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Abstract—Mobile and energy harvesting devices increasingly
provide resources for edge environments. These devices’ mobility
and limited energy budgets may cause failures and poor perfor-
mance. The reliability and efficiency of edge services can be
improved with equivalent microservices that satisfy application
requirements by different means: execute equivalent microser-
vices in the predefined patterns of fail-over to minimize execution
costs or speculative parallelism to reduce latency. However, given
the vast dissimilarities in resource availability and capability
across edge environments, being limited to these predefined
patterns when implementing edge services causes inconsistent
QoS. To address this problem, we provide QoS-consistent edge
services by customizing the execution of equivalent microservices.
Our system estimates the environment-specific QoS of equivalent
microservices and dynamically generates execution strategies that
best satisfy given QoS requirements. We evaluate the effectiveness
and performance of our system via simulations and benchmarks
with realistic edge deployments. Our approach consistently out-
performs the predefined execution patterns in satisfying the QoS
requirements in unreliable and dynamic edge environments.

Index Terms—Edge Services, QoS Optimization, Orchestration

I. INTRODUCTION

Edge computing coordinates sensing, computation, and data
storage resources at the edge of the network [30]. Being within
the direct communication range of each other and the client,
resource-providing edge devices offer the communication la-
tency lower than that of cloud-based servers [11]. One way to
expose edge-based resources to application programmers is via
the service-oriented architecture (SOA). A service coordinates
the execution of edge-based distributed tasks, implemented as
edge microservices [31].

When it comes to provisioning services, cloud-based sys-
tems coordinate the execution of abundant and reliable re-
sources. In contrast, edge-based systems coordinate the ex-
ecution of unreliable and dynamic resources. The execution
failure ratio of edge services tends to be higher than that
of cloud services [2], [21], as it is often mobile or energy-
harvesting [12], [24], [36] devices that supply edge resources.
In edge environments, an execution can fail for multiple
reasons: a mobile device moves out of communication range;
an energy harvesting device becomes temporally unavailable,
driven into sleep mode; a speech recognizer fails due to noise.
Besides, cloud service vendors can always cost-efficiently
allocate the required amount of pre-deployed resources, while
edge services may need to be provided in diverse edge
environments with dissimilar and often scarce resources [4].

To improve reliability, the state of the practice for cloud
systems is to deploy replicated services on redundant cloud
resources. On the contrary, edge systems rely on resource-
scarce edge devices, rendering the replication solution in-
applicable. Considering the wide range of sensors and data
processing methods at the edge, our previous work MOLE [31]
takes advantage of equivalent microservices, which provide the
same functionality by different means and rely on dissimilar
resources (e.g., (1) camera/image analysis, (2) motion sensors,
and (3) wireless signal, used in place of each other for
indoor localization [10]). These equivalent microservices can
be executed in the fail-over pattern to improve reliability
with minimal costs or in the speculative parallel pattern to
improve reliability with minimal latency; we call such patterns
execution strategies.

However, MOLE cannot always deliver QoS-consistent edge
services, as it follows the specified fixed execution strategy
across edge environments with vastly dissimilar resources.
The resource dissimilarity across different environments yields
constituent equivalent microservices with uncertain QoS,
which in turn results in edge services that execute these
microservice in predefined patterns delivering unpredictable
and inconsistent QoS to the client. The state of the art lacks
a frame of reference for identifying and expressing highly
customized strategies for executing equivalent microservices,
whose QoS performance can be estimated accurately.

In the approach presented herein, we provide reliable and
QoS-consistent edge services with unreliable and dynamic
resources. In particular, rather than follow predefined execu-
tion strategies (as in MOLE), we provide highly customized
execution strategies that increase the QoS-consistency of edge
services across edge environments. Our system employs a
feedback loop [5] to monitor the environment-specific per-
formance of edge microservices and dynamically generate
execution strategies based on the service’s QoS requirements.

The insight that motivates our system design is the dissim-
ilar QoS of executing equivalent microservices by different
strategies. To be able to generate a customized execution
strategy that best fits the QoS requirements in a given edge en-
vironment, we explore the following system design questions:
1) how to express customized execution strategies; 2) how to
determine all possible strategies for a given set of equivalent
microservices; and 3) how to estimate the QoS of a strategy.

The contribution of this paper is threefold:
• System Design: We introduce an edge system design
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that provides reliable services with consistent QoS.
Our design features a feedback loop that collects the
environment-specific performance of microservices, as
well as a generator that customizes execution strategies to
best satisfy services’ QoS requirements. To the best of our
knowledge, this paper is the first to identify, define, and
solve the problem of providing QoS-consistent services
in dissimilar edge environments with dynamic resources.

• Customized Execution Strategies: We explore how to
customize execution strategies of equivalent functionali-
ties to best satisfy given QoS requirements. To the best
of our knowledge, we are the first to be able to 1) for-
mulate any customized execution strategy for equivalent
functionalities; 2) determine what all possible execution
strategies for any number of equivalent functionalities are
and estimate their QoS.

• Evaluation: We systematically evaluate the efficiency
and scalability of our system design as well as its actual
performance by benchmarking edge services deployed
and executed in real execution environments.

The rest of the paper is structured as follows: Section II
discusses the obstacles of provisioning edge services. Section
III presents our approach that determines all possible execution
strategies for given equivalent microservices and estimates
their QoS. Section IV gives an overview of our system
design and execution strategy generation algorithm. Section
V describes our evaluation results. Section VI compares our
solution with the state of the art, and Section VII concludes
the paper.

II. PROBLEMS IN PROVISIONING EDGE SERVICES

By embracing the service-oriented architecture (SOA), edge
executions across heterogeneous distributed devices are ex-
posed as service invocations, thus shielding application devel-
opers from the necessity to implement low-level, platform-
specific functionalities and D2D communication. Although
SOA has become an industry standard for cloud comput-
ing [32], edge computing operates in fundamentally different
execution environments, rendering cloud-based SOA designs
inapplicable. While to meet the service level agreements for
cloud services, their vendors only need to appropriately config-
ure the abundant computational and network resources, edge
service providers often have scarce, unreliable, and dynamic
resources at their disposal, with which to meet the QoS
requirements. To demonstrate the problems that these realities
of edge computing present, consider the following example.

A. Motivating Example: Detecting Fire

One of the key functionalities of personal mobile assistants
is to keep their owners safe. Such assistants can have a
feature that periodically checks for the potential presence
of fire to be able to alert its users and guide them to an
escape route. To detect the presence of fire in the surrounding
environment, the edge service detectFire can be queried in
dissimilar environments that can range from office buildings

to apartments, shopping malls, and even campgrounds. This
service must be reliable, responsive, and cost efficient.

What hinders the QoS-guaranteed provisioning of such a
service in dissimilar edge environments is their unreliable
and dynamic resources [1], [7], [8], [21], [28], [31]. Fig. 1
demonstrates how a mobile device queries edge services in
edge environments with dissimilar resources:

Sensors:
Computational:
Networking:

Sensors:
Computational:
Networking:

Edge Gateway in 
Office Building

Mobile User

Edge Gateway in 
Apartments

Sensors:
Computational:
Networking:

Edge Gateway in  
Campgrounds

Resources Provided by Mobile
or Energy Harvesting Devices

Fig. 1: Edge Services in Dissimilar Edge Environments

1) Edge resources can be provided by mobile devices [3],
[26] or energy harvesting stationary devices [24], [36]. With
multiple mobile devices in the vicinity, they can be organized
into a computing ensemble that can execute demanding edge
services [3], [26]. However, typically owned by individuals,
mobile devices are hard to predict or control, as their owners
can move away or use them at any time, thus causing service
failures. Besides, IoT devices increasingly rely on the energy
harvesting technology [19], which accumulates ambient recy-
clable energy, including solar radiation, wind, human motion
energy, and WiFi signals. However, these devices can be
operated only intermittently: energy may be unavailable to
harvest, taking time to accumulate to allow execution [23].
As a result, when executed on such devices, microservices
cannot guarantee satisfactory reliability.

2) Besides, different edge execution environments may pos-
sess resources with dissimilar capabilities and capacities. For
example, an office building may have built-in flame sensors for
detecting fire, while apartments may only have smoke detec-
tors; an indoor environment may have high-performance edge
servers for computationally intensive tasks, while an outdoor
environment may only have a solar-powered Raspberry Pi with
much lower computational power. The resource difference
across edge environments causes the dissimilar availability and
performance of edge-based microservices.

B. MOLE: Reliability-enhanced Edge Services

Our previous work, MOLE [31], demonstrates that equiva-
lent functionalities can be executed to improve the reliability
of edge computing. Edge computing environments feature a
wide range of sensors and data processing methods, so an
application requirement can be fulfilled in multiple equivalent
ways. MOLE enables edge service developers to specify
the execution strategies for equivalent microservices, which
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include the fail-over and speculative parallel strategies. The
fail-over strategy first tries executing a microservice; if it
is unavailable or disabled, the execution switches to a back-
up microservice. The speculative parallel execution
strategy spawns the execution of all microservices simultane-
ously, proceeding as soon as any of them returns successfully.
With both strategies improving reliability, fail-over is cost-
efficient and speculative parallel is latency-efficient.

In the aforementioned example, to improve its reliability,
detectFire can execute the equivalent microservices that
detect 1) smoke by a surveillance camera; 2) smoke by
smoke sensors; 3) flame by flame sensors; 4) the change of
CO/CO2 level by gas sensors; 5) the temperature change by
a temperature sensor. We assume that the output of any one of
these microservices, rather than their fusion, can detect fire.
When one microservice fails, MOLE switches to its equivalent
pair. Even if one or more microservices are unreliable, the edge
service’s overall reliability can still be guaranteed.

However, the overall performance of MOLE-specified ser-
vices differs across edge environments with predefined ex-
ecution strategies. For example, assume the detectFire

service is developed in an environment A with edge-based
small-scale data centers providing the computational power.
Considering the latency of each equivalent microservice is
pretty low, the developer specifies the execution strategy as
“fail-over” for better cost-efficiency. However, while being
executed in a different edge environment B with a Raspberry Pi
providing the computational power, the “fail-over” execution
may lead to an extremely long latency which is unexpected.
Hence, our solution extends MOLE’s reliability enhancement
by introducing a novel system design that uses a feedback loop
to generate environment-tailored execution strategies.

C. Customizing Execution Strategies to Optimize QoS

Due to the proliferation of unreliable execution environ-
ments (e.g., edge, IoT, etc.), the problem of optimizing their
QoS has come to the forefront of distributed system design.
This problem is exacerbated by these environments being un-
able to take advantage of existing designs that rely on standard
resource deployments. In the approach presented herein, we
put forward a novel optimization methodology that customizes
the execution strategies for equivalent microservices.

Several prior approaches make use of the combined exe-
cution of equivalent functionalities. To improve service re-
sponsiveness, several cloud service instances are deployed
and executed simultaneously [13], [27]. To improve reliabil-
ity, automatic Workarounds provide automatic fail over with
equivalent functionalities [9]. The emergence of IoT and edge
computing gives rise to distributed execution environments
that feature a wide range of sensors and processing methods,
thus greatly increasing the variety and number of equiva-
lent functionalities. However, all these existing approaches
can execute equivalent functionalities in predefined execution
patterns. The state of the art lacks a frame of reference for
identifying and expressing highly customized strategies for
executing equivalent microservices, whose QoS performance

can be estimated accurately. The exploding numbers of equiv-
alent functionalities of the emerging distributed environments
present an untapped potential for optimization QoS by fully
exploiting their customized execution.

III. EXECUTION STRATEGIES FOR EQUIVALENT
MICROSERVICES

Consider the aforementioned example: we use a, b, c, d, e
to denote the five equivalent microservices for detectFire.
For example, possible execution strategies for five equiva-
lent microservices (a, b, c, d, e) include, but are not limited
to: 1) fail-over: execute a, b, c, d, e in turns if the previous
microservice fails; 2) speculative parallel: execute a, b, c, d, e
simultaneously, returning the first obtained result; 3) first
execute a and b simultaneously; if any of them succeeds,
return the results; otherwise, execute c, d, e simultaneously
and return the first available result; 4) first execute a, then b
and c simultaneously; if none of them succeed, execute d first
then e. To generate execution strategies that best satisfy given
QoS requirements, we need to 1) find all possible execution
strategies and 2) compare their QoS.

A. Expressing an Execution Strategy

An execution strategy expresses the invocation sequence of
a set of equivalent microservices, which can be short-circuited
when any microservice succeeds. Fig. 2 gives the EBNF
grammar of an execution strategy. We express an execution
strategy (denoted as es) by a set of equivalent functions
(denoted as eqvFunc, i.e., a, b, c...) and the operators con-
necting them into an expression. The binary operators − and ∗
denote a sequential and a parallel execution, respectively, and
the parentheses operators denote that the execution strategy
inside a pair of parentheses is considered as one equivalent
functionality.

1 es ::= eqvFunc | es - es | es * es | ( es )

Fig. 2: EBNF Definition for Execution Strategy (es)

Here are some examples to help understand the formulation:
• Given two equivalent functions a and b, a− b expresses

that the functions are to be executed in sequence from
left to right, while a ∗ b expresses that the functions are
to be executed in parallel. If any eqvFunc succeeds and
returns, the overall execution terminates without requiring
to execute the eqvFuncs later in a strategy expression
(i.e., for a− b, if a succeeds, no need to execute b).

• The parentheses operators denote that the execution plan
inside a pair of parentheses is considered as one equiva-
lent functionality. For example, a∗b−c means to execute
a and b in parallel first and then c, while a∗(b−c) means
to treat b− c as an equivalent functionality, and execute
a and b− c in parallel.

• Notice that because the − and ∗ operators take equivalent
functionalities as their operands, the traditional built-in
operator precedence is slightly altered. For example, for
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the execution plan a − b ∗ c, a is executed first; then b
and c are executed in parallel.

According to our formulation, the four execution strategies
given in the front of this section can be expressed as:

1 a - b - c - d - e; //fail-over
2 a * b * c * d * e; //speculative parallel
3 a * b - c * d * e; // or: b * a - c * e * d
4 a - b * c - d - e; // or: a - (b*c) - d - e

Fig. 3: Execution Strategy Examples

We notice that in some cases, the parentheses in some
cases can be removed (Line 4, Fig. 3) or the sequence of
eqvFuncs can be changed (Line 3, Fig. 3), without affecting
the execution semantics of a strategy. Here we give three
observed properties for an execution strategy, which will
be used to remove replications in determining all possible
execution strategies in the next subsection:

Observation 1. The parallel operation is commutative, while
the sequential one is not, e.g.: a∗b = b∗a, while a−b 6= b−a.

Whether two execution plan expressions are equivalent
depends on whether they express the same execution control
logic. a∗b means to execute a and b in parallel, while b∗a also
means to execute a and b in parallel. In contrast, a− b means
to execute a first and then b, while b− a means to execute b
first and then a. Hence, a ∗ b = b ∗ a, while a− b 6= b− a.

Observation 2. Both the parallel and sequential operators
are associative, e.g.: a − b − c = (a − b) − c = a − (b − c),
and a ∗ b ∗ c = (a ∗ b) ∗ c = a ∗ (b ∗ c).

a − b − c means to execute a first, then b, and then c.
(a− b)− c and a− (b− c) express exactly the same execution
control logic. The same argument applies to a∗b∗c, (a∗b)∗c
and a ∗ (b ∗ c).

Observation 3. Parenthesis are only required to disambiguate
expressions that contain the “−” operator (not nested in other
parenthesis), with the “∗” operator appearing right before or
after the expression’s parenthesis. E.g.: (a− b)∗ c 6= a− b∗ c,
(a ∗ b− c) ∗ d 6= a ∗ b− c ∗ d, while a− (b ∗ c) = a− b ∗ c.

There are three different possible operator combinations
inside and outside parenthesized expressions: (1) no un-nested
− inside, e.g., (a∗b)−c, a−(b∗c)−d, (a∗b)∗c, a∗(b∗c)∗d,
a− (b∗c)∗d, or

(
(a−b)∗c

)
−d (the outside parenthesis); (2)

an un-nested − inside, with no direct connections to ∗ right
outside, e.g., (a ∗ b − c) − d, or a − (b − c) − d; (3) an un-
nested − inside, with at least one connected ∗ right outside,
e.g., (a−b)∗c, a∗(b−c)−d, or a−(b−c)∗d. The parentheses
in (1) and (2) can be removed based on observations 1 and 2
above. However, the parentheses in (3) cannot be removed, as
(a − b) ∗ c and a − b ∗ c expresses different execution logic:
(a− b) ∗ c executes a and c in parallel, and will not execute b
unless a returns a failure before c successfully returns; a−b∗c
executes a first and then b and c in parallel.

B. Determining all Possible Strategies

The problem we solve in this subsection is, given a number
of equivalent microservices (i.e., 3 microservices a, b, and c),
how to find all possible strategies to execute them?

Our solution is inspired by the exhaustive search solution
for the 24 game, which is a classic math game: given 4
numbers in the range from 1 to 9, binary operators (+, -
, *, /), and parentheses, form an arithmetic expression that
equals to 24. The exhaustive search solution [35] lists all
possible expressions and removes duplicates. To generate all
expressions, the solution proceeds in three steps: 1) put all
digits into 4 slots, resulting in P(9, 4) arrangements; 2) for
each arrangement, put any one of the 4 operators into each
of the 3 slots between the digits, resulting in (P(9, 4)*43)
arrangements; 3) to process parentheses, alter the precedence
of the 3 operator slots. The number of final expressions is P(9,
4)*43*P(3,3).

We convert the problem of “finding all possible execution
plans for an equivalent set of size n” to “finding all execution
plan equations that contain m (1 ≤ m ≤ n) equivalent
functionalities out of n, with m − 1 operators out of −
and ∗, and parentheses.” We first apply the aforementioned
exhaustive search to find P (n,m)∗2m−1∗(m−1)! expressions
of execution plans for all m ∈ [1, n], remove the duplicate
expressions, and put them together to produce the answer. The
duplication removal procedure takes advantage of the three
observations above to identify duplicate expressions.

For each 2 ≤ n ≤ 6, Table I gives the number of
distinct execution strategies for an equivalent set of size n.
F (M) denotes the size of strategies that contains all M
microservices, while F ′(M) denotes the size of the strategies
that contains 1 to |M | microservices. We observe that as few as
four equivalent functions can have over 200 possible execution
strategies.

M 2 3 4 5 6
F (M) (with M microservices) 3 19 207 3211 64743
F ′(M) (∀n ∈ [1,M ] ms) 5 31 305 4471 87545

TABLE I: Execution Strategies for M Eqv MS

C. Estimating the QoS of a Strategy

This subsection presents a solution to the following prob-
lem: given the QoS of a, b, c, what is the average QoS of exe-
cuting a∗b∗c multiple times? Some existing solutions estimate
the overall QoS of an execution strategy by folding the QoS
calculation over a collection of equivalent services [15]. We
will compare our results with theirs. We are not estimating
the QoS of one execution, as any microservice could fail
or succeed, leading to dissimilar performance. Instead, we
estimate the average QoS of running an execution strategy
multiple times.

1) QoS Model and Assumptions: We consider three major
QoS attributes for edge services and microservices: cost,
latency (or say, response time), and reliability. The cost
attribute is estimated as the amount of energy consumed to
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execute edge microservices. The latency attribute refers to the
time taken to execute microservices and services. The reliabil-
ity attribute refers to the probability of finishing an execution
successfully. As the execution status in edge environments
differs across runs, we compute the QoS as the average value
of multiple executions in an edge environment.
M = {m = 1, 2, ...M} denotes a set of equivalent

microservices, while rm, lm, cm denote the average reliability,
latency, and cost of ∀m ∈ M in an edge environment. Our
QoS estimation is based on the following assumptions:

Assumption 1: although multiple devices can provide a
microservice in an edge environment, our system only selects
the one with the best QoS;

Assumption 2: once an edge device receives a microservice
execution request, it charges the microservice’s full execution
cost, irrespective of whether the execution is to succeed, fail,
or terminate midway.

2) QoS Estimation Algorithm: We estimate the QoS of a
strategy as follows. The overall reliability of a strategy can
be directly estimated as r = 1 −

∏m∈M
m (1− rm), as a

strategy only fails when all its constituent microservices fail.
For cost and latency, we first convert the expression of an
execution strategy to a tree structure, which has three node
types: leaf, sequential, and parallel. A leaf is an
equivalent microservice. A sequential node has its left

and right children, and a parallel node has two or more
child nodes.

Algorithm 1 shows how to estimate the cost and latency
using a tree. Starting from the root of the tree, it recursively
calculates the timelines for all microservices (Lines 15 to 33).
A timeline (τ = (m, s, e)) denotes a microservice m, its
start time s and end time e. For a leaf node, m points to
its microservice, with start time set to 0 (s = 0) and end
time set to the latency of the microservice (e = lm). For
a sequential node, the time lines of its left and right

children are generated. The longest end time of microservices
belonging to the left child is added to the start time and
end time of each microservice belonging to the right child
(Lines 23 to 25), as the right child of a sequential node is only
executed when all microservices in the left child fail. For a
parallel node, the timelines of all its children are generated.

Lines 3 to 7 calculate the latency of a strategy. The timelines
are sorted by their end time in ascending order to form a
list φ. The overall latency is calculated as follows: for each
microservice (φ(i)), add up its end time multiplied by the
probability that the overall execution terminates upon the
microservice completing its execution (the probability that all
microservices in front of φ(i) fail and φ(i) succeeds). Lines
9 to 12 calculate the cost of a strategy. The overall cost is
calculated as follows: for each microservice m, add up its
cm multiplied by the probability that the overall execution
would not terminate before it has a chance to execute (i.e., all
microservices in ξ fail, with ξ denoting all microservices that
finish before m starts).

3) QoS Estimation Example: For example, consider the a∗
b ∗ c strategy, in which la = 10ms, ra = 10%, lb = 90ms,

Algorithm 1 Estimate Cost, Latency for a Strategy

Input: es: strategy
Output: l: latency, c: cost

1: l← 0, c← 0
2: τ ← GetTimelines(es.root)
3: φ← τ .sortBy(e) . sort by endTime
4: for i← 0 to |φ| − 2 do
5: l+ =

(∏i
j=0 (1− rφ(j).m)

)
∗ rφ(i).m ∗ φ(i).e

6: end for
7: l+ =

(∏|φ|−2
i=0 (1− rφ(i).m)

)
∗ φ(|φ| − 1).e

8:
9: for (m, s, e) ∈ τ do

10: ξ ← τ .filter( .e < s) . any ms finishs before m starts
11: c+ =

∏|ξ|−1
j=0 (1− rξ(j).m) ∗ cm

12: end for
13: return l, c
14:
15: function GETTIMELINES(t:TREE)({τ = (m, s, e)})
16: switch t.Type do
17: case Leaf
18: return {(t.func, 0, t.func.latency)}
19: case SequentialNode
20: τl ← GetTimelines(t.left)
21: tleft ← max(τl.e)
22: τr ← GetTimelines(t.right)
23: for i ∈ τr do
24: i.e← i.e+ tleft, i.s← i.s+ tleft
25: end for
26: return τl ∪ τr
27: case ParallelNode
28: τ ← ∅
29: for i ∈ t.children do
30: τ ← τ∪ GetTimelines(i)
31: end for
32: return τ
33: end function

rb = 90%, lc = 70ms, and rc = 70%. By using our QoS
estimation method, the latency of the aforementioned a ∗ b ∗ c
would be estimated as: 10 ∗ 10% + 70 ∗ (1 − 10%) ∗ 70% +
90 ∗ (1− 10%)(1− 70%) = 69.4ms

The folding based method [15] has also been applied to
estimate the QoS of a strategy. It first calculates the latency
and reliability attributes of θ = a ∗ b as: lθ = 10 ∗ 10% + 90 ∗
(1−10%) = 82ms, rθ = 1−(1−10%)∗(1−90%)=91%. Then
it computes θ∗c, leading to an estimated overall latency of 70∗
70%+82∗(1−70%) = 73.6ms. However, this estimation fails
to consider how the execution status of services that appear
later on the list affect the execution of services preceding them.
If, for example, c successfully completes its execution first,
its result will be used right away, without waiting for b to
complete its execution. Our evaluation in Section V confirms
the correctness of our method.
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D. Execution Strategy Examples

For the aforementioned fire detection example, we
set the QoS, [cost, latency, reliability] of microservices
a − e to [50, 50, 60%], [100, 100, 60%], [150, 150, 70%],
[200, 200, 70%], and [250, 250, 80%]. Table II lists example
strategies and their resulting QoS, calculated by the methodol-
ogy introduced in this section. We observe that compared with
the predefined strategies (strategies 1 & 2), the customized
strategies (strategies 3 & 4) strike better balance between the
QoS attribute values. For example, if latency is the major
concern, strategy 2 is the most latency-efficient but cost-
inefficient, while strategy 4 reduces the cost by 50.6% with
a minor increase on the latency (5%). This example demon-
strates how executing equivalent microservices by different
strategies leads to vastly dissimilar QoS.

id Execution Strategy cost latency reliability
1 a-b-c-d-e 126 126 99.7%
2 a*b*c*d*e 750 81 99.7%
3 a-b*c-d-e 162 111 99.7%
4 c*(a*b-d*e) 372 85 99.7%

TABLE II: Execution Strategies and Estimated QoS

IV. SYSTEM DESIGN AND STRATEGY GENERATION

The design of our edge-based service provisioning system
follows and extends that of MOLE [31]. In particular, we ex-
tend the edge gateway to support new workflows to provision
QoS-consistent edge services.
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Fig. 4: System Design for Provisioning Edge Services

A. System Components and Edge Service Execution

Fig 4 shows the main components and service provisioning
workflow of our design, which features a client, an edge
gateway, multiple edge devices for executing microservices,
and a cloud-based market that hosts self-describing scripts for
services and microservice executables.

A client device sends edge service requests, identified by
a unique ServiceID, to its connected gateway. The gateway
follows a service script describing the dataflow of constituent
microservices and the QoS requirements to invoke microser-
vices that are further being executed on edge devices. The
service scripts required by the gateway and microservice exe-
cutables required by the edge devices can be downloaded from
a service market, and cached locally for further executions.
Hence, if a recently executed service is invoked again, the

request can be processed entirely within the edge’s local
environment, without needing to interact with the cloud.

The runtime starts executing a service by following the
default execution strategy to collect the environment-specific
non-functional performance attributes for each invoked mi-
croservice. As the service continues being invoked, a generator
(on the gateway) synthesizes an execution strategy that satisfies
the QoS requirements more closely by adapting to the changed
performance of the constituent microservices. That strategy
executes until a successor with better QoS replaces it, so the
system self-adapts to dissimilar edge environments.

B. Major Enhancements Over MOLE

In MOLE, a service script specifies a prioritized list of
equivalent microservices. A script is then uploaded to a cloud-
based service market to be transformed into an execution
strategy, based on the priorities of the constituent equivalent
microservices and the developer specified execution strategies.
Different from MOLE, our system generates the execution
strategies locally at the edge gateway, to accommodate the
edge-specific performance of the microservices.

In addition, the edge gateway now involves a feedback
loop that comprises an execution strategy generator, a col-
lector for recording microservice QoS characteristics, and
a strategy executor. Upon receiving a service request, the
gateway imports the corresponding service script, reading the
QoS of microservices and the service’s QoS requirements. An
execution strategy generator retrieves the QoS of constituent
microservices from the collector, and outputs an execution
strategy. The strategy executor follows the strategy to invoke
microservices. The collector keeps updating the QoS charac-
teristics of microservices until their executions complete.

C. QoS Utility Index

The QoS satisfaction model for cloud services is binary:
given a set of QoS requirements and a service’s SLA, the
service either satisfies the requirements or not. Application
developers select to integrate only those services that satisfy
the QoS requirements. However, with edge applications, devel-
opers may have no alternatives and can only use the available
edge services, rendering the binary QoS satisfaction model
inapplicable. Although QoS requirements are still imposed,
applications may need to integrate with edge services that
approximate the requirements most closely, and that is what
our strategy generation aims for. If a generated strategy fails
to reach one or multiple required QoS attributes specified in
service scripts, the gateway reports the estimated unsatisfied
QoS to the client, which then determines whether the service
request with this expected QoS should be continued.

QoS has multiple attributes. For generality, we consider N
QoS attributes, with n = |N |. For example, in our system
model, N = {c, l, r}, so n = 3. Qn denotes the requirement
of QoS attribute n imposed on an edge service. In our system
model, Qr, Qc, Ql denote the requirements on reliability, cost,
and latency, respectively. S = {s = 1, 2, ..., |F (M)|} denotes
all possible strategies, while Q(s) = {q1(s), q2(s), ..., qn(s)}
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denotes the estimated QoS of strategy s. QoS attributes can
be placed in the following two categories, as based on their
optimization criteria: 1) the smaller the better, denoted as N−
(i.e., cost and latency); 2) the higher the better, denoted as N+

(i.e., reliability and trust level). For any QoS attribute n ∈ N ,
qn � q′n denotes qn is worse than or equals to q′n (i.e., qn ≤ q′n
if n ∈ N+, or q′n ≤ qn if n ∈ N−), and qn � q′n denotes qn
is better than q′n.

Among S, the QoS of a subset of strategies are Pareto opti-
mal [25]. A strategy s is Pareto optimal iff no other strategies
in S can improve any of the QoS attributes without worsening
the remaining QoS attributes

(
i.e., @s′ ∈ S, that satisfies:

∀n ∈ N , qn(s) � qn(s′) and ∃n ∈ N , qn(s′) � qn(s)
)
. To

evaluate how these Pareto optimal strategies satisfy the QoS
requirements, we introduce a utility index U(s) =

∑N
n un(s),

where

un(s) =


−k |qn(s)−Qn|

Qn
, if qn(s) � Qn

|qn(s)−Qn|
Qn

, if qn(s) � Qn
∀n ∈ N , k > 1

(1)
In the equation above, |qn(s)−Qn|

Qn
denotes the normalized

distance between a strategy’s estimated value and the re-
quirement imposed on the QoS attribute n. un(s) is positive
when qn(s) � Qn, negative when qn(s) ≺ Qn, and zero
otherwise. However, when the requirement is not satisfied (i.e.,
qn(s) � Qn), un(s) changes at a higher rate due to the system
parameter k. The reasoning behind this index is that even for a
fully satisfied QoS attribute, its improvement can still increase
the overall utility; however, the rate of the increase would be
slower than when the QoS attribute is unsatisfied.

To demonstrate how the utility index metric works, consider
two strategies s1 and s2. s1 delivers exactly the required cost,
latency, and reliability, while s2 improves cost and reliability
by 5% each at the expense of 10% additional latency. With k
as a penalty for unsatisfied QoS attributes, the utility of s1 is
higher than that of s2. A higher k value can be specified to
incur a higher penalty for unsatisfied QoS attributes. For exam-
ple, assume s2 improves cost and reliability by 10% each at the
expense of 10% additional latency; hence, u(s1) = u(s2) = 0
if k = 2, while u(s1) = 0 > u(s2) = −0.1 if k = 3.

D. Generation Heuristic

The pseudo code in Alg. 2 shows our strategy generation
heuristic. To generate execution strategies time-efficiently, we
use the exhaustive search when the number of equivalent mi-
croservices is small, and switch to an approximation heuristic
when the number exceeds a threshold causing the exhaustive
search to take too long to finish. For a set of M equivalent
microservices, the exhaustive search estimates the QoS per-
formance for each possible execution strategy that contains
all M microservices (i.e., F (M)), and selects the one with
the highest utility index (i.e., arg maxU(s),∀s ∈ F (M)).
However, as the number of possible execution strategies grows
exponentially with the number of equivalent microservices,
estimating the QoS for each of them may take too long.

Algorithm 2 Strategy Generation

Input: M: equivalent microservices
Output: es: execution strategy

1: if |M| > θ then
2: es← exhaustiveSearch

(
strategies(|M|)

)
3: else
4: M′ ← sortByUtility(M)
5: es←M′(0)
6: for i← 1 to |M′| − 1 do
7: es1 ← es−M′(i) , es2 ← (es) ∗M′(i)
8: if utility

(
es1

)
>utility

(
es2

)
then

9: es← es1

10: else
11: es← es2

12: end if
13: end for
14: end if
15: return es

The approximation heuristic first sorts the equivalent mi-
croservices by their utility values (i.e., the microservices
appear in the order of their overall performance). The initial
execution strategy only includes the first microservice from
that list. Then, in each iteration, the first microservice on the
list is removed and included into the strategy, thus passing
through the entire list.

Both algorithms generate strategies that contain all M
equivalent microservices. Another generation heuristics could
generate strategies that contain only a subset of these microser-
vices. The exhaustive search can include all possible strategies
F ′(M) (with 1 to M microservices) instead of F (M), while
the approximation heuristic can terminate when including a
microservice into a strategy fails to improve the utility index.
However, as the execution resources in an environment may
change over time, executing a generated plan that includes
only a subset of equivalent microservices may cause the
remaining microservices to stay excluded from being executed.
If an originally included microservice becomes unavailable,
the strategy generator may fail to switch to an alternative
superior strategy, due to the lack of historical execution data
for the microservices excluded from the original strategy.

V. REFERENCE IMPLEMENTATION AND EVALUATION

Our evaluation seeks answers to the following questions:
• Does changing execution strategies substantially impact

QoS?
• Is our QoS estimation accurate? How does our generated

strategy compare with the predefined strategies in terms
of their estimated QoS?

• How does the approximation heuristic perform compared
with the exhaustive search?

• How does our system perform in real setups? Does it
outperform MOLE in dissimilar edge environments?

In the following, our evaluation confirms that our QoS
estimation can reliably predict the expected service perfor-
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(a) Exp1: Varying avg [c, l, r] (b) Exp2: Varying QoS Range(∆)
(c) Exp3: Varying Number of Eqv.

Microservices

Fig. 5: Utility Distributions of all Possible Strategies for Exp1, Exp2, and Exp3

Exp ID Config ID Num of Eqv MS avg c, l, r ∆

exp1

1

4

60, 60, 80

502 70, 70, 70
3 80, 80, 60
4 90, 90, 50

exp2

1

4 70, 70, 70

50
2 40
3 30
4 20

exp3
1 3

90, 90, 50 1002 4
2 5

TABLE III: Simulation Configurations

mance. Compared with the predefined strategies, our generated
strategies increase the ratio of QoS-satisfied services by 2×
for fewer than 5 equivalent microservices, and by 2.6 × for 5
to 10 equivalent microservices. In a given edge environment,
our system outperforms MOLE in terms of cost, latency, and
reliability by 31%, 52%, and 4%, respectively. Besides, our
system dynamically optimizes the overall QoS by adapting to
the resource changes of edge environments.

A. Simulation

The simulation runs on a ThinkCentre M900 Tiny desktop
(i7-6700T CPU and 32G memory). We randomly assign QoS
values to a number of equivalent microservices.

1) Utility of all Possible Execution Strategies: As shown in
Table III, we conduct three sets of experiments, exp1, exp2,
exp3, each with a number of configurations. We use [c, l,
r] to denote the average value of cost, latency, and reliability,
respectively, and use ∆ to denote the value range (e.g., cost =
rand(c− ∆

2 , c+ ∆
2 )). For each configuration, we simulate 100

services. The QoS requirements in all three experiments are
Qc = 100 (units), Ql = 100 (ms), Qr = 97 (%).

For exp1, exp2, and exp3, Fig. 5.(a, b, c) show the
utility distribution of all possible strategies for all randomly
generated 100 services in each configuration, respectively.
Different lines in each graph denote different configurations.
In general, we observe that for all configurations, different
execution strategies lead to vastly dissimilar utilities. With
higher average QoS, higher ∆ (the varying range of QoS),
and more equivalent microservices, more execution strategies
show higher utility index values.

2) Correctness of QoS Estimation: We randomly select
100 execution strategies from different configurations, and
compare their execution performance with our QoS estima-
tions. We use system.sleep to imitate each microservice’s
execution latency, with each strategy executed 300 times. To
filter out the costs of scheduling multi-threaded executions, we
use “second” as the latency unit of microservices. For example,
to verify the execution latency of a∗b∗c with the QoS settings
in Section III.C, we set the average execution time of a, b, and
c to 10, 90, and 70 seconds, respectively, and then observe the
average overall execution latency of 69.43 seconds. For the
other executions, the difference between the average execution
latency and our estimations are less than 1%, thus confirming
the correctness of our QoS estimation.

3) Comparing Generated and Predefined Strategies: Then,
we calculate the utility values of strategies generated by the
exhaustive search and approximation heuristics, and those of
the predefined sequential and parallel strategies, as shown in
Fig. 6.(a, b, c). From the UI value distribution, we observe
that: 1) our strategies obviously outperform the predefined
strategies for all three experiments, as more of their utilities
fall into the range of high values; 2) the exhaustive search
and Approximation produce strategies with comparable per-
formance in terms of their utility values. Fig. 6.(d, e) show the
number of services whose QoS requirements are satisfied and
the average utility values of various generation heuristics under
each configuration. Compared with the predefined strategies,
our heuristic increases the ratio of QoS-satisfied services by
an average of 2×.

Besides, from Fig.6.d we also observe that the overall per-
formance of the generated strategies is impacted by the number
of equivalent microservices and their average performance, but
is not impacted by the QoS range (∆) of these microservices.

4) Comparing Exhaustive Search and Approximation: To
evaluate how our generation heuristic scales, Fig. 7 shows
the performance of edge services with more than 5 equivalent
microservices. Fig. 7.(a) shows the generation time of different
algorithms. With the increase of equivalent microservices in
an edge service, the exhaustive search’s time increases expo-
nentially, while the time taken by the approximation heuristic
and that by the default strategy (either sequential or parallel,
represented as a tree) increase only moderately. Fig. 7.(b,c)
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(a) UI Distribution for Exp1 (b) UI Distribution for Exp2 (c) UI Distribution for Exp3

(d) Number of Services with Fully Satisfied QoS of Different
Generated Strategies (e) Average Utility Values of Generated Strategies

Fig. 6: Utility Distributions of Generated and Predefined Strategies

(a) Strategy Generation Time
(b) QoS Satisfaction Ratio of Strategies for

More than 5 Eqv MS
(c) Utility Values of Strategies for More

than 5 Eqv MS

Fig. 7: Performance for Generating Strategies for More than 5 Equivalent Microservices

show the number of QoS-satisfied services and the average
utility values of different strategies. Hence, as the number
of equivalent microservices increases, our generator continues
outperforming the predefined strategies (2.6 × QoS-satisfied
services) without incurring much additional execution latency
(10% extra time).

B. System Performance

To support the cross-platform deployment on edge gate-
ways, our runtime system is implemented in Java. In our
experimental setup, a ThinkCentre M900 Tiny desktop (i7-
6700T CPU and 32G memory) serves as the gateway, while
a Raspberry Pi 3 (BCM2837 CPU and 1G RAM) and two
ThinkCentre M92p Tiny desktops (i5-6500T CPU and 8G

memory) serve as edge devices. Each edge device registers its
available microservices and their usage costs with the gateway.

To compare with MOLE, we reimplement its evaluation
use cases. Three microservices are deployed to detect the
ambient temperature, including 1) read a DS1820 temperature
sensor; (readTempSensor) 2) read a CPU temperature sensor
and estimate the environmental temperature [20] (estTemp);
3) query a web service for the location of the current IP
address, and query another web service for the location’s
temperature (readLocTemp). We deploy readTempSensor on
the Raspberry Pi with a DS1820 sensor connected via GPIO.
The execution time for reading the DS1820 sensor is around
950ms, so the microservice reads the sensor every 30 seconds,
caches the results, and uses the cached readings as output.
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estTemp and readLocTemp are deployed separately on the
two M92p Tiny desktops.

We simulate 100 service invocations per a time slot. In
the first time slot, the gateway has no previous microservice
execution history, so it follows the default speculative parallel
strategy. In the next time slots, the gateway uses the execution
records in the previous time slot to generate execution strate-
gies and execute them. We set the reliability of these three mi-
croservices to 70%, and their cost to 50. The generated strategy
is “readTempSensor-estTemp-readLocTemp”. Table IV
shows the execution results. We observe that: 1) the measured
QoS of the generated strategy is better than that of the default
strategy; 2) the difference between the measured QoS and the
estimated QoS is minor.

QoS Default Strategy Estimation of Gen. Strategy Measured
cost 100 70 69
latency 163 81 78
reliability 94 97 98

TABLE IV: Execution Results of Setting 1

We further show how our system adapts to the changes
in microservice QoS in an edge environment. We adopt
the microservice QoS and service QoS requirements of the
setting above, and emulate the resource change by: 1) after
being executed 230 times (a randomly selected number),
the reliability of readTempSensor drops to 20%; 2) after
being executed 430 times, the reliability of readTempSensor
recovers back to 70%. Figure 8 shows the QoS of different
time slots, each comprising 100 executions. The execution
strategy generated after executing the default speculative par-
allel strategy is readTempSensor-estTemp-readLocTemp.
At time slot 1, the reliability of readTempSensor drops
to 20%. Hence, the execution strategy for slots 2 to 5 is
estTemp-readTempSensor-readLocTemp. Then, the relia-
bility of readTempSensor recovers at slot 5, so the execution
strategy for slots 6 and 7 gets back to the previous strategy.
We observe that: 1) the QoS of slots 2, 3 and 4 is better
than that of slot 1; 2) the QoS of slots 6 and 7 is better
than that of slot 5. This experiment shows that switching
between the execution strategies of equivalent microservices
of an edge service indeed adapts to the QoS fluctuations of
these microservices.

Fig. 8: Average QoS in Different Runs

VI. RELATED WORK

The resources in edge environments are typically scarce,
unreliable, and dynamic. To guarantee QoS with scarce re-
sources, most recent edge system designs [24], [29], [33],
[38], [39] take advantage of remote resources by offloading
computationally intensive tasks to the cloud or nearby edges.
To improve reliability and handle unpredictable failures in
edge networks, [17] deploys redundant resources as fail-over
backups. To adapt to resource dynamicity across edge environ-
ments, [16], [18], [34] dynamically adjusts the computational
load of edge-based executions by controlling their runtime
parameters to fit the available resource budgets, while [22],
[37] provide uniform interface to abstract dissimilar hardware
and their capabilities.

However, none of the aforementioned designs would be
applicable under the following constraints. Remote resources
cannot be relied on in the absence of network connectivity
or when the local context is required; redundant identical
resources may not always be deployed in resource scarce
environments; configuring executions self-adaptively may in-
cur runtime failures. To the best our knowledge, our own
MOLE [31] is the first attempt to exploit the widely occurring
resource/functionality equivalence in edge environments to
address the resource scarcity and execution unreliability issues.
Instead of relying on identical resources to recover from
failures, MOLE relies on resources that provide equivalent
functionalities. However, MOLE cannot customize execution
strategies on demand to adapt for dissimilar resources across
edge environments.

Having not been explored in edge computing, web service
compositions apply the combined execution of equivalent
services [6], [14], [15], albeit with crude-grained QoS estima-
tion methods. Our work improves the precision of estimating
the QoS of execution strategies. To compose equivalent web
services, a utility function in [14] normalizes the utility of
a QoS attribute by considering its lowest and highest values
across all services. In contrast, our utility index normalizes
the utility of a QoS attribute in accordance with its QoS
requirements, so as to avoid being impacted by the QoS
attribute outliers of equivalent microservices.

VII. CONCLUSION

This paper introduces a novel system design that provides
edge services with best effort QoS. Our design improves
reliability by executing equivalent functionalities and adapts to
resource dissimilarity by varying execution strategies. Through
a feedback loop, our design generates environment-specific
strategies on demand. As an alternative to adding additional
resources, our system design provides best effort edge services
by better utilizing the unreliable and dynamic resources at
hand. For future work, we plan to apply our system design to
improve the scalability and trustworthiness of edge services.
Edge systems could invoke equivalent microservices to process
multiple concurrent service requests that rely on the same
execution resources but are bound by their scarcity, or to
protect from malicious devices that return fake results.
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