
Metadata Invariants: Checking and Inferring Metadata Coding Conventions

Myoungkyu Song and Eli Tilevich
Dept. of Computer Science

Virginia Tech, Blacksburg, VA 24061, USA
{mksong, tilevich}@cs.vt.edu

Abstract—As the prevailing programming model of enter-
prise applications is becoming more declarative, programmers
are spending an increasing amount of their time and efforts
writing and maintaining metadata, such as XML or annota-
tions. Although metadata is a cornerstone of modern software,
automatic bug finding tools cannot ensure that metadata main-
tains its correctness during refactoring and enhancement. To
address this shortcoming, this paper presents metadata invari-
ants, a new abstraction that codifies various naming and typing
relationships between metadata and the main source code of
a program. We reify this abstraction as a domain-specific
language. We also introduce algorithms to infer likely metadata
invariants and to apply them to check metadata correctness
in the presence of program evolution. We demonstrate how
metadata invariant checking can help ensure that metadata
remains consistent and correct during program evolution; it
finds metadata-related inconsistencies and recommends how
they should be corrected. Similar to static bug finding tools, a
metadata invariant checker identifies metadata-related bugs as
a program is being refactored and enhanced. Because metadata
is omnipresent in modern software applications, our approach
can help ensure the overall consistency and correctness of
software as it evolves.

Keywords-software maintenance; bug finding; refactoring;
enhancement; frameworks; domain-specific languages; meta-
data; invariants.

I. INTRODUCTION

A software application comprises functional and non-
functional concerns. In a modern enterprise application,
the programmer implements the functional concerns (i.e.,
business logic) procedurally by writing source code, and
the non-functional concerns (e.g., persistence, security, test-
ing, etc.) declaratively by writing metadata (e.g., XML
configuration files or annotations). The declared metadata
configures various frameworks (e.g., ORMs, encryption and
authentication controllers, etc.) that implement the required
non-functional concerns (NFCs). Although the declarative
programming model cleanly separates functional and non-
functional concerns, source code and metadata interconnect
so tightly that neither one can be safely evolved indepen-
dently. For example, an XML tag can refer to a specific
class field by name, and if the field’s name changes, the
XML tag must be updated accordingly. The programmer
renaming a field may not even be aware that some XML
configuration file references that field. Being part of the
source code, annotations also may not make it clear how they

should be modified when their program construct’s name or
type changes. For example, the name of some annotation
attribute may form a naming relationship with the name
of the tagged programming construct. As a result, when
source code or metadata evolves, bugs can be introduced.
Furthermore, these bugs would manifest themselves only at
runtime.

In this paper, we introduce metadata invariants, a new
abstraction that codifies the relationships between metadata
and the main source code. When metadata or the source
code evolves, the metadata invariants should not be violated.
A metadata invariant violation signals a potential bug that
the programmer can examine further. To provide maximum
benefit to the programmer, our approach automatically infers
metadata invariants by analyzing extensive codebases for the
relationship patterns between metadata and the source code.
The programmer presented with likely metadata invariants
can then either confirm their authenticity or mark them as
spurious.

A metadata invariant checker can then signal when a
program refactoring, enhancement, or modification violates
an invariant, and alert the programmer of the possibility
of a bug being introduced. In fact, we have integrated a
metadata checker with the Eclipse IDE refactoring browser
and editor, so that every program change is followed by
checking the integrity of the original metadata invariants.
We show that metadata invariants can help find those bugs
that cannot be detected by state-of-the-art bug finding tools
such as FindBugs [11].

To effectively express metadata invariants, we introduce a
domain-specific language that we call the Metadata Invari-
ants Language (MIL), which takes advantage of the powerful
program query constructs we have developed in our prior
work on improving metadata reusability [21], [23].

This paper makes the following novel contributions:

• Metadata Invariants—a new abstraction for expressing
the interconnections between the metadata and the
source code of a program.

• Metadata Invariants Language (MIL)—a domain-
specific language (DSL) for expressing metadata invari-
ants.

• A practical algorithm for inferring likely metadata
invariants from a codebase.

accepted to ICSE 2012

1 public class ManagerModel {
2 private String orderId;
3 private String orderStatus;
4

5 // Other fields, getters, and setters go here.
6 }

1 <class name="ManagerModel" table="MANAGERMODEL">
2 <field name="orderId" column="ORDERID"/>
3 <field name="orderStatus" column="ORDERSTATUS"/>
4 <key column="ORDERID"/>
5 </class>

(1) XML deployment descriptor

1 @Entity
2 @Table(name="MANAGERMODEL")
3 public class ManagerModel {
4 @Id
5 @Column(name="ORDERID", primaryKey="true")
6 private String orderId;
7

8 @Column(name="ORDERSTATUS")
9 private String orderStatus;

10

11 // Other fields, getters, and setters go here.
12 }

(2) Java 5 Annotation

Figure 1. Transparent Persistence Framework Example.

• An approach to efficiently checking metadata invariants
on an evolving codebase.

• An Eclipse plug-in that adds metadata invariant check-
ing to any Java project.

• An empirical study that assesses the effectiveness of
our algorithm to infer likely metadata invariants from
seven third-party, real-world enterprise applications.

The rest of this paper is structured as follows. Section II
describes several program evolution scenarios that demon-
strate how metadata invariants can help prevent bugs. Section
III presents the Metadata Invariants Language. Section IV
describes our inference algorithm. Section V presents the
experimental results of evaluating our inference algorithm.
Section VI outlines how we integrated metadata invariants
with Eclipse. Section VII discusses related work. Section
VIII presents future work directions and conclusions.

II. PROBLEM DEFINITION AND SOLUTION OVERVIEW

In this section, we first present several examples of how
program evolution can introduce metadata-related bugs. We
then show how our approach can prevent these and similar
bugs from being introduced.

A. Metadata-Related Bugs

Consider a programmer enhancing a JUnit [22] test suite
with another test method. The programming conventions of
JUnit 4 require that test methods be annotated with @Test. It
is likely that having dutifully implemented the new method
itself, the programmer may forget to annotate it. As a result,
JUnit will not invoke this test method at runtime. If the
new test method is syntactically correct, the Java compiler
will not raise any errors. Furthermore, the convention of
annotating methods of JUnit test suite classes with @Test

is domain-specific, and as such its violation will not be
discovered by bug finding tools that analyze programs for
general bug patterns.

Consider the code snippet shown in the upper-left
part of Figure 1. A programmer applies the Rename
refactoring to field orderStatus, changing its name to
customerOrderStatus. This refactoring seems harmless, and

no refactoring precondition checker would raise any issues.
Nevertheless, class ManagerModel happens to be mapped
to a relational database table by means of a transparent
persistence framework. In fact, an XML configuration file
shown in the lower-left part of Figure 1 references this
field by its original name (on line 3). As a result, after the
refactoring, this field will suddenly stop being persisted to
stable storage and the persistence framework in place will
raise an obscure runtime error. If the programmer detects this
error quickly, the bug is easy to correct by modifying the
XML file accordingly. However, if the configuration in place
suppresses runtime errors or displays them inconspicuously,
left undetected this bug is likely to seep into production.

Annotations were introduced into Java 5 to correct some
of the shortcomings of XML. The right part of Figure 1
shows how the framework transparently persist the same
class ManagerModel, but now configured via annotations.
Annotations directly tag the persistent fields, so renaming
fields will no longer affect their database mappings. How-
ever, since the name attribute of the @Column annotation is
a string, the programmer can easily mistype the column’s
name (e.g., @Column(name="order_status"). The code will
compile, but the problem will not be discovered until the
application runs. Furthermore, the programmer would have
to determine the problem’s source by examining the runtime
exceptions thrown by the persistence framework.

The aforementioned bugs are all related to the use of
metadata (i.e., XML or annotations), and as such cannot be
detected by the compiler. Metadata encodes domain-specific
coding conventions that lie outside of the Java language
syntax. The programmer is expected to learn and follow
these conventions by studying framework manuals. No tools
in the standard programmer’s tool chain can check the code
for its compliance with such conventions.

This paper presents a solution that can prevent the bugs
described above. This solution consists of three parts. First
of all, we observe that metadata programming conventions
constitute well-structured patterns. These patterns capture
how metadata tags program constructs. We call these pat-

2

accepted to ICSE 2012

terns metadata invariants and provide a domain-specific
language to express them. By statically analyzing large
code bases, we automatically infer likely metadata invariants
and present them to the programmer who can then either
confirm or discard them. The confirmed invariants are then
checked every time the program evolves, including both
its source code and metadata. All violated invariants are
immediately reported to the programmer, who can then
determine whether the violations led to an outright bug or
created some naming inconsistency that compromises the
integrity of the codebase. The programmer can then take
corrective actions.

B. Finding Bugs Using Metadata Invariants
1) JUnit: Here we show how our approach can help

find the bugs described above. Figure 2 shows the metadata
invariant that codifies the metadata conventions of the JUnit
4 unit testing framework. The invariant is expressed in
the Metadata Invariants Language (MIL), a domain-specific
language we developed for this purpose (Section III formally
presents the MIL syntax and semantics.) When designing
MIL, we aimed for ease-of-learning, understandability, and
conciseness. Intuitively, this invariant expresses that for all
classes in a given package p, any class annotated with
@TestSuite should have all its public methods annotated
with @Test. The specific invariant statement is expressed
by means of the Assert statement on line 6. The Msg

statement followed after the : operator will format and
display an error message if the invariant’s assertion is
violated. For example, when our metadata invariant checker
applies this invariant to a program (e.g., the checker can
be run every time a source file is saved), it can report a
suspected bug as follows: MyTest.java; Line 42: method

testA missing @Test. The invariants checker by default
automatically prepends the source file and line number of
the violating program construct.

1 Invariant JUnitAnnotations<Package p>
2 Class c in p
3 Where (@TestSuite * class *)
4 Method m in c
5 Where (public void *)
6 Assert(@Test m):
7 Msg("%s missing %s", m.name, @Test)

Figure 2. Expressing JUnit 4 metadata invariants in MIL.

However, this metadata invariant does not cover all the
annotations used by JUnit 4. In particular, this testing frame-
work features @Before and @After annotations to tag the
methods that setup and tear down the test suite, respectively.
Fortunately, MIL invariants are strightforward to refine.
Figure 3 shows a refined assertion on line 6 that includes all
the possible annotations for public void test suite methods.

MIL can also match program constructs based on their
types. Figure 4 shows a skeletal example of a typical JUnit

4 test suite class. On line 9, the @Parameters annotation
tags the method returning parameterized test parameters. By
convention, this method must return a type that implements
the java.util.Collection interface. Figure 5 shows a MIL
code snippet that matches a method’s return type (line 3).
Then the metadata invariant for such methods is that they
should be annotated with @Parameters, lest a runtime error
occurs.

1 Invariant JUnitAnnotations<Package p>
2 Class c in p
3 Where (@TestSuite * class *)
4 Method m in c
5 Where (public void *)
6 Assert(@Test|@Before|@After m):
7 Msg("%s missing %s", m.name,
8 "@Test,@Before, or @After")

Figure 3. MIL for JUnit 4 void methods.

1 ...
2 @TestSuite
3 class MyTestSuite {
4 @Before void setUpSuite() {...}
5 @After void tearDownSuite() {...}
6 @Test void testMethod1() {...}
7 @Test void testMethod2() {...}
8 ...
9 @Parameters

10 static java.util.Collection myData() {...}
11 }

Figure 4. A JUnit 4 test suite class.

1 ...
2 Method m in c
3 Where (m.returnType is Collection)
4 Assert(@Parameters m):
5 Msg("%s missing %s", m.name, @RunWith)
6 ...

Figure 5. Expressing JUnit 4 return type metadata invariant in MIL.

These simple metadata invariants can be run on millions of
lines of JUnit 4 tests ensuring their correctness with respect
to annotations. Since unit tests are an integral part of modern
software development, ensuring their integrity is paramount
to improving the overall program correctness. In that light,
metadata invariants fill in a unique niche of the automated
bug finding tools.

2) Hibernate: Figure 6 shows the metadata invariant for
the Hibernate [1] framework configured through annotations.
This invariant codifies a common naming convention that de-
rives the names of persistent fields from that of their database
tables. While database columns are capitalized, their corre-
sponding fields are named according to the Java naming con-
vention. The Assert statement on line 6 case-insensitively
compares the name attribute of annotation @Column with the
persistent field’s name, thus checking a common Hibernate

3

accepted to ICSE 2012

naming convention. The message emitted when this invariant
is violated will be reported as follows: ManagerModel.java;
Line 135: order_status mismatches orderStatus.

In isolation, such a mismatch may not constitute a bug.
However, deviating from the naming convention followed
in a large codebase is a likely bug, and besides undesirable
in its own right. At any rate, having received this invari-
ant violation report while attempting to refactor the code,
programmers would have to decide whether violating the
invariant is warranted.

1 Invariant HibernateAnnotations<Package p>
2 Class c in p
3 Where (@Table public class *)
4 Field f in c
5 Where (@Column private * *)
6 Assert(@Column.name eq Uc(f.name)):
7 Msg("%s mismatches %s",
8 @Column.name, f.name)

Figure 6. Expressing Hibernate annotations invariants in MIL.

Figure 7 shows a metadata invariant for Hibernate
configured using XML. This invariant codifies the same
naming convention as in Figure 6, but expressed by
means of XML attributes (appearing within <..> tags).
The message emitted when this invariant is violated will
be reported as follows: ManagerModel.java; Line 135;

Config.hbm.xml; Line 1122: orderStatus mismatches

order_status.

1 Invariant HibernateXMLFieldColumn<Package p>
2 Class c in p
3 Where (<class>.name eq c.name)
4 Field f in c
5 Where (<class>.<field>.name eq f.name)
6 Assert(<class>.<field>.column eq Uc(f.name)):
7 Msg("%s mismatches %s", f.name,
8 <class>.<field>.column)

Figure 7. Expressing Hibernate XML field column invariant in MIL.

The metadata invariant in Figure 8 verifies that all the
fields of persistent classes are properly bound in the XML
configuration file (e.g., the lower-left part of Figure 1). If
the XML file does not correctly reference the persistent
Java field by name, the field will not be persisted. To
that end, MIL features the AssertExists statement. This
statement can be used only with nested iterations (i.e.,
Field f in c and Attribute xmlF in <class>), and it en-
sures that at least one pair of iterated items satisfies the
asserted condition. The message emitted when this invariant
is violated will be reported as follows: ManagerModel.java;
Line 135: orderStatus will not be persisted.

When this invariant is violated, its report will inform the
programmer that a field will not be persisted. If that field
is indeed intended to stay transient, the programmer can

simply ignore this report. However, this report can prevent
the Rename refactoring from being erroneously applied to a
persistent field.

1 Invariant HibernateXMLFieldName<Package p>
2 Class c in p
3 Where (<class>.name eq c.name)
4 Field f in c
5 Attribute xmlF in <class>
6 AssertExists (xmlF.name eq f.name) :
7 Msg("%s will not be persisted", f.name)

Figure 8. Expressing Hibernate XML field name invariant in MIL.

These three scenarios represent how metadata-related bugs
can be introduced as a result of program evolution. By
definition, metadata programming is domain-specific and
reflects both explicit and implicit conventions. By verifying
that evolving a program does not break these conventions,
an automated checker can help prevent bugs from being in-
troduced and can also help avoid annoying naming inconsis-
tencies that decrease the quality of the codebase. However,
because of their domain-specificity metadata programming
conventions cannot be verified by means of traditional bug
finding tools that apply the same common set of bug patterns
to any codebase.

III. MIL DESIGN

In this section, we outline the design of the Metadata
Invariants Language (MIL), the domain-specific language
we have created to express metadata invariants.

A. Language Summary

Figure 9 summarizes the syntax of MIL. When designing
MIL, we followed a minimalistic approach, introducing
new constructs only if absolutely necessary, thus lowering
the learning curve for the programmer. For example, the
class iterator can iterate both through classes and interfaces
of a package. MIL is a strictly declarative language, and
as such lacks explicit conditional and looping constructs.
Nevertheless, MIL features enough constructs to express a
variety of metadata invariants of a typical modern enterprise
framework.

B. Assertion Semantics

Next we describe how MIL expresses how metadata
invariants are to be checked by evaluating various assertions.
Figure 10 lists the symbols that describe the assertions.
The sets of program’s structural constructs and metadata
appear first. The structure of an object-oriented program
is defined by its classes, methods, method parameters, and
fields; the program’s metadata can be embedded in source
code or written as standalone files. All of these program
and metadata constructs are finite sets. Each of the pro-
gram’s structural constructs may potentially be tagged with
metadata. Each metadata attribute is specific to the type

4

accepted to ICSE 2012

• Invariant name <program_construct var>
iteration
where

assert

• Metadata ::= [@Metadata|<Metadata>]

• program_construct ::= [Package | Class | Method |
Field | Parameter | Attribute]

• pattern ::= [class_pattern | method_pattern |
field_pattern | parameter_pattern |
attribute_pattern]

• operator ::= [is|has|eq|neq|not]

• iteration ::= program_construct var in collection
Iterate program construct collection.

• where ::= Where (pattern [operator pattern])
Pattern-based selection.

• message ::= Msg(format, arguments)
Report a violated metadata invariant.

• assert ::=
Assert(Metadata operator pattern): message
Verify that program construct tagged with Metadata.
|
AssertExists(Metadata operator pattern): message
Verify that at least one element of the sequence meets the condition.

• [Uc|Lc](string)
Convert all characters of the given string to upper or lower case.

Figure 9. MIL constructs and grammar.

of program construct to which it can be added, including
classes, methods, method parameters, and fields. The same
attribute value could potentially be used at multiple levels;
for example, the @Id or @Column annotation can be applied
to both methods and fields in the Java Persistence API.
Each structural program construct can be matched with a
declaration pattern, which are provided by replacing some
substring of a construct with a wildcard character (e.g.,
*) that can match multiple constructs. Built-in comparison
and string processing operations (e.g., eq, Uc, Lc, etc.) help
express MIL patterns and assertions. The regular expressions
of MIL Where clauses work similarly to that of AspectJ
pointcuts [14].

Figure 11 uses set operations to express how metadata
invariants assert boolean conditions for various program
constructs. Specifically, an attribute value of metadata is
asserted over a program construct e (i.e., class c, method m,
parameter p, or field f) precisely when the construct matches
a given pattern, and metadata t is attached to that pattern as
specified in MIL. The presented assertion semantics does
not include the AssertExists construct, which is somewhat
of syntactic sugar and can be expressed by combining
regular assert statements. Next we discuss how our invariant
inference algorithms can effectively extract such domain-
specific conventions and express them in MIL.

c denotes a class m denotes a method
f denotes a field p denotes a parameter
t denotes a metadata a denotes an attribute

MC(c) denotes the set of metadata of class c
MM (m) denotes the set of metadata of method m
MP (p) denotes the set of metadata of parameter p
MF (f) denotes the set of metadata of field f
M(a) denotes the set of attribute of metadata t

Pc denotes a class declaration pattern
Pm denotes a method declaration pattern
Pp denotes a parameter declaration pattern
Pf denotes a field declaration pattern

Match(e, Pe) denotes a declaration match of a language construct
e over pattern Pe

Figure 10. Syntax definitions.

Match(c, Pc) (Pc,
M(a)

t
) ∈ MIL

t ∈ MC(c)
[
Assert Class
Metadata

]

Match(m, Pm) (Pm,
M(a)

t
) ∈ MIL

t ∈ MM (m)
[
Assert Method
Metadata

]

Match(p, Pp) (Pp,
M(a)

t
) ∈ MIL

t ∈ MP (p)
[
Assert Parameter
Metadata

]

Match(f, Pf) (Pf ,
M(a)

t
) ∈ MIL

t ∈ MF (f)
[
Assert F ield
Metadata

]

Figure 11. Metadata invariants assertion rules.

IV. METADATA INVARIANTS INFERENCE ALGORITHM

To automatically infer metadata invariants, we have cre-
ated a new algorithm that leverages global static analysis of
applications that use metadata.

A. Algorithm Summary

In summary, the algorithm first scans a codebase for
the presence of a naming or typing relationship between a
metadata element and the program construct that the meta-
data element tags. Each discovered relationship becomes
an invariant candidate. Then the rest of the codebase is
analyzed to determine whether the candidate is indeed an
invariant. The algorithm is tunable; it takes a threshold
parameter that specifies the percentage of cases a candidate
must hold true to be considered an invariant. The algorithm
expresses the metadata candidates and confirmed invariants
in MIL.

Algorithms 1 and 2 describe the parts of the inference
process that identify invariant candidates and verify them,
respectively. On line 5, Algorithm 1 iterates over all pro-
gram constructs (e.g., packages, classes, methods, fields,
parameters, etc.) that can be tagged with metadata (e.g.,
annotations, XML, etc.). Each construct tagged with meta-
data becomes a candidate (line 7). However, our algorithm
expresses the candidates in a generalized form. Specifically,
the algorithm attempts to generalize the candidates by their
types and names. For the types, the candidates are general-
ized by finding their common supertype (i.e., field type or
method return type). For example, if all the tagged meth-
ods return a class that implements java.util.Collection,

5

accepted to ICSE 2012

the ReplaceCommonSupertype will generalize the candidates
as follows: Where(m.returnType is Collection). In ad-
dition, our algorithm uses the wild-card character (*) to
generalize the candidates based on their naming correspon-
dences. For example, if all the private fields in a program
tagged with the @Ann annotation have the names such as
someNameAbcdef, someNameGhij, someNameKlmn, etc., the
generalization (lines 9-13) will express the field names as
someName* in the MIL specification of their metadata invari-
ant (e.g., Where (@Ann private * someName*))1. Because
we only use the * regular expression, we can generalize
the strings by continuously applying the longest common
subsequence algorithm to each possible subsequence of the
generalized program construct names. To use more regular
expression characters, one can use algorithms for inferring
regular expressions from examples [7]. Nevertheless, in
our experiments we have not yet found how expanding
the set of regular expression characters would improve the
generalization part of our algorithm. The * character seems
to be sufficient to express in a general form all the metadata
invariants we have discovered.

Algorithm 1: FindInvariantCandidates
Input: Program p
Output: Candidate C : {c0, c1, .., cm}

1 ∀ t ∈ Metadata.
2 Let pc be a program construct in p.
3

4 ForEach pc
5 If (∃pc : [pc, t]) Then
6 A : {α0, α1, .., αi, .., αn}
7 Add pc To A
8 A← ReplaceCommonSupertype(A)
9 Do

10 l← LongestCommSub(A,C)
11 A← C
12 C ← ReplaceWithWildCard(pc, t, l)
13 Until l = 0
14 End
15 End
16 Return C

In Algorithm 2, each identified invariant candidate is
checked against the rest of the codebase. A candidate can
either be confirmed or disproven, based on whether it holds
true for the percentage of cases higher than a given threshold
(line 11).

Hence, the algorithm’s metadata invariant identification
phases has the O(n) complexity, while the confirmation
phase has the O(m∗n) complexity, where n is the number of
source code lines and m is the number of identified metadata
invariants. Thus, the computational cost of inferring invari-
ants is proportional to the number of candidate invariants
discovered. The quadratic complexity may be improved on

1The first * generalizes the private modifier common for all the
tagged fields

Algorithm 2: VerifyInvariantCandidate
Input: Candidate c, Program p, Threshold ε
Output: Boolean λ

1 ∀ t ∈ Metadata.
2 Let pc be a program construct in p.
3 Let α and β be the #’s an invariant candidate
4 is confirmed or disproven, respectively.
5

6 ForEach pc with t
7 If c.t = t
8 If (∃pc : [c.pc, t]) Then
9 α← α+ 1

10 Else
11 β ← β + 1
12 End
13 End
14 Return λ← β/α ≤ ε

by caching the metadata-related program constructs and
scanning only them during the confirmation phase. In our
experiments, we have found that the algorithm rarely runs
for more than a couple of minutes for codebases as large as
millions LOC. Since metadata invariants are not meant to
be inferred interactively, we thus far have not experienced
the need to optimize this algorithm.

Algorithm 3 outlines our metadata invariant checking
algorithm. In essence, the algorithm scans through the
entire codebase, examining each program construct tagged
with metadata. The algorithm checks each such occurrence
against the input metadata invariant and collects all the
violations as likely metadata bugs. In our implementation,
we examine only those metadata-tagged constructs that are
referenced in a given metadata invariant. For example, if
an invariant refers to fields, our implementation skips class,
method, and package metadata.

Algorithm 3: CheckingMetadataInvariants
Input: Program p MetadataInvariant µ
Output: Violations V : {v0, v1, .., vn}

1 ∀ t ∈ Metadata; ∀ a ∈ Attribute of t.
2 Let pc be a program construct in p.
3

4 ForEach pc with t
5 If (∃pc : [pc, t] | ¬µ)) Then
6 Add pc To V
7 End
8 End
9 Return V

B. Implementation

Figure 12 outlines how metadata invariants can be in-
corporated into a software development process. First, the
metadata invariant inferencer runs on an established large
code base producing invariants expressed in MIL. Then the
metadata invariant checker, parameterized with the produced

6

accepted to ICSE 2012

invariants, checks evolving applications that use the same
metadata as in the established codebase. The checker reports
all the invariant violations as likely metadata bugs for the
programmer to examine further.

Likely
Metadata

Bugs

Existing
Codebase

Metadata

Metadata
Invariant

Inferencer

Metadata
Invariant
Checker

MIL
Spec.

Evolving App.

Main
Src. Code

Main
Src. Code

Metadata

Figure 12. Integrating Metadata Invariants into Software Development.

In our implementation, we leverage common compiler
backend techniques. We walk abstract syntax trees to infer
and check metadata invariants as shown in Figure 13. To
construct such abstract syntax trees, we use standard parsing
infrastructures: JDT2 for Java source files and Simple API
for XML (SAX3) for XML. These are established technolo-
gies that significantly streamlined our implementation.

<class/>

<key/>
<field/>

<name =
ManagerModel/>

<table =
MANAGER
MODEL/>

<name =
orderId/>

<column =
ORDERID/>

...
<column =
ORDERID/>

Class ManagerModel

Field

Method @Entity

@Table

name =
MANAGERMODEL

orderId

@Id

@Column

name = ORDERID primaryKey = true

...

Figure 13. The generated tree structures for XML and Java 5 annotations
(simplified version).

By walking the constructed abstract syntax tree, our
implementation collects all the metadata related program
constructs into a data repository as shown in Figure 14.
The repository is then searched for all the correspondences
between the main source code and metadata by means
of a rules engine. A rules engine makes it possible to
efficiently execute first-order logic rules. In particular, our
implementation defines special rules to match strings based
on their suffixes and prefixes exactly and case insensitively
(the RuleEngine in the figure). The rules engine enables us
to efficiently generalize the detected invariant candidates. To

2Eclipse Java development tools – http://www.eclipse.org/jdt.
3Simple API for XML (SAX) – http://www.saxproject.org.

confirm invariant candidates, our implementation first counts
the total number of invariant violations and matches, and
then ensures that the violations are lower than the specified
threshold.

Data
Repository

Metadata
XML /

Annotation

Program
Constructs

Information

Metadata
Invariant
Metadata
Invariants

Metadata
Invariant

CandidatesParsed
Data

Pattern
RuleTree Data

Structures

RuleEngine

RuleApplier

Figure 14. Discovering metadata invariant candidates.

Figure 15 outlines the backend processing required to
check invariants. We use standard parsers for the main source
code and metadata; we have built a custom parser for MIL.
The standard parsers construct ASTs, while the MIL parser
constructs AST matching patterns. Our implementation then
applies these patterns on the ASTs to determine where the
program violates the invariants and to report the violations
to the programmer.

Java Src.
&

Metadata

MIL
Spec.

ASTs

Metadata
Invariants

Violation
ReportParser

MIL Parser

Invariants
Checker

Figure 15. Checking metadata invariants.

V. CASE STUDIES: INFERRING METADATA INVARIANTS

Even though metadata invariants can still be useful if writ-
ten by hand, inferring likely metadata invariants from large,
established codebases saves development effort and time.
To assess how effective our metadata invariant inference
algorithm is, we have conducted case studies with seven
open-source applications that rely on metadata.

The purpose of conducting the following case studies
was to ensure that our algorithm can indeed infer likely
program invariants that can later be refined by the program-
mer or used as is to maintain metadata consistency and
correctness in the presence of program evolution. All the
subject applications were large, open-source solutions for
the enterprise domain: an Object Relational Mapping (ORM)
system, an integrated development environment (IDE), a
business process manager, and a VPN server—Hibernate4,
JEdit5, Spring framework6, JBoss Seam framework7, IntelliJ

4Hibernate library – http://www.hibernate.org/
5JEdit text editor – http://www.jedit.org/
6Spring framework – http://www.springsource.org/
7JBoss Seam framework – http://www.seamframework.org

7

accepted to ICSE 2012

Table I
INFERRING METADATA INVARIANTS FROM THIRD-PARTY APPLICATIONS.

Metadata Type Application Application Size
(Files / LOC)

Metadata
Size

Inferencing
time (ms)

Inferred Metadata Invariant in MIL

Annotations

Hibernate 3,957 / 285,653 2243 18,754 Class c in p
core 4.0.0 Where (@TestSuite * class *)

Method m in c
Where (public void *)
Assert (@Test m)

JEdit 531 / 109,548 106 18,109 Class c in p
4.3.3 Method m in c

Where (@Override m)
Assert (c.super has m)

Spring 4,465 / 353,769 66 14,737 Class c in p
3.1.0.M2 Where (* class *Configuration | * class *Config)

Assert (@Configuration c)
JBoss 1,228 / 69,505 97 13,899 Class c in p
Seam Where (@XmlType* class org.jboss.seam*)
3.0.0 Field f in c

Where (f)
AssertExists (@XmlType.propOrder has f.name)

IntelliJ 27,901 / 1,913,330 62 154,060 Field f in c
10.5.0 Where (@Attribute f)

Assert ((f.name eq @Attribute.name) |
(*f.name eq @Attribute.name) |
(*Lc(f.name) eq @Attribute.name))

XML

RunaWFE 1,585 / 111,012 90 3,306 Class c in p
3.4.0 Where (* class * not "org.jbpm.identity.*")

Assert (<table>.name eq ("JBPM_"* + Uc(c.name))
OpenVPN 1,954 / 165,000 93 2,446 Class c in p
ALS 0.9 Where (public class *)

Assert ((<form-bean>.name eq Lc(c.name)) |
(*<form-bean>.name eq c.name))

IDEA8, RunaWFE9 and OpenVPN ALS10. For each subject
application, we ran our metadata inference algorithm with a
threshold of 96%.

Table I presents the results. For each application, one
metadata invariant was inferred and later verified through
manual inspection. The right most column displays the
inferred invariants in MIL. Some of these invariants can be
checked in other unrelated applications that use the same
framework, while others would need to be first refined and
generalized by hand.

The first invariant was inferred from the testing harness
code of the Hibernate system. As it turns out, this sys-
tem does not use any of the advanced JUnit features, as
none of the public test suite methods were annotated with
@Before or @After. No parameterized tests (i.e., annotated
with @Parameterized.Class) were discovered either. The
programmer who wants to use this inferred invariant on a
more advanced usage example of JUnit would have to extend
the automatically generated MIL invariant to look like the
one that appears in Figure 3.

The second invariant was inferred from the popular JEdit
editor. This invariant codifies the convention guiding the use
of the built-in @Override annotation that marks overriding

8IntelliJ IDEA – http://www.jetbrains.com/idea/
9Enterprise business process manager – http://wf.runa.ru/
10OpenVPN ALS server – http://openvpn-als.sourceforge.net/

methods in subclasses. As it turned out, JEdit applies this
annotation in over 96% of all cases, meaning that the remain-
ing 4% constitute a coding inconsistency. This invariant can
be applied as is to any Java application.

The third invariant was inferred from Spring, a widely
used JEE framework. This invariant captures how well-
written code tends to follow intuitive naming conventions.
Even though the @Configuration annotations enables the
programmer to name their configuration classes arbitrarily,
the principles of self-documenting code still require intu-
itive program construct names. Checking this invariant can
remind the programmer who creates a new configuration
class (intuitively named) and forgets to annotate it with
Configuration. Leaving out this annotation will cause the
runtime system to ignore the new configuration class.

The fourth invariant was inferred from Seam, a JBoss
framework for constructing web-applications. This frame-
work uses both annotations and XML metadata. To bind
Java class fields to XML names, the propOrder array
attribute of the @XmlType annotation contains the names
of all the fields. At runtime, these fields are bound to
their corresponding values in the XML file. This metadata
invariant fills the unique niche of checking this programming
convention, whose violation leads to obscure runtime errors.
The AssertExists MIL construct ensures that the names
of all class fields appear as string values of the propOrder

8

accepted to ICSE 2012

array (in any order). If, say, the programmer adds a new
field to the class, but forgets to simultaneously add its name
to the propOrder array, the metadata invariants checker will
promptly alert the programmer, thereby avoiding a difficult-
to-trace runtime error.

The fifth invariant was inferred from the popular IntelliJ
Java IDE. The invariant expresses a Java format represen-
tation of an XML document being mapped to the actual
document. In IntelliJ, The @Attribute annotation happens
to form a naming relationship with the tagged field’s name.
They either match exactly, or the annotation’s name attribute
matches the field’s suffix exactly or case-insensitively. There
is value in keeping the names in the main source code
and its XML representation consistent to facilitate both
program comprehension and maintenance. Thus, checking
this invariant can help uncover some naming inconsistencies
that are likely to incur an unnecessary maintenance burden.

The sixth invariant was inferred from RunaWFE, an en-
terprise business process manager that integrates the JBoss-
jBPM workflow core to bridge business analysts and de-
velopers. In addition to Java 5 annotations, RunaWFE uses
XML configuration files. The not operator excludes the
package for which the invariant does not hold. The inferred
invariant codifies the naming relationship between the name
attribute of the XML node <table> and the name of the
bound class. This convention is common in transparent
persistence code configured through XML. Checking this
invariant statically can help ensure that all the classes are
properly bound, and no runtime errors will occur due to
misnaming Java class names in the XML descriptor.

The seventh invariant was inferred from OpenVPN ALS,
a web-based SSL VPN server written in Java. Apache Struts
provides standard Java Web application functionality whose
XML configuration files form an invariant codifying the
relationship between the name attribute of the <form-bean>

XML node and the bound class’s name. As in the previous
subject application, checking this invariant statically is likely
to prevent mistypings and other inconsistencies from causing
runtime errors.

Table I shows how our approach can infer metadata
invariants from third-party applications that use either anno-
tations or XML as their metadata format. These case studies
have shown that the metadata invariants found in these
applications mostly codify some implicit (undocumented)
programming conventions. Inferring metadata automatically
is a facility that can help the programmer. Nevertheless, even
without inferring the invariants, checking manually com-
posed metadata invariants is still beneficial. The programmer
can use MIL to write metadata invariants from scratch or to
refine those inferred invariants that lack the desired accuracy.

VI. INTEGRATION WITH ECLIPSE IDE

As a practical implementation of metadata invariants,
we have integrated our metadata invariant inferencer and

checker with Eclipse IDE by means of its plug-in architec-
ture. Specifically, our metadata invariants plug-in provides
a graphical interface to our backend inference engine. The
plug-in makes it possible to run the inferencer on the
current project’s source files and examine the generated
MIL specifications. The inference portion of our approach
benefits from the IDE integration only superficially—the
inferencer can be invoked from the command line or as part
of a build script with the same results.

The component that benefits the most from Eclipse in-
tegration is the metadata invariants checker, which is run
every time the programmer saves a source file. The invariants
checker is parameterized with a MIL input file that contains
a list of metadata invariants that should be maintained for
a given project. After the programmer modifies a source
code file, either by enhancing it with new functionality
or improving the code through a refactoring, our metadata
refactoring runs and displays the violated metadata invariants
in the error window. Upon examining the violated invariants,
the programmer is then free to take corrective actions. For
example, the programmer may edit a metadata specification
to keep it in sync with the latest source code change.
Alternatively, the programmer may undo a refactoring if
the violated metadata invariant is too burdensome to fix.
By reporting the violated metadata invariants, our approach
provides the programmer with the knowledge about how the
latest step in evolving the code affects its correctness with
respect to metadata. As with the majority of bug finding
tools, it is the programmer’s responsibility to confirm the
reported suspected bugs and fix them if necessary.

VII. RELATED WORK

Metadata invariants are related to validating metadata,
pattern-matching, and code generation.

A. Validation for Metadata

Metadata invariants share the objective of validating the
correctness of metadata with several prior efforts. Eich-
berg et al. [5] verify the correctness of annotation-based
applications by checking the annotations’ implementation
restrictions and dependencies. An automated, user-extensible
tool reports the cases when the verified source code violates
any restrictions or dependencies. Noguera et al. [19] enhance
annotation declarations with meta-annotations that define
various constraints to check the correctness of using annota-
tions. The constraints, expressed as Object Constraint Lan-
guage queries, must be satisfied whenever the correspond-
ing annotations appear in the program. An automated tool
validates the definitions of annotation model constraints at
compile time. Cepa et al. [4] check the correctness of using
custom attributes in .NET by providing meta-attributes that
define dependencies between attributes. An automated tool
checks these attribute dependencies declaratively expressed
as a custom attribute.

9

accepted to ICSE 2012

Orso, Harrold, and Rosenblum [20] propose using meta-
data to support a wide range of software engineering tasks in
the domain of distributed component-based systems. Their
goal is to facilitate the process of testing and analyzing com-
ponents. MIL can enable a new class of program analysis
and testing techniques that focus on metadata.

Minamide et al. [18] validate XML metadata using a
string analyzer. Their algorithm checks and validates meta-
data grammar. Compared to their approach, metadata invari-
ants make it possible to verify how metadata relates to the
program constructs it tags.

Although these approaches are quite powerful and can
catch many inconsistencies of using metadata, metadata
invariants explicitly codify implicit metadata programming
conventions and rules. By automatically inferring metadata
invariants and checking them on evolving software, a meta-
data invariants checker can easily identify metadata-related
inconsistencies and bugs. Furthermore, the declarative nature
of MIL should flatten the learning curve for the average
programmer.

B. Pattern-Matching Techniques

In the domain of XML processing, techniques have been
proposed [2], [3], [9], [10] to extract general XML program-
ming patterns. However, only the patterns that occur in XML
files are considered, not the ones that codify the relationship
between metadata and the tagged program constructs.

Pattern-based reflective declaration [6], [12], [13] is a
meta-programming technique for generating well-typed pro-
gram constructs such as classes, methods, and fields. This
C# and Java language extension makes it possible to de-
clare program fields and methods as a static, pattern-based,
reflective iteration over other classes. Similarly, MIL uses
patterns over the structure of program constructs to express
metadata invariants.

The programming languages community has proposed
extending Java to enable the programmer to express pattern-
matching [15]–[17]. These extensions describe how program
constructs are declared and how they can be extracted based
on the specified patterns. In addition, the declarative mech-
anism leverages the pattern-matching facility to add new
functionality to existing one at the source or intermediate
code levels. In some sense, MIL extends the notion of
pattern-matching facilities to verify metadata correctness.

C. Code Generation

Code generators have been employed to automatically
synthesize metadata from higher level input. XDoclet, an
extensible code generator [24], can automatically generate
XML deployment descriptors from special source code tags.
It parses Java source files to extract special metadata tags.
XDoclet templates guide the generation process that can
reference program constructs as well. The XDoclet metadata

tags constitute yet another metadata format, and as such, can
be verified using our approach.

DART [8] automatically tests program by leveraging pro-
gram analysis to generate test harness code, test drivers,
and test input to dynamically analyze programs executing
along alternative program paths. The generated test harness
using path constraints to systematically explore all feasible
program paths. Our approach also automatically generates
metadata invariants in MIL, but instead of unit tests that
verify the correctness of individual program methods, our
approach verifies global metadata properties.

VIII. FUTURE WORK AND CONCLUSIONS

We introduced metadata invariants as a mechanism that
can find bugs in metadata represented as XML or Java
5 annotations. We plan to extend our approach to vali-
date the correctness in other metadata formats, including
C/C++ pragmas and C# attributes. Other metadata formats
similarly form relationships with the programs written in a
mainstream programming language, a property that can be
leveraged to verify their correctness. We plan to investigate
whether our metadata invariant checker can be integrated
with static bug finding tools such as FindBugs [?].

In this paper, we presented metadata invariants, a novel
approach to verifying metadata consistency and correctness.
We have demonstrated how metadata invariants can help
ensure the correctness of metadata expressed in XML and
Java 5 annotations. We have developed a domain-specific
language for expressing metadata invariants. Our approach
can infer likely metadata invariants and then check them
as a program is maintained and evolved. Our inference
algorithm finds the most likely metadata invariants. The
inferred invariants can then be leveraged to check program
correctness with respect to metadata programming in other
applications that use the same metadata constructs. The
applicability of our approach is not limited to Java-only, as
metadata has become an integral part of modern software
development. Hence, our approach can help ensure that
program evolution does not introduce metadata-related bugs
and inconsistencies in any application that uses metadata.

ACKNOWLEDGMENTS

We would like to thank Wesley Tansey and the anonymous
ICSE reviewers for their valuable feedback that helped
improve the manuscript.

AVAILABILITY

All the software described in the paper is available from:
http://research.cs.vt.edu/vtspaces/metadata invariants/.

REFERENCES

[1] C. Bauer and G. King. Hibernate in Action (In Action series).
Manning Publications Co., 2005.

10

accepted to ICSE 2012

[2] V. Benzaken, G. Castagna, and A. Frisch. CDuce: an XML-
centric general-purpose language. In Proceedings of the
eighth ACM SIGPLAN International Conference on Func-
tional programming (ICFP 2003), pages 51–63, 2003.

[3] S. Boag, D. Chamberlin, M. F. Fernández, D. Florescu,
J. Robie, and J. Siméon. W3C, XQuery 1.0: An XML Query
Language, 2007.

[4] V. Cepa and M. Mezini. Declaring and enforcing depen-
dencies between .NET custom attributes. In Proceedings of
the 3rd international conference on Generative Programming
and Component Engineering (GPCE 2004), pages 283–297.
ACM, 2004.

[5] M. Eichberg, T. Schäfer, and M. Mezini. Using annotations
to check structural properties of classes. In Proceedings of
the 8th international conference on Fundamental Approaches
to Software Engineering (FASE 2005), volume 3442, pages
237–252. Springer, 2005.

[6] M. Fähndrich, M. Carbin, and J. R. Larus. Reflective
program generation with patterns. In Proceedings of the
5th international conference on Generative Programming
and Component Engineering (GPCE 2006), pages 275–284.
ACM, 2006.

[7] H. Fernau. Algorithms for learning regular expressions. In
Algorithmic Learning Theory, pages 297–311. Springer, 2005.

[8] P. Godefroid, N. Klarlund, and K. Sen. DART: directed
automated random testing. In Proceedings of the 26th ACM
SIGPLAN conference on Programming Language Design and
Implementation (PLDI 2005), pages 213–223. ACM, 2005.

[9] H. Hosoya and B. Pierce. Regular expression pattern match-
ing for XML. In Proceedings of the 28th ACM SIGPLAN-
SIGACT symposium on Principles Of Programming Lan-
guages (POPL 2001), pages 67–80. ACM, 2001.

[10] H. Hosoya and B. C. Pierce. XDuce: A statically typed XML
processing language. ACM Trans. Internet Technol., 3:117–
148, 2003.

[11] D. Hovemeyer and W. Pugh. Finding bugs is easy. SIGPLAN
Not., 39:92–106, 2004.

[12] S. S. Huang and Y. Smaragdakis. Class morphing: Expressive
and safe static reflection. In Proceedings of the 29th ACM
SIGPLAN conference on Programming Language Design and
Implementation (PLDI 2008), pages 79–89. ACM, 2008.

[13] S. S. Huang, D. Zook, and Y. Smaragdakis. Morphing: Safely
shaping a class in the image of others. In Proceedings of the
21st European Conference on Object-Oriented Programming
(ECOOP 2007), pages 399–424. Springer-Verlag, 2007.

[14] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and
W. G. Griswold. An overview of AspectJ. In Proceedings
of the 15th European Conference on Object-Oriented Pro-
gramming (ECOOP 2001), pages 327–353. Springer-Verlag,
2001.

[15] K. Lee, A. LaMarca, and C. Chambers. Hydroj: object-
oriented pattern matching for evolvable distributed systems.
In Proceedings of the 18th annual ACM SIGPLAN conference
on Object-Oriented Programing, Systems, Languages, and
Applications (OOPSLA 2003), pages 205–223. ACM, 2003.

[16] J. Liu and A. C. Myers. JMatch: Iterable Abstract Pattern
Matching for Java. In Proceedings of the 5th international
symposium on Practical Aspects of Declarative Languages
(PADL 2003), pages 110–127. Springer-Verlag, 2003.

[17] T. Millstein, C. Frost, J. Ryder, and A. Warth. Expressive and
modular predicate dispatch for Java. ACM Trans. Program.
Lang. Syst., 31:7:1–7:54, 2009.

[18] Y. Minamide and A. Tozawa. XML Validation for Context-
Free Grammars. In Proceedings of the 4th ASIAN Symposium
on Programming Languages and Systems (APLAS 2006),
pages 357–373. Springer, 2006.

[19] C. Noguera and L. Duchien. Annotation framework validation
using domain models. In Proceedings of the 4th Euro-
pean Conference on Model Driven Architecture: Foundations
and Applications (ECMDA-FA 2008), pages 48–62. Springer-
Verlag, 2008.

[20] A. Orso, M. J. Harrold, and D. S. Rosenblum. Component
Metadata for Software Engineering Tasks. In Revised Pa-
pers from the 2nd international workshop on Engineering
Distributed Objects (EDO 2001), pages 129–144. Springer-
Verlag, 2001.

[21] M. Song and E. Tilevich. Reusing Non-Functional Concerns
Across Languages. In Proceedings of the 11th international
conference on Aspect-Oriented Software Development (AOSD
2012). ACM, 2012.

[22] R. Stuckert. JUnit Reloaded, 2006. http://today.java.net/pub/
a/today/2006/12/07/junit-reloaded.html.

[23] E. Tilevich and M. Song. Reusable enterprise metadata
with pattern-based structural expressions. In Proceedings of
the 9th international conference on Aspect-Oriented Software
Development (AOSD 2010), pages 25–36. ACM, 2010.

[24] C. Walls, N. Richards, and R. Oberg. XDoclet in Action (In
Action series). Manning Publications Co., 2003.

11

