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Abstract. Distributed parallel applications often run for hours or even
days before arriving to a result. In the case of such long-running pro-
grams, the initial requirements could change after the program has started
executing. To shorten the time it takes to arrive to a result when running
a distributed computationally-intensive application, this paper proposes
leveraging the power and flexibility of dynamic software updates. In par-
ticular, to enable flexible dynamic software updates, we introduce a novel
binary rewriting approach that is more efficient than the existing tech-
niques. While ensuring greater flexibility in enhancing a running program
for new requirements, our binary rewriting technique incurs only negli-
gible performance overhead. We validate our approach via a case study
of dynamically changing a parallel scientific simulation.
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1 Introduction

Scientific computing is an interdisciplinary research area that uses computer
technologies to analyze mathematical models for computationally demanding
problems, including forecasting the weather, predicting earthquakes, and simu-
lating molecular dynamics. Despite the ever increasing computing power, scien-
tific computing applications are often long-running, taking hours or even days
to arrive to a result, due to the tremendous amounts of involved computations.
An effective approach to reducing the computing time in scientific programs is
parallel processing, particularly using compute clusters and computational grids.

In a long-running application, the initial scientific requirements could change
while the execution is in progress. To realize the changed requirements, a stan-
dard approach requires stopping the running application, changing the code, and
restarting the application. However, this maintenance approach does not utilize
the computing resources most effectively, as it leads to repeating some of the
computation.

This work is concerned with perfective maintenance required to address
changes in requirements rather than corrective maintenance required to address
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defects. We assume that the running program is correct, but needs to change to
meet some newly-discovered requirements. We are not considering the problem
of detecting and correcting program defects, which is addressed elsewhere in the
research literature [1].

This work targets distributed computationally-intensive applications that use
the JavaTMtechnology as a means to operate in heterogeneous environments.
Successful applications of the Java technology to the domain of distributed par-
allel computation include heterogeneous, Java-based, computational grids [2].
The Java Virtual Machine (JVM) provides an advanced virtual execution envi-
ronment on multiple platforms. The adaptive optimization capabilities of Just-
In-Time (JIT) compilers make the JVM suitable for executing programs written
in scientific computing languages, including X10 [3], and possibly other emerging
languages such as Fortress [4].

Although the JVM features the HotSwap API [5], which replaces loaded
classes in a running application, the signature of a replaced class must remain
the same, allowing only method body changes. This, in turn, constrains the pro-
grammer modifying the swapped classes. This paper shows how these HotSwap
constraints can be overcome to allow the programmer to update classes without
restrictions. To that end, this paper presents a novel bytecode rewriting and code
generation approach, enabling the use of the standard HotSwap to replace the
changed code in a running JVM. The approach leverages Binary Refactoring,
a technique we introduced [6] that applies semantics-preserving transformations
to the binary representation of a program. The flexible and efficient dynamic
updates enable the programmer to perfect a running application at will. The re-
sulting incremental perfective maintenance model can reduce time-to-discovery
when fine-tuning a distributed computationally-intensive application.

This paper presents a solution to the problem of updating computation-
ally intensive applications dynamically and contributes a novel dynamic update
method that can perfect long-running, distributed, JVM-based applications for
new requirements, thereby shortening their time-to-discovery; and a new binary
rewriting technique that enables the enhancement of performance-sensitive ap-
plications, with minuscule performance overhead.

The rest of this paper is structured as follows. Section 2 details our approach
to updating computationally-intensive software dynamically. Section 3 evaluates
the flexibility and efficiency of our approach. Section 4 compares our approach
with the existing state of the art. Section 5 discusses future work directions and
presents concluding remarks.

2 Updating Computationally Intensive Applications
Dynamically

Next we describe our flexible and efficient dynamic software updating system for
computationally intensive applications.
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Fig. 1. JVM HotSwap facility.

2.1 Enhancing JVM HotSwap Using Bytecode Rewriting

Fig. 1 shows how the JVM HotSwap reloads class C2’ on the fly. The replaced
application with four classes and the HotSwap program with a newer version
C2’ execute on two different JVMs; the JVM running the target application
needs to start with the appropriate debugging options and the HotSwap module
connects the JVM with its hostname and port number. The rightmost part of
Fig. 1 shows the application has the new version C2’.

Although the HotSwap API can replace loaded classes in a running applica-
tion, the signature of a replaced class must remain the same, and only method
bodies could change. Thus, adding new methods, fields, or constructors, or even
changing the signatures of existing methods or fields will render a class invalid
for HotSwap, thus hindering the programmer from updating programs at run-
time. To remove these constraints, our dynamic updating approach leverages the
ability of the JVM to load classes at runtime and uses bytecode rewriting and
code generation.

Fig. 2 shows our binary rewriting which introduces an indirection to a target
class using the Proxy Pattern. This rewrite leverages advanced optimization
capabilities of modern JVMs to inline the indirected functionality, making the
rewrite applicable for performance-sensitive applications [7]. The original class
A is translated into the proxy A and its superclass Super A. While the class
name and the method signatures of the original and proxy classes remain the
same, the method bodies are different; the overloading methods of the proxy
class invoke the overloaded methods of the superclass. The code snippet in the

A

void foo();

Super_A

void foo();

A

void foo();

class Super_A {
public void foo(){

System.out. println ("I'm foo.");
}

}

class A extends Super _A {
public void foo() {

super.foo() ;
}

}

Fig. 2. Our binary rewriting to introduce indirections.
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A

void foo(){super.foo();}
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Class[] argTypes, 
Object[] args){}

Super_A

void foo(){}
Object getMethodHelper(){}
Object getFieldHelper(){}

void foo(){}

void bar(int i){}

int i;
A

MethodHelper

void bar(int i){}

FieldHelper

int i;

Super_A

void foo(){}
Object getMethodHelper(){}
Object getFieldHelper(){}

A

void foo(){super.foo();}

Object invoke(
String name, 
Class[] argTypes, 
Object[] args){}

Bytecode
Rewriting

Fig. 3. Adding new members to the class A using the special helper classes.

right shows that the proxy class A inherits methods from the superclass Super A
and the call to the method foo() is delegated to the superclass.

Our approach first rewrites an original program for updatability and then
changes it for new requirements dynamically. In order to make a program up-
datable, our bytecode enhancer transforms the bytecode using the techniques
described above. This approach supports a wide-range of changes to the reloaded
classes, without violating the constraints imposed by the JVM HotSwap API.1

Fig. 3 describes an example of our approach. Suppose that class A needs to be
updated with another version. Since the second version of A is structurally dif-
ferent from the first version, the current JVM HotSwap implementation cannot
reload the second version of A. Our approach makes new classes for added fields
and methods to provide the flexibility. We called them helper classes. There
are two helper classes in Fig. 3; MethodHelper is for the new method bar(int
i) and FieldHelper is for the new field int i. To make intended changes to the
running application, we can reload the proxy A and its superclass Super A us-
ing HotSwap. It is obvious that JVM loads two helper classes when it reloads
Super A.

2.2 Updating Scientific Applications on the Fly

Once a program is made updatable at the bytecode level, the JVM HotSwap can
replace at runtime the program’s classes with their newer versions containing
structural differences. Furher, the HotSwap facilities are used in exactly the
same way as shown in Fig. 1. Fig. 4 illustrates the modules and control flow of
our dynamic updating system. This system consists of the class differencing and
bytecode rewriting modules.

To generate the helper classes, our approach identifies the structural changes
between the two versions of a class. The class differencing algorithm shown in

1 Our approach does not support the dynamic updates that change the inheritance
hierarchy–these changes are too substantial to be supported by rewriting bytecode.
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Fig. 4. Our dynamic software update system-subsystems and control flow.

Fig. 5 takes two versions of the same program as input and returns a collec-
tion of differences in fields, constructors, and methods. This algorithm simply
compares the fields, methods, and constructors of the classes by using the Java
Reflection API. To find out field differences, the differencing algorithm compares
the modifier, type, and name of a field. The method differences are identified by
examining the modifier, return type, name, and parameter types of a method
and constructors are distinguished by their modifier and parameter types.

Next we provide a more formal treatment of our binary rewriting techniques
using superclasses and proxies. The double vertical bar (‖) specifies pre- and
post-conditions. In X

Y , X denotes the class hierarchy of the original class before
the enhancement, while Y denotes its new hierarchy after the enhancement has
been performed. In Fig. 6, c is an original class, transformed into a proxy and
with the added superclass. The new superclass cvs is inserted between the proxy
cproxy and the initial superclass s of the original class c. Fig. 7 depicts how the
indirection works for methods and constructors. Fig. 8 details how our approach
introduces an indirection when accessing non-private fields. private <v V de-
notes the visibility V which is stronger than private visibility.

3 Case Study: Updating a Molecular Dynamics
Simulation System Dynamically

To demonstrate the efficiency of our approach, we compared the total execution
time of a Successive Over-Relaxation (SOR) [8] program with that of its rewrit-
ten version. The measurements were conducted on a compute cluster, with each
node running a dual processor AMD Opteron 240 (1.4Ghz), 1GB RAM, CentOS
version 4.2, JDK version 1.5.0, connected by Myrinet (4Gbit). Fig. 9 shows the
total overhead of the rewritten version never exceeds 2%.

To assess the applicability of our approach to more realistic programs, we
used a parallel Molecular Dynamics Simulation (MDS) program [9, 10] which
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INPUT: A set C = {(c1
v1, c

1
v2), (c2

v1, c
2
v2), . . . , (cp

v1, c
p
v2)} of class pairs to be compared.

OUTPUT: A collection of differences of fields, constructors, and methods

1 while (a set C is not empty) do
2 //Compare fields of classes

3 fieldsOfOldClass←− ci
v1.allFields(), fieldsOfNewClass←− ci

v2.allFields()
4 for (fieldsOfNewClass is not empty) do
5 eachF ieldOfNewClass←− fieldsOfNewClass.nextItem()
6 for (fieldsOfOldClass is not empty) do
7 eachF ieldOfOldClass←− fieldsOfOldClass.nextItem()
8 if ( sig . of eachF ieldOfOldClass == sig. of eachF ieldOfNewClass) then
9 isSameField = true; break;

10 end if
11 end for
12 if (NOT isSameField) then
13 differentMembers.addElement(eachF ieldOfNewClass)
14 end if
15 end for
16 //Compare constructors and methods of classes

17 methodsOfOldClass←− ci
v1.allMethods(), methodsOfNewClass←− ci

v2.allMethods()
18 for (methodsOfNewClass is not empty) do
19 eachMethodOfNewClass←− methodsOfNewClass.nextItem()
20 for (methodsOfOldClass is not empty) do
21 eachMethodOfOldClass←− methodsOfOldClass.nextItem()
22 if ( sig . of eachMethodOfOldClass == sig. of eachMethodOfNewClass) then
23 isSameMethod = true; break;
24 end if
25 end for
26 if (NOT isSameMethod) then
27 differentMembers.addElement(eachMethodOfNewClass)
28 end if
29 end for
30 end while

Fig. 5. The ClassDifferencing algorithm.

was deployed on Ibis [2], a Java-based grid programming environment. Among
other services, Ibis provides a Java API for MPI-like message passing among
cluster nodes.

A set of interfaces, I = {i1, i2, . . . , ii}
V Super(c‖cproxy, cvs) : Class c is transformed into cproxy and cvs.
c: refactored class, cproxy: proxy class of c, cvs: new superclass of c

V Super(c‖cproxy, cvs) =
c extends s implements I

cproxy extends cvs, cvs extends s implements I

Fig. 6. Indirection using superclasses.
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Pvs ‖...‖ denotes the rewriting by our approach.
//The transformation of constructors
Pvs ‖ public k(T1, . . . , Tn) throws C1, . . . , Ci‖ =

public k(T1, . . . , Tn) throws C1, . . . , Ci { super(T1, . . . , Tn); }
//The transformation of methods
Pvs ‖ public T m(T1, . . . , Tn) throws C1, . . . , Ci‖ =

public T m(T1, . . . , Tn) throws C1, . . . , Ci{
if ( the return type of m is void ) super.m(T1, . . . , Tn);
else return super.m(T1, . . . , Tn);

}

Fig. 7. Indirecting constructors and methods.

//Access the superclass′s non− private fields
Gvs ‖...‖ represents the generation of getters and setters for fields.
Gvs ‖ private <v V T x‖ =

private <v V T getX() { return x; }
private <v V void setX(T x) { this.x = x; }

//Access non− private fields via a proxy
Pvs ‖ private <v V T x‖ =

private <v V T getX() { return super.getX(); }
private <v V void setX(T x) { super.setX(x); }

Fig. 8. Indirecting the superclass’s non-private fields.

We updated the MDS program dynamically twice, updating the thermostat
algorithm and the number of molecules. The thermostat algorithm maintains
or rescales the temperature constant of a molecular system by increasing or de-
creasing the velocity of the molecules. Therefore, the selection of an appropriate
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Fig. 9. Refactoring overhead on Successive Over-Relaxation.
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Fig. 10. Updating the rescaling module of a molecular dynamics simulation.

thermostat method depends on the molecular system in use. Also the initial
number of the molecules may need to change during the simulation. Fig. 10 de-
picts the main modules of an MDS program and the thermostat module that are
updated dynamically. Table 1 summarizes the aforementioned scenarios, which
motivate dynamic changes.

While the changes above may seem simple, without dynamic updating fa-
cilities, they would require stopping the parallel execution and losing valuable
computing resources. Furthermore, these updates could not be accomplished by
using HotSwap alone. In fact, trying to use HotSwap for these updates would
throw an exception terminating the program’s execution. Finally, these changes
are a natural consequence of delivering solutions under tight deadlines. It is not
always possible to put enough care into designing a distributed parallel applica-
tion, so that it always satisfies the requirements of different users.

Table 1. Changes to the Molecular Dynamics Simulation.

Updates Requirements Implementations
Thermostat Rescale velocities of molecules Adding a new method
algorithm by replacing the thermostat rescale(mol[] m, int size)

algorithm and fields
The number Increase/decrease the number Adding a new method
of molecules of molecules to be simulated updateNumOfMols(int size)

4 Related Work

A significant amount research has been conducted in dynamic software updat-
ing via program transformation [11, 12], custom virtual machines or runtime
libraries [13, 14], and new language constructs [15, 16] such as Aspect-Oriented
Programming (AOP) [17].



Dynamic Updates for Accelerating Scientific Discovery 9

Orso et al.’s technique [11] and Bialek et al.’s system [12] transform the code
to enable its dynamic updates. Unlike our approach facilitates JVM HotSwap,
both approaches do not use HotSwap and consider an efficient implementation of
the proxy pattern for performance-sensitive applications. Furthermore, although
custom virtual machines might be more powerful in dynamic software updates,
they could lead to a severe interoperability issue in a heterogeneous computing
environment. Like Warth et al.’s Expanders [15] and Bierman et al.’s UpgradeJ
[16], dynamic updates can be provided as new language features or a service of
middleware systems. While they can express explicitly changes at the code level,
the programmer is required to learn new language constructs or tools. Similar
to program transformation, AOP-based approaches need to insert dynamic up-
date modules, usually aspects, into a target application before the application is
executed [18–20]. Table 2 compares the proposed approach with closely related
work. While these approaches to dynamic updates are powerful and effective,
none of them is applied and tested for computationally intensive applications
such as scientific and bioinformatics programs.

Table 2. Comparison to related work on dynamic updating for Java soft-
ware(supported:+, unsupported:-, and partially supported:+/-).

Criteria Orso[11] Bialek[12] Mal.[14] Lee[21] Pre.[18] Ours

Use of Standard
-Standard virtual machine + + - + - +
-HotSwap - - - - - +
-No coding constraints + + + - + +
-No runtime library required + + - - - +

Flexibility
-Adding fields/methods - + + + + +
-Update of fields/methods - + + + + +
-No source modification + + + + + +

Efficient code - - + +/- - +

5 Future Work and Conclusions

The flexibility and efficiency of our approach open a slew of future work direc-
tions, including the application of our approach to large scale grid applications,
self-adapting systems, and autonomic computing.

We have presented a new binary rewriting approach for supporting flexi-
ble and efficient dynamic updates of JVM-based, distributed, computationally-
intensive applications. Our approach to dynamic updating works with standard
JVMs and their built-in HotSwap facility to reload classes at runtime. The per-
formance and flexibility advantages of our approach make it promising for re-
ducing the time-to-discovery in long-running scientific applications.
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