
Power-Efficient and Fault-Tolerant Distributed Mobile Execution

Young-Woo Kwon and Eli Tilevich
Dept. of Computer Science

Virginia Tech
Blacksburg, VA 24060

Email: {ywkwon,tilevich}@cs.vt.edu

Abstract—Although battery capacities keep increasing, the
execution demands of modern mobile devices continue to
outstrip their battery lives. As a result, battery life is bound
to remain a key constraining factor in the design of mobile
applications. To save battery power, mobile applications are
often partitioned to offload parts of their execution to a
remote server. However, partitioning an application renders
it unusable in the face of network outages. In this paper,
we present a novel approach that reduces the power con-
sumption of mobile applications through server offloading
without partitioning. The functionality that consumes power
heavily is executed in the cloud, with the program’s state
checkpointed and transferred across the mobile device and the
cloud. Our approach is portable, as it introduces the offload-
ing functionality through bytecode enhancement, without any
changes to the runtime system. The checkpointed state’s size is
minimized through program analysis. In the case of a network
outage, the offloading interrupts and the application reverts to
executing locally from the latest checkpoint. Our case studies
demonstrate how our approach can reduce power consumption
for third-party Android applications. Transformed through
our approach, the applications consume between 30% and
60% fewer Joules than their original versions. Our results
indicate that portable offloading can improve the battery life of
modern mobile applications while maintaining their resilience
to network outages.

I. INTRODUCTION

Today’s mobile devices feature hardware capacities that
often surpass those of the desktops from the recent past.
Multicore CPUs, large RAMs, high resolution displays, fast
cellular networks—all are becoming standard for the ma-
jority of today’s smartphones, tablets, and e-readers. These
powerful hardware facilities enable mobile applications that
are increasingly complex in terms of their computation and
communication patterns. Unfortunately, battery capacities
have become a major constraint of modern distributed mo-
bile execution.

Indeed, battery capacities are known to increase quite
moderately [1]. Mobile application developers must remain
mindful of how computation- and communication-intensive
pieces of functionality affect the overall battery life. As
a result, power consumption is not only a major resource
constraint for modern mobile devices, but it also impedes
the mobile programmer’s creativity and productivity.

Distributed execution has been proposed as a means to
reduce power consumption in mobile applications [2], [3],

[4]. These solutions partition a mobile application into local
and remote parts, so that power intensive functionality is
executed remotely at a server. Because modern mobile
devices are network-enabled, offloading functionality to a
remote server presents a promising avenue for reducing
power consumption. Unfortunately, this optimization also
makes the application vulnerable to network outages, as
mobile networks are characterized by high volatility.

In this paper, we present a novel approach that combines
the advantages of the prior state of the art in partitioning
mobile applications with the goal of reducing their power
consumption. In particular, our approach offloads power-
intensive pieces of functionality to a remote server, similarly
to CloneCloud [3], while using checkpointing to synchro-
nize the state between the client and server computations,
similarly to MAUI [2].

A key difference of our approach is that it can execute
power-intensive functionality on the server without having
to partition the application. Instead, it efficiently replicates
state to switch between local and remote executions, both
to reduce client power consumption and to tolerate network
outages. When the network is operational, power-intensive
functionality is offloaded to the server by transferring only
the program’s state needed for the remote execution. Ef-
ficient checkpointing synchronizes local and remote exe-
cutions. If the network becomes disconnected during the
offloading, the remote execution is redirected back to the
mobile device. Thus, network outages only inhibit power
optimization rather than rendering the application unusable.
Finally, our approach is portable, as it relies on bytecode en-
hancement, with the enhanced mobile applications executing
on unmodified runtime systems.

Hence, our approach matches the power consumption
benefits of the partitioning-based approaches, while keeping
mobile applications resilient in the presence of network
disconnections. Because our approach heavily relies on
checkpointing, we employ sophisticated program analysis
to reduce the amount of the checkpointed state that must
be transferred across the network. The necessity to transfer
large data volumes across the network can quickly negate the
power consumption benefits afforded by remote offloading.
The research literature shows that the average size of a Java
heap commonly exceeds hundreds of MBs [5]. To avoid



having to checkpoint the entire heap, our approach leverages
forward dataflow and side effect analyses to reduce the
checkpointed state by orders of magnitude, thus rendering
state transfer practical for power optimization.

Thus, our approach enables execution offloading as a
means of reducing power consumption of mobile appli-
cations, without sacrificing performance. Furthermore, our
experimental evaluation sheds light on the following funda-
mental questions:

1) How can one determine optimal execution units that
can be offloaded to a remote server to reduce power
consumption?

2) How can one reduce the checkpointed state’s size to
make state transfer a pragmatic power consumption
optimization technique?

3) How can a system that relies on remote execution to
reduce power consumption remain operational in the
presence of network outages?

In our experiments, we have applied our approach to
optimize power consumption of five third-party, real-world
Android applications. Transformed through our approach,
four of these subject applications reduced their power con-
sumption; and one application maintained its original power
consumption. All the subject applications maintained their
original performance characteristics. To help the program-
mer determine when our approach can optimize power
consumption, we also introduce a program analysis that can
identify those application patterns that render our approach
inapplicable.

Based on our results, the technical contributions of this
paper are as follows:

1) Fault-tolerant execution offloading—an effective
power consumption optimization approach that ef-
ficiently and fault-tolerantly synchronizes execution
state between the mobile device and remote server to
provide power-efficient and reliable mobile execution.

2) Execution offloading analysis—a new static program
analysis technique that safely identifies the exact state
that must be transferred across the network during
execution offloading.

3) Execution offloading benefit analysis—a heuristic
that can guide the programmer if execution offloading
can reduce power consumption.

4) An evaluation of execution offloading—an empirical
evaluation of execution offloading using five real-
world, third-party applications.

The rest of this paper is structured as follows. Section
II motivates our approach. Section III introduces the tech-
nologies we used to implement our approach. Section IV
describes our approach and reference implementation. Sec-
tion V evaluates our approach with third-party applications.
Section VI compares our approach to the existing state of
the art. Finally, Section VII presents concluding remarks.
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Figure 1. A Mezzofanti use case.

II. MOTIVATING EXAMPLE

Consider Mezzofanti—a third-party, augmented reality
application that runs on the Android platform. This ap-
plication guides travelers visiting foreign countries. Lan-
guage differences is a major source of inconvenience when
traveling internationally, particularly to the locales that use
writing systems different from that of the traveler (e.g.,
English speakers visiting China). Mezzofanti enables the
traveler to use a camera to capture the image of printed
text in any language and obtain a free translation. The
use case depicted in Figure 1 shows how Mezzofanti can
decipher a Chinese language sign displayed somewhere at
the Great Wall of China. To that end, Mezzofanti uses
optical character recognition (OCR) and automatic language
translation. Unfortunately, recognizing signs optically is
highly computationally intensive, consuming battery heavily.
Therefore, a foreign visitor using Mezzofanti frequently is
likely to quickly run out of battery power, rendering this
electronic translation aid unusable.

OCR is by far the most computationally intensive piece
of this application’s functionality; it takes about 1 minute
to recognize a picture of 200 characters. Because power
consumption is roughly proportional to execution time [6],
a CPU-intensive task such as OCR executed on a mobile
device is likely to drain the device’s battery life. An addi-
tional source of OCR’s energy inefficiency is that it requires
that the device’s display stay lit during the execution. Since
powering a mobile device’s screen is known to constitute
one of the largest sources of power consumption [7], one
can see why OCR is a promising offloading optimization
candidate.

We wish to execute the OCR functionality of Mezzofanti
at a server remotely and then just display the computed
results on the mobile device. Traditionally, the application
would have to be partitioned, identifying local and remote
parts, which would be communicating with each other across
the network. If the network is spotty or simply unavailable,
such a partitioning would render the optimized application
inoperable.



With our approach, the power consumption of Mezzofanti
can be optimized as follows. The programmer would use the
@OffloadCandidate annotation to mark the program’s method
that implements the OCR functionality1. Our code enhancer
analyzes the functionality to be offloaded and inserts two
checkpoints: one at the client before the execution is to move
to the server, and one at the server before the execution
is to return back to the mobile device. The enhancer also
generates code to efficiently transfer state between the client
and the server. Finally, the enhancer also inserts a fault
handler at the client that catches network disconnection
events and handles them by continuing the execution locally
from the latest checkpoint.

Thus, when Mezzofanti is operated in the presence of a
fully covered network, the OCR functionality is offloaded to
a server, thereby reducing the application’s power consump-
tion. If the network is unavailable or experiences a discon-
nection, Mezzofanti can continue to deliver its functionality
to the user, albeit without optimizing power consumption.

III. BACKGROUND

Our approach combines program distribution, checkpoint-
ing, program analysis, and heap synchronization. We de-
scribe these technologies in turn next.

Program distribution: The approaches that can dis-
tribute a program to run across the network include auto-
mated partitioning, replication, and migration. Automated
program partitioning uses a compiler-based tool to introduce
distribution to a centralized program [8]. To that end, the
tool changes the application’s structure (e.g., introducing
proxies) and inserts middleware calls. As an alternative to
partitioning, a centralized program can be replicated on re-
mote nodes, with the replicas’ states synchronized according
to a given consistency protocol [9], [10]. The advantage of
replication is that the application’s structure does not need to
change, but synchronizing replicas may cause high network
traffic. Finally, migration leverages mobile computing to
move execution between remote nodes. Unlike replication,
migration moves around a single copy of the executed
application’s image. Because efficient migration requires
runtime system support, a customized runtime environment
must be provided for each participating node. Applications,
however, can migrate without any changes to their source
code [4], [11].

Mobile checkpointing: Checkpointing saves a pro-
gram’s intermediate state, so that the program can be
restarted from the latest checkpoint rather than from the
beginning, in cases as diverse as recovering from crashes,
debugging, or transferring state remotely. As an imple-
mentation technique, checkpointing has been used for fault
tolerance, debugging, security, dynamic analysis, etc. Check-
pointing can be implemented at different levels, including

1We assume that the application exhibits the level of modularity that at
least places distinct functionalities in different program methods.

hardware, virtual machine monitor, operating system, appli-
cation, and language.

In mobile computing, checkpointing is used to transfer
state across remote nodes. Checkpointing can help reduce
power consumption and save battery life [12], [13]. For
checkpointing to be effective toward that end, however, the
checkpointed state transferred across the network must be
optimized for size, lest the network transfer becomes another
bottleneck.

Program analysis: Program analysis infers various
facts about the program that can be leveraged for opti-
mization and transformation. Dataflow analysis determines
which particular program variable is assigned to which
variables [14]. Dataflow analyses operate on a method’s
control flow graph (CFG) to calculate reachable variables at
each statement. Because typical dataflow analysis algorithms
are intra-procedural, a whole program must be analyzed to
calculate a single variable’s flow.

Another program analysis used in this work is side-effect
free analysis [15], which determines whether a method
changes the program’s heap. Side-effect analysis inspects
all observable state, including static and heap objects. A
method has side-effects if it changes the observable state.
For this work, we used Soot [16], a powerful framework for
implementing various kinds of program analyses.

Heap synchronization: The heap is the memory space
used by the runtime system to allocate memory dynamically.
Heaps or their portions can be synchronized across different
nodes. One of the difficult issues of heap synchronization
is aliasing. When synchronized heap portions, the aliases
pointing to the synchronized data items must remain in
place. An effective approach to synchronizing liked data
structures (e.g., linked lists, trees, and maps) is to use the
copy-restore semantics for remote parameters [17]. This
semantics copies all reachable data to the server and then
overwrites the client copy of the parameter with the server
modified data in-place (i.e., while keeping the client-side
aliases intact).

IV. OFFLOADING POWER INTENSIVE FUNCTIONALITY

Figure 2 describes how our approach can offload power
intensive functionality. The programmer is only responsible
for annotating those program methods that are known to
consume power heavily. The question of how such methods
are identified is orthogonal to our approach: power profiling
can be used or domain knowledge can be leveraged. The
execution offloading analyzer first checks whether the anno-
tated methods can be offloaded and then determines which
portion of the program’s state would need to be send to the
server. Only the methods that do not contain any client-only
APIs (e.g., those controlling the GPS, camera, microphone,
etc.) can be offloaded. This check simply traverses the
program’s call graph and checks the reachable statements for
the presence of the known libraries that control the mobile
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Figure 2. Execution offloading process.

device’s hardware components (e.g., android.hardware.Camera.*
controlling the camera on Android-based devices). This
simple heuristic turned out to be quite effective in identifying
the methods that cannot be offloaded.

To determine the portion of the offloaded method’s state
to be transmitted to the server, our approach combines
forward dataflow and side-effect free analyses. Specifically,
it conservatively determines which portion of the modified
program’s heap can be accessed by the offloaded method.
Without these analyses, the entire heap would have to be
transmitted, potentially sending gigabytes of data. Finally,
based on the computed transferred state information, the
code enhancer inserts the checkpoint (at the bytecode level)
that captures the state as well as the state synchronization
module that updates the client’s heap based on the execution
of the offloaded method.

To handle network outages, the inserted offloading func-
tionality is surrounded by a try-catch block that catches and
handles network-related exceptions. They are handled by
restarting the local computation from the latest checkpoint,
thus aborting the offloading attempt without disturbing the
application.

Our approach to offloading power intensive functional-
ity comprises four parts: a programming model, execution
offloading analysis, a code enhancing infrastructure, and a
runtime system. We describe these parts in turn next.

A. Programming Model

To demonstrate our programming model, we revisit the
Mezzofanti application first introduced in Section II.

Figure 3 partially lists class OCR that recognizes the textual
representation of a given image. Method imgOCRAndFilter()

extracts text from its Image parameter, storing it in member
variable ssResult. Having identified this methods as power
intensive, the programmer annotates it with @OffloadCandidate.

1 public class OCR {
2 // member fields
3 ...
4 OCRConfig ocrConf;
5 SpannableString ssResult;
6
7 public void init() { ocrConf = new OCRConfig(); }
8
9 @OffloadCandidate

10 public void imgOCRAndFilter(Image img) {
11 String ocrResult = process(img);
12 ssResult = new SpannableString(ocrResult);
13 }
14
15 public SpannableString getParsedResult() {
16 return ssResult;
17 }
18
19 private String process(Image img) {
20 // process img using ocrConf
21 }
22 }

Figure 3. Motivating example revisited.

To run correctly, ImgOCRAndFilter() needs to have member
field ocrConf properly initialized, an operation performed in
method init(). Notice that ImgOCRAndFilter() accesses ocrConf
indirectly by calling method process().

Because method imgOCRAndFilter does not use any client
hardware-specific API, it can be offloaded. To execute this
method at the server, we need an instance of class OCR whose
member variable ocrConf is initialized. No other member
variables are accessed by imgOCRAndFilter, so that transferring
them to the sever would be wasteful.

When method imgOCRAndFilter completes its power intensive
execution on the server, member variable ssResult will be
modified, so that it contains the method’s result. Only this
member variable needs to transferred back to the client and
integrated into the client heap.



INPUT: A set of methods, OM = {m1,m2, . . . ,mn}
A call graph, CG
Constraints, CSpatterns, CSresource

OUTPUT: A set of methods, M = {m1,m2, . . . ,mn}

1 while (OM 6= ∅)
2 m←− OM.next();
3 objects←− getReachableObjects(m);
4 bM ←− true;
5 while (objects 6= ∅) do
6 eachObject←− objects.next();
7 if (eachObject ∈ CSresource &&
8 eachObject ∈ CSpatterns) then
9 bM ←− false;

10 end if
11 end while
12
13 if(bM = true) then
14 M.add(m);
15 end if
16 end while

Figure 4. Algorithm to validate offloaded methods.

B. Execution Offloading Analysis

The first analysis step determines whether the annotated
methods can be offloaded to the remote server. Figure 4
shows our validation algorithm. As input, the validation
algorithm takes a call graph and the client-only API informa-
tion. All reachable objects in the call graph are transitively
check for the absence of client-only APIs (e.g., controlling
camera, GPS, microphone, etc.), which can only be executed
on the mobile device itself. In addition, the validation
algorithm checks for some common patterns that would
render offloading impractical. For example, zigzag calling
patterns would lead to callbacks to the client, thus negating
any energy savings.

The methods to be offloaded are then analyzed for the
state that should be transferred between the mobile device
and remote server. To select the necessary state, we use a for-
ward dataflow analysis. Figure 5 shows our inter-procedural
analysis algorithm that identifies those member variables
that have to be passed to an offloaded method and back
to the mobile device. The forward dataflow analysis enables
to keep tracks of local variables of the offloaded method
by calculating the entry and exit of each analyzed statement
in the flow graph. The algorithm examines assignment and
invocation statements to determine whether local variables
are changed. In case of assignments, the following cases are
considered:

• If the left value is a class member variable, it is marked
as a required variable at the mobile device.

• If the right value is a class member variable, it is
marked as a required variable at the remote server.

In case if those member variables are accessed directly,
these variables are required for execution offloading. How-
ever, if member variables are accessed through local vari-
ables by referencing the member variable, the analysis
includes all transitional variables. To that end, the algorithm

INPUT: Offloaded method, method
OUTPUT: Read member variables, rV = {v1, v2, . . . , vn}

Written member variables, wV = {v1, v2, . . . , vn}

1 Select_State(method) {
2 c←− method.getDeclaringClass();
3 allStmts←− method.getBody();
4
5 while (allStmts 6= ∅) do
6 stmt←− allStmts.next();
7 if (stmt = assignment statement) then
8 lV alue←− stmt.getLeftOp();
9

10 if(lV alue ∈ member fields of c) then
11 wV .add(lV alue);
12 else if(lV alue is a transitional variable) then
13 root←− variableGraph.getRoot(lV alue);
14 variableGraph.add(root, lV alue); end if
15
16 if(rV alue ∈ member fields of c ||
17 rV alue ∈ variableGraph) then
18 rV .add(rV alue); end if
19
20 else if (stmt = invocation statement) then
21 target←− stmt.getInvocationTarget();
22 m←− target.getMethod();
23
24 if (target ∈ system library) then
25 rV .add(values);
26 if (Side_Effect_Analysis(m)) then
27 values←− stmt.getValue());
28 wV .add(values); end if
29 else if (target ∈ user library) then
30 /∗ recursive call ∗/
31 values←− Select_State(m);
32 end if
33 end if
34 end while

Figure 5. Algorithm for state selection.

maintains a variable graph, so that it can find the member
variables from the currently analyzed local variables. In
addition, because our forward dataflow analysis is intra-
procedural analysis, it is applied to all the methods in the
call graph reachable from the offloaded method.

In addition to assignment statements, invocation state-
ments are considered to determine the required state. In-
vocation statements can be categorized as follows:

• If an invocation is on a member variable, the variable
needs to be transferred during the offloading.

• If an invocation on a member variable changes any
member variables, the changed variables must be trans-
fered in both directions.

If an invocation is on indirectly accessed member vari-
ables, the algorithm determines the root member variable
by traversing the variable graph. Because the state selec-
tion analysis’ scope is limited to application classes, we
cannot apply it to system classes. Instead, we employ a
side-effect free analysis [15] that determines whether the
invocation target changes the heap. If the invocation changes
the heap, we mark the invocation’s receiver object to be
transferred. For example, if an invocation target method
is java.utils.HashMap.put(), we analyze it for the absence of
side-effects. Because method put() changes the heap, we



1 public class OCR {
2 @OffloadCandidate
3 public void imgOCRAndFilter(Image img) {
4 Checkpoint cp = OffloadingManager.getCheckpoint();
5 cp.addObject("ocrConf", ocrConf);
6 try {
7 cp.setMethod(getClass().getDeclaredMethod(...));
8 OffloadingManager.execute(cp);
9

10 Checkpoint serverCp = OffloadingManager.getUpdatedCP();
11 ssResult = serverCp.updateObj("ssResult", ssResult);
12 } catch (NetworkException e) { //revert to local execution
13 String ocrResult = process(img);
14 ssResult = new SpannableString(ocrResult);
15 } } }

Figure 6. Enhanced OCR client class.

1 public class OCR {
2 @OffloadCandidate
3 public void imgOCRAndFilter(Image img) {
4 Checkpoint cp = OffloadingManager.getCheckpoint();
5 ocrConf = cp.updateObj("ocrConf", ocrConf);
6
7 String ocrResult = process(img);
8 ssResult = new SpannableString(ocrResult);
9

10 Checkpoint newCp = new CheckPoint();
11 newCp.setMethod(getClass().getDeclaredMethod(...));
12 newCp.addObject("ssResult", ssResult);
13 OffloadingManager.updateCP(newCp);
14 }
15 }

Figure 7. Enhanced OCR server class.

determine that the entire HashMap member field is to be
transferred in both directions.

C. Execution Offloading Code Enhancer

Once the state is selected, the offloaded methods are trans-
formed to run on the server, with the results transferred back
to the mobile device. Using the Soot API, our bytecode code
enhancer transforms the offloaded methods into cloud and
server versions, Figures 6 and 7, respectively.2 The inserted
code interfaces with the runtime to obtain checkpoints as
well as to transfer the execution between the mobile device
and the server and vice versa.

D. Execution Offloading Runtime System

Our execution offloading runtime system stores check-
points, handles remote communication, and synchronizes
object state. The system keeps track of the latest checkpoint
sent to the offloaded method. In the case of a network
exception, the execution simply continues locally. The de-
vice communicates with the server by means of TCP Java
sockets to eliminate the middleware overhead. Object states
are synchronized through an efficient implementation of
the copy-restore semantics [17]. This semantics efficiently
replays remote changes to linked data structures in place
(i.e., preserving their aliases).

Because our approach generates the offloading function-
ality based on the results of static analysis, it is possible
that the runtime checkpointed state may turn to be larger
than it is practical to transmit across the network. To that
end, our runtime system performs a practicality check on
the size of the transmitted state. If the state surpasses a
parameterizable size threshold in bytes, the runtime system
throws a CheckpointSizeOverflow. Because this exception class
extends NetworkException, it is caught by the catch clause on
line 12 as any other NetworkException, causing the execution
to continue locally.

2Although the functionality is inserted at the bytecode level, we present
it in source code for ease of exposition.

V. EVALUATION

We have evaluated the effectiveness of our approach in
reducing power consumption and improving performance by
applying it to five third-party mobile Android applications.
The experimental setup has comprised a Motorola Android
smartphone, Droid (600 MHz TI OMAP3430, 256 MB
RAM) as the mobile device and Lenovo G560 laptop (2.5
GHz Intel i3 CPU, 4 GB RAM) as the server. The mobile
device has communicated with the server through a wireless
LAN with the average round trip time (RTT) of 73ms, which
is representative of modern mobile networks. To measure
power consumption, we used PowerTutor [18], a power
measuring system for the Android platform.

A. Experimental Subjects

To ensure that our approach is applicable to real-world
mobile applications, we chose our experimental subjects
from the list of open source projects hosted by Google
Code and SourceForge. For each application, Table I lists the
name of the offloaded methods3, the total number of member
fields in the method’s class, and the number of read/written
fields as determined by our analysis algorithm. Without the
analysis, all the member fields would have to be transmitted
across the network, reducing the efficiency of optimizing
power consumption.

Table I
THE BENCHMARK APPLICATIONS AND ANALYSIS RESULTS.

Application Offloaded method Member
variables

Read
variables

Written
variables Ratio

Mezzofanti4 OCR.ImgOCRAndFilter() 15 7 5 40%

JJIL5 DetectHaarParam.push() 2 1 1 50%

OSMAnd6 ShortestPathAlgorithm.execute() 7 1 5 92%

DroidSlator7 EnglishDict.translate() 0 0 0 0%

ZXing8 DecodedBitStreamParser.decode() 25 15 1 32%

3Since the methods are offloaded as specified by the programmer, we
chose to offload one most power intensive method per application.
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Figure 8. Power consumption.

(1) Mezzofanti—used as our motivating example—
offloads its OCR functionality. (2) JJIL detects faces from
a picture and offloads its face recognition functionality.
(3) OSMAnd navigates the Open Street Map using GPS
and offloads its shortest path calculation functionality. (4)
DroidSlator translates languages and offloads its translation
functionality. (5) ZXing encodes/decodes barcodes and of-
floads its decoding functionality.

B. Experimental Results

Our approach proved effective in optimizing power con-
sumption and overall execution time for four out of five
subject applications. Figure 8 and 9 show how offload-
ing has improved the subjects’ power and performance
characteristics, respectively. For each subject, the power
consumption and performance execution graphs display the
results of executing the offloaded method three times in
five configurations: (1) original centralized execution, (2)
offloaded execution with all the member variables of the
offloaded method’s class transferred to the server, (3) of-
floaded execution with only the member variables that are
accessed by the server transferred, (4) same as in (3) but
also transferring only the delta changes on the second and
third run, (5) same as in (4) but with a runtime max data
transferred threshold check9 (see Section IV-D for details).

4http://code.google.com/p/mezzofanti/
5http://code.google.com/p/jjil/
6http://code.google.com/p/osmand/
7http://code.google.com/p/droidslator/
8http://code.google.com/p/zxing/
9We used 6MB for all subjects.

The optimized versions of Mezzofanti, JJIL, DroidSlator,
and OsmAnd consumed less energy than their original local
versions. Even though Mezzofanti and JJIL send image data
to the server, because OCR and face recognition are process-
ing intensive, the optimization reduces power consumption.
Although OsmAnd needs to transfer an entire location graph
and location points to the server, this transfer takes place
only once, and later only a delta needs to be transferred.
DroidSlator transfers only a search string to the server, thus
saving energy by searching a local server-based database.
In terms of performance, the optimized versions of subject
applications usually outperform their original local versions:
processor-intensive computations can be executed faster by
a powerful server than a mobile device. One exception is
DroidSlator that transfers little data, but is not processor-
intensive. So the performance of the optimized version of
DroidSlator is latency-bound.

Figure 10 shows that our approach does not optimize
ZXing, which sends a large barcode picture to decode.
Sending large items over the network consumes more power
than is saved by decoding barcodes at the server. In this case,
running locally is the most power efficient option. For cases
like that, our implementation performs a runtime check that
reverts the execution to the mobile device. We were able
to cancel the offloading for ZXing by setting the offloading
threshold to 6MB, which stops the offloading before any
data is transferred across the network.

To test how the optimized subjects can withstand network
disconnection, we ran each application on a mobile device
that was disconnected from the network. Each application
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Figure 9. Total execution time.
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Figure 10. The experimental results of offloading with adaptation.

attempted to offload its power-intensive method to the server,
but then was able to switch back to the local execution
on the mobile device. We have not measured the effect
of this recovery mechanism on power consumption and
performance, as network disconnections are expected to be
exceptional conditions that happen infrequently.

C. Execution Offloading Index

So far, we compared our experimental results using a
single metrics. To obtain deeper insights, we introduce a
new metrics, execution offloading index, represented by the
following equation:

EOI =
OET

ET
× α+

OPC

PC
× (1− α)

where PC and OPC are original and optimized power

consumption, respectively; ET and OET are original and
optimized execution times, respectively; α denotes a pa-
rameterizable weight value. If ET/OET is less than 1,
the offloading optimization will increase the application’s
performance. Similarly, if PC/OPC is less than 1, the
offloading optimization will reduce the application’s power
consumption. The programmer uses the α parameter (rang-
ing between 0 and 1) to express whether the optimization
should favor performance or power. To focus on perfor-
mance, the α parameter should be greater than 0.5; to focus
on power consumption, the α parameter should be less than
0.5. When α is exactly 0.5, the focus is on both increasing
performance and reducing power consumption.

Figure 11 shows execution offloading index of our case
study’s subject applications. In this analysis, we set α to
0.3, which means that the optimization’s focus is on energy
saving. The execution offloading index value smaller than 1
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Figure 11. Execution Offloading Index.

indicates that the offloading optimization can indeed reduce
power consumption.

The intuition behind the execution offloading index is that
offloading power-intensive functionality both increases the
performance and reduces the power consumption. However,
in some special cases performance can be traded for power
consumption and vice versa; the programmer can use the
α parameter to express such special cases preferences. For
example, from the five applications in our case study suite,
one exception is DroidSlator, whose execution offloading
index is greater than 1, but which still reduces its power
consumption through offloading. By setting the α parameter
to 0.3, the execution offload index becomes less than 1,
indicating that DroidSlator can reduce power consumption
at the price of slowing down its performance.

D. Limitations

Despite its benefits, our approach is not applicable
to all applications. Some mobile applications are written
in a monolithic style, in which functionality cross-cuts
through traditional modularization program constructs such
as classes and methods. Without clear offloading program
points, our approach, which operates at the method bound-
ary, would be inapplicable. In addition, mobile applications
can allocate and manipulate large objects. Sending large
objects across a mobile network can quickly offset any
energy savings that can be achieved by offloading intensive
processing functionality to the server. These cases limit the
applicability of our approach, and the programmer has to be
able to identify the cases in which offloading is unlikely to
optimize power consumption or increase performance.

Another limitation of our approach is that we do not
take multiple concurrent threads into consideration when
determining whether a method can benefit from offloading.
If an offloaded method can be simultaneously invoked by
multiple concurrent threads, our approach currently does not
ensure that the program’s state remains consistent. However,
extending our program analysis heuristics to work with
multiple threads is a matter of engineering. Similarly, our
runtime can be easily enhanced to become thread-aware. We
plan to investigate how our approach can support concur-
rency as a future work direction.

Finally, our approach only minimally relies on the under-
lying middleware. As a result, the offloaded methods switch
to the local-only execution mode only when the network
becomes disconnected. With better middleware support, our
runtime system could have recognized those instances when
the network’s bandwidth/latency characteristics no longer
make offloading a worthy optimization and switch to ex-
ecuting locally.

VI. RELATED WORK

Multiple prior research efforts have focused on optimizing
power and performance of mobile applications. Introducing
distribution to reduce power consumption of a mobile ap-
plication has been a known optimization strategy [19].

Spectra [20] monitors resource usage and availability to
determine whether the mobile application’s power consump-
tion can be optimized through execution offloading. To that
end, Spectra requires that the programmer manually partition
the application to create a proxy for calling remote functions.
By contrast, our approach does not introduce remote proxies
and modifies the program automatically through bytecode
engineering.

Slingshot [21] leverages state replication, so that the
replicas can be deployed on remote servers to increase
performance. Although Slingshot shares similarity with our
approach by relying on synchronizing distributed state, our
approach does not require any changes to the runtime
system and is portable across any JVMs. Furthermore, while
Slingshot optimizes the offloading efficiency by locating the
closest surrogate server, our approach relies on program
analysis to reduce the size of the program’s state that needs
to be transferred across the network.

CloneCloud [3] leverages thread-level offloading to op-
timize mobile execution. Cloudlet [4] migrates the VM.
These approaches require a custom runtime system. By
contrast, our approach does not change the runtime system
but rewrites the program instead to introduce fault-tolreant
offloading. As a result, our approach works with standard
systems and runtime environments and is easily portable
across platforms.

MAUI [2] offloads resource-intensive functionality to re-
mote servers through program partitioning. While MAUI,
similarly to our approach, relies on the programmer anno-
tating the source code to which methods to offload, XRay
[22] partitions applications automatically. As compared to
partitioning-based approaches, our approach relies on check-
pointing and program analysis to transfer state across the
network efficiently and fault-tolerantly.

VII. CONCLUSIONS

We have presented execution offloading, a technique that
can reduce power consumption and can also improve perfor-
mance. Through program analysis and runtime support, our
approach reduces the amount of a program’s that needs to



be transferred across the network when offloading power-
intensive methods. Another advantage of our approach is
that our offloading optimization is fault-tolerant—when the
network becomes disconnected the optimized application
seamlessly switches to the original local-only execution.
We have evaluated our approach using five third-party ap-
plications, which were optimized to use less energy and
run faster, without compromising their fault-tolerance. These
results indicate that our approach can help achieve power-
efficient and fault-tolerant distributed mobile execution.
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