEM generates skeletal code that is
to be completed as necessary. For example, in the code snip-
pet below, VARSEM generates the analysis routine skeleton
“TAINT”, which uses the variable’s attribute information and
the string pair (“source_function”, “sink_function”) as the
parameters. To complete the analysis routine, the skeletal
body must be filled with the required logic.

1 attr "Const"
2 lhs $var.Value op "tainted"
3 rhs ("source_f","sink_f") impl "TAINT"

4 Executing VARSEM Programs

We first discuss how VARSEM executes rules in a given
rulebase and then describe VARSEM’s built-in library.

1

1 var_id likelihood var_id likelihood var_id likelihood
'

1| v_1/a/x.c;10 10% v_1;/alx.c;10 22% v_1;/a/x.c;10 70%

]

: v_2/alx.c;17 56% v_2;/alx.c;17 30% v_2;/alx.c;17 27%
! .
1

'

'

v_nibly.c39 | 92% v_nibly.c:39 | 15% v_nblyc39 | 63%

____________

sem_id | rule_id op P impact
=

| my_sem

my_sem a 0

my_sem | ...

rule_n —— .| my_sem

Figure 3. Executing VARSEM rules
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4.1 Executing Rules

Figure 3 details how VARSEM executes the rules in a rule-
base. Each included rule is processed in three steps:

O generate a rule’s information vector: semantic category
id, rule id, lhs, operator, rhs, bound analysis routine, and im-
pact level. Specifically, the combination of semantic category
id and rule id defines a rule’s unique identity; the operator,
lhs, rhs, and bound analysis routine determine how to exe-
cute the rule; the impact level determines how to weight the
rule’s results. As discussed in § 3.3, if the impact level or anal-
ysis routine is omitted, VARSEM assigns the default impact
value of 10, and binds the rule to its built-in analysis routine
(i.e., NLP_VAR_NAME_ANALYSIS for analyzing textual information
; DATA_FLOW_ANALYSIS for analyzing context information).

® cach rule in a rulebase is executed in the listing or-
der (see § 4.2). Each rule follows a strict syntax (i.e., lhs op
rhs) and outputs either a percentage or a boolean value for
likelihood. VARSEM also follows a uniformed format when
outputting the intermediate results: a unique id (a variable’s
name, file path, and line number) and a likelihood value (i.e.,
see the top of Figure 3). Recall that the likelihood value is
the statistical probability of a program variable belonging to
the specified semantic category.

® the likelihood values are weighted by their impact levels.
These weighted results are returned as the final output (i.e.,
the grey table in Figure 3) as an array of mappings.

4.2 Customizable Runtime

Because VARSEM’s runtime uses various program analysis
techniques, it must be highly configurable to support their
dissimilar execution environments. Hence, an advanced user
can add to VARSEM not only custom analysis routines, but
also their specialized execution environments. Although the
VARSEM’s native runtime environment is Scala on the JVM,
a new analysis routine may require Python support, as is
common for machine learning-based techniques. VARSEM
supports custom execution environments by deploying them
in a Docker container (Figure 4).

5 NLP-Powered Textual Analysis

VARSEM includes built-in context and textual analysis
routines. A stock data-flow analysis is used out-of-the-box
for context information, albeit configured and invoked via
declarative rules. In contrast, for VARSEM’s built-in textual
information analysis, we created a novel technique, powered
by NLP, that we discuss next.

(1) Rationale. When determining whether a variable be-
longs to a semantic category, its textual information needs
to be compared with some target value to compute their sim-
ilarity. Recall our motivating example of identifying variables
that store user-entered passwords. The rule $var.Nane ~ “password"
matches a variable’s symbolic name with the string “pass-
word.” However, this match would be shallow and insufficient
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@ preprocessing a codebase. Before applying any analysis routine,
the runtime makes the target codebase readable by moving it to a
shared folder. From the moved codebase, preprocessing extracts the
variables’ intrinsic properties (e.g., name, type, scope).

@ invoking analysis routines. To invoke a native analysis routine,
the runtime calls its entry point’s Scala or Java function. To invoke a
containerized routine, the runtime launches the corresponding con-
tainer, so the entry point’s function can be called via Docker APIs.

® adding containerized modules. New containerized routines can
be added to the Docker, while existing routines can be updated through
a configuration file.

if other aspects of textual information, including type, en-
closing unit, and file path, were not taken into account as
explained next:

a) Variables with a specific usage tend to appear in certain
enclosing units (e.g., functions) and source files. For example,
the variable named “pwd” is more likely to store passwords if
it is also referenced within a function named “login” whose
implementation source code appears in the “authenticate.c”
file. However, if a variable with the same symbolic name is
referenced within the “unix_shell” function, its usage is likely
be related to the implementation of the Unix pwd command
(i.e., print working directory), an unrelated semantic usage
category altogether.

b) If a variable’s type is developer-defined (e.g., struct/class
names), the specified type name can be indicative of the vari-
able’s usage. For example, many such variable types in our
evaluation subjects (e.g., struct feature_info_t in the“Biometric
Authentication” project) have type names that reveal their
variables’ usage semantics (§ 6).

¢) Adjacent words are semantically connected. That is, if an

obscurely named identifier is adjacent to an obviously named
identifier, they are semantically related. It is also likely that
both of them are describable by the obvious name. For ex-
ample, the obscurely named variable “pd” whose source file
is in the path “a/b/c/password/x.c” should be more likely
to store a password than if its source file path were “pass-
word/a/b/c/x.c”. Although the word “password” appears in
both file paths, its position is closer to the source file con-
taining the variable in the first path.
(2) Processing Steps. VARSEM uses NLP to compute the sim-
ilarity between each encountered program variable’s textual
info and the target word (“password” in our motivating ex-
ample). The similarity score then determines the likelihood
of variables matching the specified usage semantics.

a) Pre-processing: To be used for analysis, the extracted
variable’s textual information is pre-processed: splitting/-
combining identifiers and removing redundancies.
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Splitting/Concatenating Identifiers: Even if variables, types,
functions, files, and directories are named in a meaningful
way, their names can follow dissimilar naming conventions,
such as delimiter-separated (e.g., the_pass_word) or camel
case (e.g., thePassWord).

To be able to process such names irrespective of their nam-
ing conventions, their textual information is pre-processed
into semantic sets by splitting and concatenating their con-
stituent substrings. This pre-processing is demonstrated by
example below for the names a_b_c and aBcDe:

a_b_c— [ab,c],|ab,cl,[a bc], [abc] (1)
aBcDe — [a,bc,de], [abc, de], [a, bede], [abede]  (2)

More specifically, an identifier is first split into its constituent
parts, sans delimiters, each of which is lower-cased. For exam-
ple, both “the_pass_word” and “thePassWord” would become
identical sets of “the”, “pass”, and “word.” Then, the result-
ing parts are concatenated into semantic sets. For example,
“the_pass_word” could become [the, pass, word], [thepass,
word], [the, password], and [thepassword]. Similarly, the
semantic sets can be generated for an identifier, separatable
into multiple parts (e.g., it_is_a_real_pass_word as a rare
case example). Finally, for each semantic set, its similarity
score is computed, with the highest observed similarity score
reported as the final result.

Removing Redundancies: Only certain identifier parts in-
dicate their construct’s usage semantics. For example, in
“the_password”, “password” is highly indicative, while “the”
provides no useful information. Hence, dictionary-based re-
moval gets rid of those parts that correspond to prepositions
(e.g., in, on, at), pronouns, articles, and tense construction
verbs (i.e., be, have, and their variants). For “the_password”,
“password” will be retained and “the” removed.

b) NLP Analysis: Algorithm-1’s function NLP_main outputs
variables and their statistical matching likelihood, given a col-
lection of program variables (i.e., variables) and a target word
(i.e., target_word). Each input variable is analyzed, and its iden-
tifiers are extracted from the pre-processed variable’s name,
type, function, and file path (lines 17,19,21,23). Next, function
get_similarity computes the similarity score between each
extracted identifier and the target word (lines 18,20,22,24).
Each extracted identifier is broken into constituent words,
or combined to a single word. This process generates two
representations as described above (i.e., pass_word — (1) pass,
word; — (2) password). Each representation is tokenized (line
3). For each token, its similarity to the target word is com-
puted (lines 5-6), with the similarities accumulated (line 7)
and averaged (line 9). The maximum similarity is then se-
lected (lines 10-12) and returned (line 14). An attenuation
rate, A, differentiates adjacent vs. nonadjacent semantic con-
nections. The sum of the obtained similarities of identifiers
is the variable’s statistical matching likelihood (line 25).
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¢) An Example: Following the example in § 2.3, consider
how variables would be matched with word “password.” As-
sume the variable collection contains variable pass_word_info
with type struct information. The variable is accessed within
function login, defined in “src/login.c”. The name pass_word_info
is pre-processed into four representations: [pass, word, info],
[pass, wordinfo], [password, info], and [passwordinfo], while
the type, function, and file path into [information], [login],
and [src, login], respectively. Each of the tokens [pass, word,
infol is matched with the target password, obtaining the simi-
larity scores 0.5, 0.2, and 0.1, respectively. Hence, the result-
ing similarity scores becomes 0.27 (i.e., (0.5 + 0.2 + 0.1)/3).
The procedure is applied to all representations as well as to
those of the corresponding type, function, and file path, with
the highest score passed to the next step. All similarity scores
are scaled by A (80% by default). That is, for pass_word_info’s
file path array [src, login], the similarity of src is scaled by
80%. If the original similarity of src is 1, then it becomes 0.8
when scaled (i.e., the original value multiplies A: 1 * 80%).
Finally, the resulting similarity scores are summed and nor-
malized to the range of 0 to 1 (i.e., a percentage value), which
becomes the reported statistical matching likelihood.

Algorithm 1: VARSEM’s variable labeling.

Input :variables (i.e., a collection of variables)
target_word (i.e., the target word)
A (i.e., the attenuation rate for file paths)
Output:variables with likelihood values

1 Function: get_similarity(groups, target_word, 1):
2 max_avg < 0
3 foreach word_array : groups do

4 simi_group « 0

5 foreach word : word_array do

6 d « similarity(word, target_word)
7 increase simi_group by d * A

8 end

9 avg < average(simi_group)

10 if avg > max_avg then

1 | max_avg=avg

12 end
13 end

14 return max_avg

15 Function: NLP_main(variables, target_word):
16 foreach var : variables do

/* for variable name. */
17 var_name « get_var_name(var)
18 simi_var
«— get_similarity(var_name, target_word, 1)
/* for type name. */
19 type_name « get_type_name(var)
20 simi_type
« get_similarity(type_name, target_word, 1)
/* for function name. */
21 func_name « get_func_name(var)
22 simi_func
« get_similarity(func_name, target_word, 1)
/* for file path. */
23 path « get_path(var)
24 simi_path
«— get_similarity(path, target_word, 0.8)
25 var.likelihood
«— (simi_var+simi_func+simi_type+simi_path)

26 end

Yin Liu and Eli Tilevich

6 Evaluation

Our evaluation seeks answers to the following questions:
Q1. Correctness: (a) Does VARSEM infer variable usage se-
mantics correctly? (b) How does combining the textual and
context information of variables in VARSEM programs affect
the resulting correctness? (c) How does the correctness of
VARSEM compare to that of existing approaches?

Q2. Effectiveness: (a) How effective VARSEM would be in
helping software and security engineers to strengthen sys-
tem security? (b) Are impact levels effective in controlling
the correctness of inferring variable usage semantics?

Q3. Programming Effort: (a) How much programming ef-
fort does it take to express and execute VARSEM programs? (b)
How does this effort compare to using existing approaches?

6.1 Environmental Setup

The syntax of VARSEM is defined by using the Scala embed-
ded DSL facilities (Scala 2.12 and JDK 8). VARSEM’s prepro-
cessing routines use Clang 6.0’s libtooling tool. VARSEM’s tex-
tual information analysis uses Python 2.7, while its data-flow
analysis routines use LLVM custom passes (LLVM public
release 4.0). All experiments are performed on a workstation,
running Ubuntu 16.04, 2.70GHz 4-core Intel i7-7500 CPU,
with 15.4 GB memory.

6.2 Built-in Analysis Routines

VARSEM comes with built-in analysis routines: an NLP-based
textual information analysis and a data-flow analysis, whose
implementations we discuss in turn next.

a) NLP-based textual information analysis. To compute
the similarity between two words, we use Google’s official
pre-trained NLP model (Google News corpus with 3 billion
running words [22]), and Skip-Gram algorithm implemented
using Word2vec, a Google’s word embedding tool [21].

b) Information-flow Analysis. An information flow analysis
infers how a variable is used in terms of its flows from/to a
specific function, its storing/reading into/from stable stor-
age, and its comparison with other variables or constants.
These inferencing tasks rely on traditional static analysis
techniques, implemented as LLVM passes and Clang’s anal-
ysis tools [11].

VARSEM integrates these routines (i.e., a and b) in the same
way as it would any new custom routines, thanks to its
extensible architecture.

6.3 Evaluation Requirements

As a general solution for inferring variable usage seman-
tics, it would be unrealistic to evaluate all possible scenarios
in various domains. Hence, we constrained our evaluation to
meet the following requirements: (1) Domains: The evalua-
tion scenarios should be representative of current real-world
domains that need variable usage semantics analysis. (2)
Beneficiaries: The evaluation scenarios should be helpful
for software and security engineers in strengthening the



VARSEM: Expressing and Inferring Variable Usage Semantics

GPCE’20, Sun 15 - Fri 20 November 2020, Illinois, United States

Table 1. Project Information

Project Author Info PII LoC Var. Usage VARSEM Rules
L. . . . . $ N, ~" "
(1) MimiPenguin [23] 8 contributors login user info 574 user var.ane = user
$var.Type ~ STRING
. . . . $var.N. ~ " il add "
(2) emailaddr for PostgreSQL [19] 1 contributor email address 246 email address var.flane = Temail address
$var.Value <=>
. . . $var.Name ~ " ip"
(3) findmacs [15] 1 contributor mac/ip address 515 mac/ip address var.fane = mac 1p
$var.Type ~ STRING
. . $var.N. ~ " t d"
(4) emv-tools [7] 1 contributor bank & credit info 9684 (1534)  smart card var.tame = “sqart car
$var.Value <~~ "scard_connect"
. $var.N. ~ "ssn"
(5) ssniper [47] Technology Services Group (UIUC) SSN 2421 ssn v ane ssn
$var.Value <~~ "represent_ssn"
. $var.Name ~ "phone number"
(6) phone number scanner [27] 1 contributor phone number 381 phone number P °
$var.Value <~~ "findPhoneNumber"
$var.Name ~ "password"
(7) wdpassport-utils [34] 7 contributors password 1504 password $var.Value <~~ "fgets_noecho"
$var.Value <=>
. . s . - . $var.N. ~ "bi tric feature"
(8) Biometric Authentication [30]  KYLIN Information Technology Co., Ltd. biometric info 18305(1679) bio feature var. tame lomé ric teature X
$var.Value <~~ "bio_ops_get_feature_list"

protection of sensitive data. (3) Scope: The evaluation sub-
jects should be real systems, with realistic variable usage
cases. To meet these requirements, our evaluation focuses
on the domain of personally identifiable information (PII),
all data that can be used to identify a specific individual
[38]. By compromising PII, attackers can threaten people’s
security and privacy. If VARSEM can assist in identifying PII
variables, developers would be able to adequately protect
these variables’ security and privacy.

a) to evaluate correctness, we use 8 open-source projects
that manipulate PII, including user information, email ad-
dresses, MAC/IP addresses, bank/credit information, social
security numbers, phone numbers, passwords, and bio-metric
information (“PII” column in Table 1). b) to evaluate effective-
ness, we use Yubico PAM [56], an open-source system for
authenticating users that was subjected to two real security
attacks (details in § 6.4).

6.4 Evaluation Design

Correctness: In fact, PII variables differ greatly in their
respective usage semantics, so each PII variable type requires
a different VARSEM program to identify it. As shown in Ta-
ble 1, we wrote project-specific VARSEM programs? that infer
given variable usage semantics (the “Var. Usage” column)
by following their rules (the “VARSEM Rules” column). Re-
call the syntax of VARSEM rules: $var.Name ~ "a" means the
variable’s name matches “a”, $var.Type ~ "b" means the vari-
able’s type matches “b”, $var.value <=> means the variable’s
value is compared, and $var.value <~~ "foo" means the vari-
able’s value must have flown from function “foo”. As an
example, consider project “(8) Biometric Authentication” in
which VARSEM infers those variables that store biometric
features. The specified semantic category has two rules: (1)
the variable’s name matches “biometric feature” (textual in-
formation) and (2) its value should have flown from function
bio_ops_get_feature_list (context information).

2The complete VARSEM programs appear in drive.google.com/file/d/
1cAlI5XmN791TXjp3T8CUgjicfCbr_N4jw/view?usp=sharing.

To evaluate correctness, we calculated the metrics of ac-
curacy, precision, and recall. To obtain the ground truth,
we recruited a volunteer (6+ years C/C++ experience) to
manually find all variables that store the corresponding PII
variables. To reduce the manual effort, we evaluated only
the core modules of the larger projects 4 and 8 (their LoC
metrics are parenthesized in the “LoC” column).

To answer question Q1-a, we executed each VARSEM pro-
gram to obtain the aforementioned metrics. To answer ques-
tion Q1-b, we evaluated the cases in which semantic cate-
gories have only textual or context information. To answer
question Q1-c, we evaluated the cases that use the simple
string comparison function (i.e., stremp®) to find target vari-
ables instead of VARSEM’s textual information analysis.

Without loss of generality, we assigned each rule the de-
fault impact value, while setting their likelihood thresholds
to 0.6 and 0.8. That is, VARSEM is to calculate the likelihood
under the same impact level of each rule, and report only
those variables whose likelihood of matching the rules is
above 60% and 80% (we evaluated these two cases of likeli-
hood independently).

Effectiveness: Our evaluation subject — Yubico PAM
(four C source files, totalling 2486 lines of code) — has been
subjected to two security attacks: one circumvented the au-
thentication process through a particular password string [13],
while the other leaked and tampered data through an un-
closed file descriptor of the debug file [14]. Based on these
two real-world attacks, we evaluate VARSEM on the Yubico
PAM codebase under two scenarios: (1) infer variables that
store passwords, and (2) infer variables that store file descrip-
tors of a debug file that has not been closed. By locating the
variables in these scenarios, VARSEM can help software and
security engineers to defend against the attacks above.

We wrote VARSEM programs for the “password” and “de-
bug file descriptor” scenarios. The first program’s semantic
category has 2 rules: (1) the variable’s name matches “pass-
word” (i.e., textual information) and (2) it should be compared
(i.e., context information). The second program’s semantic

3it returns the variables whose name matches the search pattern exactly.
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Table 2. Results of Correctness

Yin Liu and Eli Tilevich

Project Init. Set Prepro. set THLD (a) Textual {nfo only (b) Context ¥n.f0 only (c) Textual * (?ontext strcn".lp.
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category has 3 rules: (1) the variable’s name matches “debug
file” (textual information), (2) its type matches “FILE”, and
(3) it is not closed* (context information).

Similar to our evaluation of correctness, we also used
accuracy, precision, and recall for evaluating effectiveness.
Also, we used a volunteer to manually find all variables
that store passwords and unclosed debug file descriptors to
establish the ground truth.

To answer question Q2-a, we evaluated those VARSEM pro-
grams whose semantic categories include both textual and
context information. To answer question Q2-b, we evaluated
the cases whose rules have different impact levels.

Programming Effort: To answer question Q3-a, we counted

the uncommented lines of code (ULoC) of VARSEM programs
for each scenario of our evaluation subjects. To answer ques-
tion Q3-b, we counted ULoC for the same scenarios as the
control group: (1) manually execute the required NLP and
data-flow analysis routines; (2) package these routines as
libraries, and use the Unix shell to invoke them.

6.5 Results

Correctness: The accuracy, precision, and recall results
appear in Table 2. VARSEM programs start their execution
with the following data collection procedure, which entails
(1) extracting all program variables, producing the initial
dataset, whose size is reported in the “Init Set” column; (2)
pre-processing the initial dataset to eliminate duplicates,
producing the pre-processed dataset, whose size is reported
in the “Prepro. Set” column.

Then, VARSEM’s execution differs based on the provided
rules. For each of the 8 evaluation subjects, we provided a
VARSEM program containing both the textual and context
information rules. For each program, we experimented with
the likelihood thresholds of 0.6 and 0.8 (“THLD” column).
The results reported in the “Textual+Context” column per-
formed satisfactorily in accuracy (13 out of 16 times >= 80%),
precision (13 out of 16 times > 80%), and passably in recall

4With this attack fixed and all file descriptors correctly closed, we modified
the file descriptors of debug file to remain open for our evaluation.

(8 out of 16 times > 60%). That is, VARSEM infers variable
usage semantics mostly correctly, with some PII variables
missed (i.e., false negatives). These high false negatives are
positively correlated with the specified likelihood thresholds:
the larger the threshold, the less likely would VARSEM des-
ignate variables as PII, with more true PII variables missed
and smaller recall. Also, the larger the threshold, the higher
the precision value. That is, when the threshold is large (0.8
in our case), VARSEM indeed misses some true PII variables,
but it correctly excludes many non-PII variables, so the false
positives rate decreases, with the precision increasing.

Also, we modified its VARSEM program to produce 2 vari-
ants: keep only the textual information rules (case-a, the
“Textual Info only” column) and keep only the context infor-
mation rules (case-b, the “Context Info only” column). Then
we compared VARSEM’s output for these two variants with
that of the original program, which includes both the textual
and context information rules (case-c, the “Textual + Context”
column). Case-c outperformed (or performed equal to) the
other two cases (14 out of 16 times better than or equal to
case-a while 9 out of 16 times better than or equal to case-b.
5 out of 8 times better than or equal to both case-a and b
for the threshold 0.6). That is, considering both the textual
and context information can increase VARSEM’s performance.
However, if the performance of case-a or b is poor, case-c’s
performance deteriorates as well. For example, in the project-
2 “emailaddr for PostgreSQL”, because its case-a generates
unsatisfactory results (accuracy < 30%, precision and recall
= 0%), case-c performs no better than case-b. Recall that we
assigned the same impact levels to all rules. By adjusting the
rules’ impact levels to fit specific variable usage semantics,
the performance of case-c can be improved (we evaluate how
impact levels work below).

We also evaluated the performance of a simple string com-
parison function (the “strcmp” column) to process textual
information rules. Overall, its performance is worse than
any of the cases a, b, and ¢ above. In five out of eight projects
(i.e., projects 1, 2, 4, 6, and 8), strcmp’s inference results are
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useless (i.e., the precision and recall values are either NA—
the number of true/false positives is “0” or 0%—the number
of true positives is “0”). This result reveals that the sym-
bolic names of the PII variables in these projects are not
descriptive of their usage semantics. For example, in the
project-4 “phone number scanner”, the variables that store
phone numbers are named as “inStr” and “outputStr” rather
than anything resembling “phone_number” However, be-
cause of VARSEM’s NLP-based analysis for rules of textual
information, VARSEM’s results (i.e., “Textual Info only” col-
umn) for these projects always outperform (or perform equal
to) the strategy of comparing strings for equality.

Effectiveness: Table 3 shows the effectiveness results of
inferring the variable usage semantics scenarios, described
as “password” and “debug file” (the “Var. Usage” column).
Overall, VARSEM performed satisfactorily in inferring the
variables that store unclosed debug file descriptors (100% ac-
curacy, precision, and recall in the best case), and passably in
inferring the variables that store passwords (97.6% accuracy,
53.8% precision, and 53.8% recall in the best case). Hence,
based on the returned variable lists, developers can directly
locate the unclosed debug file descriptors and reduce the
manual effort required to locate password variables. VARSEM
performed less effectively in the “password” scenario, as it
was given more general rules. Indeed, in the “Yubico Pam”
project, in addition to password variables, other variables
are semantically related to “password” and are compared
for equality. In contrast, only those variables that store un-
closed debug file descriptors have a symbolic name related
to “debug file”, the type matching “FILE”, and the value never
flowing to function fclose.

When evaluating the influence of impact levels in the
“Yubico Pam” subject, increasing the impact level of textual
information rules does improve VARSEM’s performance, as
the given textual information rules are more descriptive
of the target semantics than the context information rules.
That is, many variables compared for equality may not store
passwords (the “password” case), and many variables never
flowing to fclose function may not store debug file descrip-
tors. Since the likelihood values are weighted by their impact
levels, the textual information with impact levels higher than
those of the context information would contribute more to
the final results, resulting in better accuracy/precision/recall.

Programming Effort: Table 4 shows the evaluated ef-
fort as hand-written ULoC. For all evaluated subjects, it took
only ~6 ULoC to write a project-specific VARSEM program.
However, to accomplish the same inferencing task without
VARSEM took %2,500 ULoC of analysis routines written in
C and Python. Even if these routines were packaged as li-
braries, invoking them would take ~16 ULoC of Unix shell
scripts. Without VARSEM, developers would need to pos-
sess specialized expertise: (1) a familiarity with all relevant
libraries/routines and their interactions, and (2) an under-
standing of the output format of each routine involved. In
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Table 3. Results of Effectiveness

Textual + Context

Var. Usage Rules Impact Lv. THLD —
accuracy precision  recall
06  40.60%  4.20%  100%
a<b (a=5,b=10) 0.8  86.90% 1580% 92.30%
) (@)svar Name~"password” 06  60.60%  580% 92.30%
password e ar Value<ss a=b (a.b=10) 08  95.60%  32%  61.50%
06  8690% 1580% 92.30%

a>b (a=10, b=5)

0.8 97.60%  53.80%  53.80%

. .20% o .20%
a<b=c (a=5, bc=10) 0.6 98.20 100% 18.20

(e)$var Name-"debu ile" 08 97.80% NA 0%
var .Name~"debug file!

A o 06  100% 100%  100%

debug file El);:var.Jyfe IFIL)EHF . a=b=c (a,b,c=10) 08 97.80% NA 0%
var. Value! ~>"fclose

0.6 100% 100% 100%

ab=c@=10.b¢=5) oo g750%  Na 0%

contrast, with VARSEM, developers specify a semantic cate-
gory using high-level declarative rules, thus lowering the
programming effort.

Table 4. Programming Efforts of VARSEM

Languages Inference Tasks
VARSEM ~6 (ULoC)
Unix shell ~16 (ULoC)

All relevant routines 2442 (ULoC)

6.6 Discussion

Rules. As the effectiveness results demonstrate (§ 6.5), spe-
cific rules outperform general rules. Although easier to ex-
press, general rules (e.g., a variable type is a string) match
too many irrelevant variables, which more specific rules can
effectively filter out.

Thresholds. As the correctness results demonstrate (§ 6.5),
precision and recall can be improved by modifying thresh-
olds: in general, a high threshold increases precision, while a
low threshold increases recall. This behavior is due to higher
thresholds causing fewer reported variables, thus decreas-
ing false positives. In contrast, lower thresholds cause more
reported variables, thus decreasing false negatives. With the
thresholds being in the range of [0,1], choosing the thresh-
olds of 0.6 and 0.8 reports the variables whose likelihoods of
matching the rules are above 60% and 80%, respectively.
Impact levels. It would be unrealistic to expect program-
mers to follow the prescribed naming convention all the
time. Hence, a good practice for VARSEM users is to pre-check
the presence of and adherence to a naming convention. De-
pending on the findings, the VARSEM performance can be
improved by adjusting rules’ impact levels: in the presence
of unsystematic naming practices, reduce the impact levels
of textual information rules, and vice versa.

Runtime. VARSEM programs execute in time proportional
to the size of target codebases and the complexity of rules: it
takes longer to analyze larger projects with complex rules.
In our evaluation, the VARSEM executes within an acceptable
time: less than 1 minute (projects 1,2,3,6), less than 3 minutes
(project 4), and less than 6 minutes (projects 5,7,8). The most
time-consuming tasks are the NLP-based textual information
analysis and data-flow analysis.
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Applicability. Our built-in data-flow analysis routines are

LLVM-based, thus limiting their applicability to C/C++ projects.

Hence, our evaluation subjects are written in C/C++. How-
ever, VARSEM’s applicability can be extended to other lan-
guages thanks to its containerized deployment model (§ 4.2).
When it comes to VARSEM’s syntax, it would need to change
to accommodate how the target language expresses vari-
ables. For example, in dynamically typed languages, variable
types are determined and can change at runtime, rendering
VARSEM’s static type-related rules (e.g., $var.Type ~ "int"
inapplicable. Nevertheless, due to VARSEM’s extensible ar-
chitecture and meta-programming support, developers can
introduce rules with suitable operator/operands and anal-
ysis routines that can handle new analysis scenarios (e.g.,
in a dynamically typed language, the type can be bound to
numeric values: $var.DynType ~ "numeric"

Threats to validity & Limitations. The internal validity
is threatened by comparing VARSEM’s results with those of
stremp rather than of regular expressions. Two observations
mitigate this threat: (1) stremp provides a standard compari-
son baseline; (2) as discussed in § 2.2, we assume user famil-
iarity only with variable usage semantics (VUS), not expect-
ing them to be able to list all variations of symbolic names.
For example, a user would be looking for the “password”
VUS, being unaware which symbolic names (“pwd”, “p_wd”,
“p_w_d”, etc.) to enumerate with a regular expression.

The external validity is threatened by evaluating only
with eight third-party C/C++ subjects (see § 6.3). Although
covering various PII variable scenarios, these projects cannot
represent all possible scenarios. Further, our findings might
not generalize to other languages, and only additional studies
can mitigate this threat. We plan to open-source VARSEM
and our experiments, so others could conduct studies with
different subjects and settings.

For limitations, although VARSEM outperforms strcmp in
most cases, stremp can search projects with highly descrip-
tive variable names with acceptable accuracy/precision and
passable recall (i.e., rows (3)(5)(7) and “strcmp” column in
Table2). As VARSEM typically executes in seconds or minutes
at worst, stremp can execute in a second or less, achieving
comparable accuracy/precision/recall. In addition, extend-
ing VARSEM to support new operators/operands can require
changing the runtime, incurring an additional programming
effort, amortized only by subsequent uses of the extension.
However, with sufficient domain knowledge, VARSEM users
should be able to select the most suitable analysis algorithms
and meaningfully extend VARSEM.

7 Related Work

Understanding program semantics. Weimer et al. mine
for code specifications beneficial for debugging a given code-
bases [53]. Host et al. use data mining to extract rules from ex-
isting Java applications to identify unusual and unacceptable
method names [25]. Mishne et al. apply static analysis-based
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semantic search over partial code snippets to understand
API usage [36]. Allamanis et al. learn, via an n-gram lan-
guage model, a code snippet’s coding style to recommend
identifier names and formatting conventions [1, 2]. Raychev
et al. use structured support vector machines (SSVM) to pre-
dict identifiers names and type annotations in JavaScript
projects [41]. Alon et al. apply deep learning to learn code
embeddings, used to predict method names [5]. Rice et al’s
algorithm detects whether a function call is passed correct
parameters from an identifier’s name [42]. Sridhara et al.’s
algorithm generates documents for Java methods by select-
ing critical code statements and expressing them as natural
language phrases [45]. Buse et al’s descriptive model as-
signs human-annotated readability scores to source code
features to measure code readability [8]. These solutions
are intended for specific applications scenarios and rely on
dissimilar theories and algorithms. They also focus on the
source code’s context information, without considering it in
concert with textual information. In contrast, VARSEM con-
siders both textual and context information to infer variable
semantics. Further, VARSEM can incorporate the approaches
above due to its extensible architecture.

Software Querying Languages. Dyer et al’s DSL extracts
statistical information from large software repositories [16].
Martin et al’s PQL is a program query language for search-
ing specific source code patterns [35]. Chen et al’s VFQL
is a program query language for expressing and searching
for code defects through value flow graphs [9]. Urma et al.
describe Wiggle, a querying system that uses Neo4j’s Cypher
language to search source code with user-specified textual
or context properties [49]. Cohen et al. design a language for
querying specific patterns in Java source code [12]. Eidorff et
al’s type-based approach finds and replaces the problematic
dates in source code to solve the Year 2000 problem [17, 18].
Some online tools and IDE plugins locate given code patterns
[6, 39]. However, none of these languages focus on inferring
variable semantics. In contrast, VARSEM reifies the novel
variable usage semantics analysis, understanding variable
semantics rather than that of the entire program.

8 Conclusion

This paper has presented variable usage semantics analysis,
reified as a DSL—VARSEM—with a novel NLP-based analysis.
VARSEM features declarative and customizable rules bound
to analysis routines for inferring both textual and context
variable information. By reducing the effort of variable usage
semantics analysis, VARSEM can benefit both developers and
security analysts.
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